Commuters’ Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Instrumentation
2.2. Statistical Analysis and Inhaled Dose Estimation
3. Results and Discussions
3.1. Descriptive Analysis: Pollutant Exposure Levels and Physiological Parameters
3.2. Inhaled Dose Across Different Microenvironments (MEs) and Differences in Exposure Levels Across MEs
4. Conclusions
4.1. Strengths and Limitations
4.2. Further Developments
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Berglund, M.; Elinder, C.G.; Järup, L. Human Exposure Assessment—An Introduction. WHO/SDE/OEH/01.3. 2001. Available online: https://apps.who.int/iris/handle/10665/70570 (accessed on 11 May 2020).
- Tan, S.H.; Roth, M.; Velasco, E. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 2017, 170, 245–258. [Google Scholar] [CrossRef]
- Karanasiou, A.; Viana, M.; Querol, X.; Moreno, T.; de Leeuw, F. Assessment of personal exposure to particulate air pollution during commuting in European cities-Recommendations and policy implications. Sci. Total Environ. 2014, 490, 785–797. [Google Scholar] [CrossRef] [PubMed]
- De Nazelle, A.; Bode, O.; Orjuela, J.P. Comparison of air pollution exposures in active vs. passive travel modes in European cities: A quantitative review. Environ. Int. 2017, 99, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.Y.; Lau, W.L.; Lee, S.C.; Chan, C.Y. Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. Environ. 2002, 36, 3363–3373. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Pedestrian exposure to air pollution along a major road in Central London, UK. Atmos. Environ. 2005, 39, 7307–7320. [Google Scholar] [CrossRef]
- Nyhan, M.; McNabola, A.; Misstear, B. Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Sci. Total Environ. 2014, 468–469, 821–831. [Google Scholar] [CrossRef]
- Yang, F.; Kaul, D.; Wong, K.C.; Westerdahl, D.; Sun, L.; Ho, K.; Tian, L.; Brimblecombe, P.; Ning, Z. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos. Environ. 2015, 109, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Moreno, T.; Reche, C.; Rivas, I.; Minguillón, M.C.; Martins, V.; Vargas, C.; Buonanno, G.; Parga, J.; Pandolfi, M.; Ealo, M.; et al. Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ. Res. 2015, 142, 495–510. [Google Scholar] [CrossRef]
- Ozgen, S.; Ripamonti, G.; Malandrini, A.; Ragettli, M.S.; Lonati, G. Particle number and mass exposure concentrations by commuter transport modes in Milan, Italy. AIMS Environ. Sci. 2016, 3, 168–184. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Perales, J.E.; Colvile, R.N.; Fernández-Bremauntz, A.A.; Gutiérrez-Avedoy, V.; Páramo-Figueroa, V.H.; Blanco-Jiménez, S.; Bueno-López, E.; Bernabé-Cabanillas, R.; Mandujano, F.; Hidalgo-Navarro, M.; et al. Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmos. Environ. 2007, 41, 890–901. [Google Scholar] [CrossRef]
- Briggs, D.J.; de Hoogh, K.; Morris, C.; Gulliver, J. Effects of travel mode on exposures to particulate air pollution. Environ. Int. 2008, 34, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Saksena, S.; Quang, T.N.; Nguyen, T.; Dang, P.N.; Flachsbart, P. Commuters’ exposure to particulate matter and carbon monoxide in Hanoi, Vietnam. Transp. Res. Part D Transp. Environ. 2008, 13, 206–211. [Google Scholar] [CrossRef]
- Tsai, D.H.; Wu, Y.H.; Chan, C.C. Comparisons of commuter’s exposure to particulate matters while using different transportation modes. Sci. Total Environ. 2008, 405, 71–77. [Google Scholar] [CrossRef] [PubMed]
- De Nazelle, A.; Fruin, S.; Westerdahl, D.; Martinez, D.; Ripoll, A.; Kubesch, N.; Nieuwenhuijsen, M. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 2012, 59, 151–159. [Google Scholar] [CrossRef]
- Both, A.F.; Westerdahl, D.; Fruin, S.; Haryanto, B.; Marshall, J.D. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: Effect of commute mode. Sci. Total Environ. 2013, 443, 965–972. [Google Scholar] [CrossRef]
- Quiros, D.C.; Lee, E.S.; Wang, R.; Zhu, Y. Ultrafine particle exposures while walking, cycling, and driving along an urban residential roadway. Atmos. Environ. 2013, 73, 185–194. [Google Scholar] [CrossRef]
- Suárez, L.; Mesías, S.; Iglesias, V.; Silva, C.; Cáceres, D.D.; Ruiz-Rudolph, P. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ. Sci. Process. Impacts 2014, 16, 1309–1317. [Google Scholar] [CrossRef]
- Dons, E.; Laeremans, M.; Orjuela, J.P.; Avila-Palencia, I.; Carrasco-Turigas, G.; Cole-Hunter, T.; Anaya-Boig, E.; Standaert, A.; De Boever, P.; Nawrot, T.; et al. Wearable sensors for personal monitoring and estimation of inhaled traffic-related air pollution: Evaluation of methods. Environ. Sci. Technol. 2017, 51, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Spinazzè, A.; Cattaneo, A.; Garramone, G.; Cavallo, D.M. Temporal variation of size-fractionated particulate matter and carbon monoxide in selected microenvironments of the Milan urban area. J. Occup. Environ. Hyg. 2013, 10, 652–662. [Google Scholar] [CrossRef]
- Spinazzè, A.; Cattaneo, A.; Scocca, D.R.; Bonzini, M.; Cavallo, D.M. Multi-metric measurement of personal exposure to ultrafine particles in selected urban microenvironments. Atmos. Environ. 2015, 110, 8–17. [Google Scholar] [CrossRef]
- Longhin, E.M.; Mantecca, P.; Gualtieri, M. Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int. J. Mol. Sci. 2020, 21, 2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The impact of biomass burning on the oxidative potential of PM2.5 in the metropolitan area of Milan. Atmos. Environ. 2020, 224, 117328. [Google Scholar] [CrossRef]
- UNI EN 14907. Ambient Air Quality—Standard Gravimetric Measurement Method for the Determination of the PM2,5 Mass Fraction of Suspended Particulate Matter; European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- UNI EN 12341. Ambient Air. Standard Gravimetric Measurement Method for the Determination of the pm10 or pm2,5 Mass Concentration of Suspended Particulate Matter; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- Rovelli, S.; Cattaneo, A.; Borghi, F.; Spinazzè, A.; Campagnolo, D.; Limbeck, A.; Cavallo, D.M. Mass concentration and size-distribution of atmospheric particulate matter in an urban environment. Aerosol Air Qual. Res. 2017, 17, 1142–1155. [Google Scholar] [CrossRef]
- Spinazzè, A.; Fanti, G.; Borghi, F.; Del Buono, L.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.M. Field comparison of instruments for exposure assessment of airborne ultrafine particles and particulate matter. Atmos. Environ. 2017, 154, 274–284. [Google Scholar] [CrossRef]
- Borghi, F.; Spinazzè, A.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.M. Precision and accuracy of a direct-reading miniaturized monitor in PM2.5 exposure assessment. Sensors 2018, 18, 3089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänninen, O.; Kruize, H.; Lebret, E.; Jantunen, M. EXPOLIS simulation model: PM2.5 application and comparison with measurements in Helsinki. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Spinelle, L.; Gerboles, M.; Aleixandre, M. Performance evaluation of amperometric sensors for the monitoring of O3 and NO2 in ambient air at ppb level. Procedia Eng. 2015, 120, 480–483. [Google Scholar] [CrossRef]
- Helsel, D.R. Summing nondetects: Incorporating low-level contaminants in risk assessment. Integr. Environ. Assess. Manag. 2010, 6, 361–366. [Google Scholar] [CrossRef]
- Jenkins, R.A.; Ilgner, R.H.; Tomkins, B.A.; Peters, D.W. Development and application of protocols for the determination of response of real-time particle monitors to common indoor aerosols. J. Air Waste Manag. Assoc. 2004, 54, 229–241. [Google Scholar] [CrossRef]
- Dias Do Vale, I. Comparison of Pedestrians’ Particulate Matter Inhalation for Different Routes in Urban Centers; Environmental Engineering Examination Committee: Lisbon, Portugal, 2014. [Google Scholar]
- I Dati Del Censimento 2011 a Milano—Analisi del Pendolarismo Per Studio e Per Lavoro a Milano. Available online: https://www.comune.milano.it/documents/20126/2220553/Pendolarismo+a+Milano.pdf/ece83eab-3103-e28f-f894-fec26b2504de?t=1555347870095 (accessed on 3 May 2020).
- Borghi, F.; Cattaneo, A.; Spinazzè, A.; Manno, A.; Rovelli, S.; Campagnolo, D.; Vicenzi, M.; Mariani, J.; Bollati, V.; Cavallo, D.M. Evaluation of the inhaled dose across different microenvironments. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012007. [Google Scholar] [CrossRef]
Parameter | N | Min. | Max. | Mean | S.D. | Monitoring Period |
---|---|---|---|---|---|---|
UFP number * | 8179 | 212 | 74436 | 9640 | 7027 | Total |
UFP diameter ** | 8228 | <LOD | 300.0 | 49.2 | 15.2 | |
UFP LDSA *** | 8228 | 0.6 | 203.9 | 24.4 | 15.9 | |
UFP mass | 8239 | <LOD | 197.3 | 3.7 | 4.1 | |
PM1 | 8365 | 0.1 | 174.8 | 10.2 | 12.5 | |
PM1–2.5 | 8026 | <LOD | 106.4 | 3.2 | 5.8 | |
PM2.5 | 8342 | 0.2 | 160.8 | 13.1 | 15.4 | |
PM2.5–4 | 8046 | <LOD | 139.9 | 3.4 | 5.9 | |
PM2.5 (AB) | 7394 | 1.4 | 134.9 | 35.5 | 22.6 | |
PM4 | 8348 | 0.3 | 189.0 | 16.2 | 18.9 | |
PM4–10 | 8023 | <LOD | 303.5 | 8.3 | 13.2 | |
PM10 | 8345 | 0.6 | 378.5 | 24.0 | 28.4 | |
PM>10 | 8033 | <LOD | 399.6 | 4.5 | 9.1 | |
TSP | 8340 | 0.6 | 480.6 | 28.2 | 33.0 | |
NO2 | 8690 | 0.9 | 478.5 | 30.5 | 52.7 | |
UFP number * | 4014 | 477 | 63678 | 10133 | 7449 | Winter |
UFP diameter ** | 4063 | <LOD | 130.3 | 44.5 | 11.0 | |
UFP LDSA *** | 4063 | 0.6 | 203.9 | 24.3 | 17.6 | |
UFP mass | 4074 | <LOD | 197.3 | 3.2 | 4.5 | |
PM1 | 4164 | 0.3 | 174.8 | 11.1 | 13.8 | |
PM1–2.5 | 3744 | <LOD | 76.5 | 4.4 | 7.1 | |
PM2.5 | 4162 | 0.7 | 160.8 | 14.8 | 17.0 | |
PM2.5–4 | 3747 | <LOD | 92.2 | 4.5 | 6.7 | |
PM2.5 (AB) | 3763 | 26.5 | 116.5 | 50.6 | 14.7 | |
PM4 | 4162 | 1.1 | 189.0 | 18.7 | 21.0 | |
PM4–10 | 3747 | <LOD | 303.5 | 11.3 | 16.6 | |
PM10 | 4162 | 1.1 | 378.5 | 28.6 | 33.0 | |
PM>10 | 3747 | <LOD | 399.6 | 5.7 | 11.0 | |
TSP | 4162 | 1.5 | 480.6 | 33.5 | 38.6 | |
NO2 | 4389 | 0.9 | 478.5 | 29.0 | 50.6 | |
UFP number * | 4165 | 212 | 74436 | 9164 | 6560 | Summer |
UFP diameter ** | 4165 | 18.7 | 300.0 | 53.8 | 17.2 | |
UFP LDSA *** | 4165 | 1.8 | 168.0 | 24.4 | 14.0 | |
UFP mass | 4165 | 0.1 | 73.9 | 4.2 | 3.5 | |
PM1 | 4201 | 0.1 | 70.2 | 9.2 | 11.0 | |
PM1–2.5 | 4282 | <LOD | 106.4 | 2.2 | 4.2 | |
PM2.5 | 4180 | 0.2 | 106.4 | 11.4 | 13.5 | |
PM2.5–4 | 4299 | <LOD | 139.9 | 2.4 | 4.8 | |
PM2.5 (AB) | 3631 | 1.4 | 134.9 | 19.9 | 18.3 | |
PM4 | 4186 | 0.3 | 139.9 | 13.7 | 16.3 | |
PM4–10 | 4276 | <LOD | 183.1 | 5.8 | 8.4 | |
PM10 | 4183 | 0.6 | 190.6 | 19.5 | 22.1 | |
PM>10 | 4286 | <LOD | 214.9 | 3.5 | 7.0 | |
TSP | 4178 | 0.6 | 223.8 | 22.9 | 25.1 | |
NO2 | 4301 | 0.9 | 478.5 | 32.0 | 54.7 |
Walking (lt) | Walking (ht) | Bike | Car | |||||||||
Total (Mean) | Winter (Mean) | Summer (Mean) | Total (Mean) | Winter (Mean) | Summer (Mean) | Total (Mean) | Winter (Mean) | Summer (Mean) | Total (Mean) | Winter (Mean) | Summer (Mean) | |
UFP number * | 9218 | 9384 | 9053 | 13735 | 16432 | 11484 | 15655 | 17824 | 13700 | 13843 | 14161 | 13447 |
UFP diameter ** | 46.7 | 45.1 | 48.3 | 46.9 | 42.9 | 50.5 | 44.4 | 44.2 | 44.6 | 51.5 | 47.2 | 57.0 |
UFP LDSA*** | 22.9 | 22.6 | 23.2 | 34.0 | 38.2 | 30.2 | 37.1 | 42.6 | 32.2 | 37.1 | 36.8 | 37.6 |
UFP mass | 3.3 | 3.3 | 3.3 | 4.5 | 4.3 | 4.8 | 4.6 | 5.4 | 3.9 | 6.3 | 5.6 | 7.3 |
PM1 | 12.8 | 11.3 | 14.4 | 12.3 | 13.1 | 11.5 | 15.0 | 16.4 | 13.8 | 5.8 | 6.8 | 4.4 |
PM1–2.5 | 2.7 | 3.2 | 2.3 | 2.9 | 3.8 | 2.1 | 4.1 | 5.1 | 3.1 | 1.0 | 1.2 | 0.9 |
PM2.5 | 15.5 | 14.5 | 16.7 | 15.2 | 16.9 | 13.6 | 19.1 | 21.5 | 16.9 | 6.8 | 8.0 | 5.3 |
PM2.5–4 | 3.1 | 3.0 | 3.2 | 3.8 | 4.9 | 2.7 | 5.5 | 7.2 | 4.0 | 0.9 | 1.0 | 0.8 |
PM2.5 (AB) | 38.5 | 49.8 | 25.5 | 37.5 | 51.5 | 24.3 | 37.5 | 50.7 | 25.5 | 31.1 | 46.1 | 11.3 |
PM4 | 18.6 | 17.5 | 19.9 | 19.0 | 21.8 | 16.3 | 24.6 | 28.7 | 20.9 | 7.7 | 9.0 | 6.1 |
PM4–10 | 13.5 | 15.7 | 10.9 | 10.2 | 13.7 | 7.0 | 14.3 | 19.7 | 9.5 | 1.6 | 1.6 | 1.4 |
PM10 | 32.1 | 33.2 | 30.8 | 29.2 | 35.5 | 23.3 | 38.9 | 48.4 | 30.4 | 9.3 | 10.6 | 7.5 |
PM>10 | 5.0 | 6.2 | 3.6 | 3.5 | 4.3 | 2.7 | 4.4 | 5.5 | 3.3 | 1.1 | 1.0 | 1.1 |
TSP | 37.1 | 39.4 | 34.4 | 32.7 | 39.8 | 26.0 | 43.3 | 53.9 | 33.7 | 10.4 | 11.6 | 8.6 |
NO2 | 32.3 | 25.5 | 39.9 | 38.5 | 39.5 | 37.5 | 44.6 | 30.6 | 57.5 | 10.8 | 5.9 | 17.0 |
Underground | Train | Indoor | Other | |||||||||
Total (mean) | Winter (mean) | Summer (mean) | Total (mean) | Winter (mean) | Summer (mean) | Total (mean) | Winter (mean) | Summer (mean) | Total (mean) | Winter (mean) | Summer (mean) | |
UFP number * | 11195 | 12638 | 9932 | 5925 | 5518 | 6291 | 8531 | 7712 | 9229 | 10038 | 11559 | 8802 |
UFP diameter ** | 49.8 | 48.2 | 51.2 | 51.4 | 43.2 | 58.8 | 49.1 | 47.1 | 50.8 | 50.7 | 45.8 | 54.7 |
UFP LDSA *** | 30.1 | 33.1 | 27.5 | 14.9 | 12.4 | 17.1 | 22.2 | 20.0 | 24.0 | 25.6 | 28.0 | 23.7 |
UFP mass | 4.5 | 4.8 | 4.3 | 2.6 | 1.5 | 3.5 | 3.4 | 3.0 | 3.8 | 3.9 | 3.7 | 4.1 |
PM1 | 27.9 | 42.7 | 17.5 | 7.1 | 7.5 | 6.8 | 7.5 | 7.2 | 7.7 | 12.5 | 15.4 | 10.1 |
PM1–2.5 | 14.2 | 21.4 | 8.7 | 1.1 | 1.4 | 0.7 | 1.7 | 2.2 | 1.4 | 3.8 | 4.8 | 3.0 |
PM2.5 | 42.1 | 64.1 | 26.2 | 8.2 | 8.9 | 7.5 | 9.2 | 9.4 | 9.1 | 16.3 | 20.2 | 13.1 |
PM2.5–4 | 12.7 | 19.8 | 7.7 | 1.2 | 1.6 | 0.9 | 2.1 | 2.3 | 1.7 | 3.9 | 4.9 | 3.0 |
PM2.5 (AB) | 54.4 | 66.3 | 46.7 | 32 | 50.9 | 14.2 | 32.1 | 49.7 | 14.0 | 35.6 | 50.9 | 22.8 |
PM4 | 54.8 | 83.9 | 33.9 | 9.4 | 10.5 | 8.4 | 11.3 | 11.7 | 10.8 | 20.2 | 25.1 | 16.1 |
PM4–10 | 26.1 | 40.7 | 15.9 | 4.0 | 5.0 | 3.1 | 5.0 | 6.2 | 4.1 | 9.4 | 12.5 | 7.0 |
PM10 | 80.9 | 124.6 | 49.8 | 13.4 | 15.5 | 11.5 | 16.3 | 17.9 | 14.9 | 29.6 | 37.6 | 23.1 |
PM>10 | 11.2 | 14.5 | 8.8 | 4.1 | 4.9 | 3.3 | 3.2 | 4.2 | 2.2 | 4.5 | 5.2 | 4.0 |
TSP | 92.1 | 139.1 | 58.6 | 17.5 | 20.4 | 14.8 | 19.5 | 22.1 | 17.1 | 34.1 | 42.8 | 27.1 |
NO2 | 66.3 | 69.4 | 63.4 | 11.9 | 12.1 | 11.7 | 29.1 | 33.4 | 2.2 | 41.1 | 36.5 | 45.1 |
Pollutant | Walking (lt) | Walking (ht) | Bike | Car | Underground | Train | Indoor | Other | Total |
---|---|---|---|---|---|---|---|---|---|
UFP | 0.6 | 3.8 | 1.3 | 1.5 | 1.4 | 1.7 | 2.2 | 4.9 | 17.4 |
PM1 | 2.3 | 10.5 | 4.3 | 1.3 | 8.7 | 4.5 | 4.8 | 15.6 | 52 |
PM1–2.5 | 0.5 | 2.5 | 1.2 | 0.3 | 4.4 | 0.7 | 1.1 | 4.7 | 15.4 |
PM2.5 | 2.8 | 13 | 5.5 | 1.6 | 13.1 | 5.2 | 5.9 | 20.3 | 67.4 |
AB2.5 | 6.9 | 32.1 | 10.8 | 7.2 | 17 | 20.4 | 20.7 | 44.4 | 159.5 |
PM2.5–4 | 0.5 | 3.2 | 1.6 | 0.2 | 4 | 0.8 | 1.4 | 4.9 | 16.6 |
PM4 | 3.3 | 16.2 | 7.1 | 1.8 | 17.1 | 6 | 7.3 | 25.2 | 84 |
PM4–10 | 2.5 | 8.8 | 4.1 | 0.3 | 8.1 | 2.5 | 3.2 | 11.7 | 41.2 |
PM10 | 5.8 | 25 | 11.2 | 2.1 | 25.2 | 8.5 | 10.5 | 36.9 | 125.2 |
PM>10 | 0.9 | 3 | 1.3 | 0.3 | 3.5 | 2.6 | 2.1 | 5.7 | 19.4 |
TSP | 6.7 | 28 | 12.5 | 2.4 | 28.7 | 11.1 | 12.6 | 42.6 | 144.6 |
NO2 | 5.8 | 32.9 | 12.8 | 2.5 | 20.7 | 7.6 | 18.7 | 51.3 | 152.3 |
UFP | PM1 | PM1–2.5 | PM2.5 | PM2.5–4 | PM4 | PM4–10 | PM10 | PM>10 | TSP | NO2 |
---|---|---|---|---|---|---|---|---|---|---|
Lt | Car | Car | Car | Car | Car | Car | Car | Car | Car | Car |
0.6 | 1.3 | 0.3 | 1.6 | 0.2 | 1.8 | 0.3 | 2.1 | 0.3 | 2.4 | 2.5 |
Bike | Lt | Lt | Lt | Lt | Lt | Lt | Lt | Lt | Lt | Lt |
1.3 | 2.3 | 0.5 | 2.8 | 0.5 | 3.3 | 2.5 | 5.8 | 0.9 | 6.7 | 5.8 |
Under. | Bike | Train | Train | Train | Train | Train | Train | Bike | Train | Train |
1.4 | 4.3 | 0.7 | 5.2 | 0.8 | 6.0 | 2.5 | 8.5 | 1.3 | 11.1 | 7.6 |
Car | Train | Indoor | Bike | Indoor | Bike | Indoor | Indoor | Indoor | Bike | Bike |
1.5 | 4.5 | 1.1 | 5.5 | 1.4 | 7.1 | 3.2 | 10.5 | 2.1 | 12.5 | 12.8 |
Train | Indoor | Bike | Indoor | Bike | Indoor | Bike | Bike | Train | Indoor | Indoor |
1.7 | 4.8 | 1.2 | 5.9 | 1.6 | 7.3 | 4.1 | 11.2 | 2.6 | 12.6 | 18.7 |
Indoor | Under. | Ht | Ht | Ht | Ht | Under. | Ht | Ht | Ht | Under. |
2.2 | 8.7 | 2.5 | 13.0 | 3.2 | 16.2 | 8.1 | 25.0 | 3 | 28.0 | 20.7 |
Ht | Ht | Under. | Under. | Under. | Under | Ht | Under. | Under. | Under. | Ht |
3.8 | 10.5 | 4.4 | 13.1 | 4 | 17.1 | 8.8 | 25.2 | 3.5 | 28.7 | 32.0 |
Other | Other | Other | Other | Other | Other | Other | Other | Other | Other | Other |
4.9 | 15.6 | 4.7 | 20.3 | 4.9 | 25.2 | 11.7 | 36.9 | 5.7 | 42.6 | 51.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borghi, F.; Spinazzè, A.; Fanti, G.; Campagnolo, D.; Rovelli, S.; Keller, M.; Cattaneo, A.; Cavallo, D.M. Commuters’ Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants. Int. J. Environ. Res. Public Health 2020, 17, 3357. https://doi.org/10.3390/ijerph17103357
Borghi F, Spinazzè A, Fanti G, Campagnolo D, Rovelli S, Keller M, Cattaneo A, Cavallo DM. Commuters’ Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants. International Journal of Environmental Research and Public Health. 2020; 17(10):3357. https://doi.org/10.3390/ijerph17103357
Chicago/Turabian StyleBorghi, Francesca, Andrea Spinazzè, Giacomo Fanti, Davide Campagnolo, Sabrina Rovelli, Marta Keller, Andrea Cattaneo, and Domenico Maria Cavallo. 2020. "Commuters’ Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants" International Journal of Environmental Research and Public Health 17, no. 10: 3357. https://doi.org/10.3390/ijerph17103357
APA StyleBorghi, F., Spinazzè, A., Fanti, G., Campagnolo, D., Rovelli, S., Keller, M., Cattaneo, A., & Cavallo, D. M. (2020). Commuters’ Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants. International Journal of Environmental Research and Public Health, 17(10), 3357. https://doi.org/10.3390/ijerph17103357