Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isle of Wight Birth Cohort
2.2. DNA Extraction and Microarray
2.3. Genotyping and Imputation
2.4. Categorisation of Breastfeeding Duration
2.5. Confounding Factors
2.6. Statistical Analyses
3. Results
3.1. EWAS of Breastfeeding Duration and DNA Methylation
3.2. Genome-Wide DMR Identifications
3.3. Persistence of DNA Methylation at Significant CpG Sites
3.4. EWAS of Exclusive Breastfeeding Duration and DNAm
3.5. Association of Genotype and DNA Methylation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Binns, C.; Lee, M.; Low, W.Y. The Long-Term Public Health Benefits of Breastfeeding. Asia Pac. J. Public Health 2016, 28, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Essential Nutrition Actions: Improving Maternal, Newborn, Infant and Young Child Health and Nutrition; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Sankar, M.J.; Sinha, B.; Chowdhury, R.; Bhandari, N.; Taneja, S.; Martines, J.; Bahl, R. Optimal Breastfeeding Practices and Infant and Child Mortality: A Systematic Review and Meta-Analysis. Acta Paediatr. 2015, 104, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.; Victora, C.G. Short-Term Effects of Breastfeeding: A Systematic Review of the Benefits of Breastfeeding on Diarrhoea and Pneumonia Mortality; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Robinson, S.M. Infant Nutrition and Lifelong Health: Current Perspectives and Future Challenges. J. Dev. Orig. Health Dis. 2015, 6, 384–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horta, B.L.; de Mola, C.L.; Victora, C.G. Long-Term Consequences of Breastfeeding on Cholesterol, Obesity, Systolic Blood Pressure and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Acta Paediatr. 2015, 104, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Amitay, E.L.; Keinan-Boker, L. Breastfeeding and Childhood Leukemia Incidence. JAMA Pediatr. 2015, 169, e151025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miliku, K.; Azad, M.B. Breastfeeding and the Developmental Origins of Asthma: Current Evidence, Possible Mechanisms, and Future Research Priorities. Nutrients 2018, 10, 995. [Google Scholar] [CrossRef] [Green Version]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Marincola, F.C.; Dessì, A.; Corbu, S.; Reali, A.; Fanos, V. Clinical Impact of Human Breast Milk Metabolomics. Clin. Chim. Acta 2015, 451, 103–106. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647. [Google Scholar] [CrossRef]
- Hoile, S.P.; Clarke-Harris, R.; Huang, R.-C.; Calder, P.C.; Mori, T.A.; Beilin, L.J.; Lillycrop, K.A.; Burdge, G.C. Supplementation with N-3 Long-Chain Polyunsaturated Fatty Acids or Olive Oil in Men and Women with Renal Disease Induces Differential Changes in the DNA Methylation of FADS2 and ELOVL5 in Peripheral Blood Mononuclear Cells. PLoS ONE 2014, 9, e109896. [Google Scholar] [CrossRef]
- Canani, R.B.; Di Costanzo, M.; Leone, L.; Bedogni, G.; Brambilla, P.; Cianfarani, S.; Nobili, V.; Pietrobelli, A.; Agostoni, C. Epigenetic Mechanisms Elicited by Nutrition in Early Life. Nutr. Res. Rev. 2011, 24, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-W.; Friso, S. Epigenetics: A New Bridge between Nutrition and Health. Adv. Nutr. 2010, 1, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Peter, C.J.; Fischer, L.K.; Kundakovic, M.; Garg, P.; Jakovcevski, M.; Dincer, A.; Amaral, A.C.; Ginns, E.I.; Galdzicka, M.; Bryce, C.P.; et al. DNA Methylation Signatures of Early Childhood Malnutrition Associated With Impairments in Attention and Cognition. Biol. Psychiatry 2016, 80, 765–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paparo, L.; Nocerino, R.; Bruno, C.; Di Scala, C.; Cosenza, L.; Bedogni, G.; Di Costanzo, M.; Mennini, M.; D’Argenio, V.; Salvatore, F.; et al. Randomized Controlled Trial on the Influence of Dietary Intervention on Epigenetic Mechanisms in Children with Cow’s Milk Allergy: The EPICMA Study. Sci. Rep. 2019, 9, 2828. [Google Scholar] [CrossRef]
- Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic Effects of Human Breast Milk. Nutrients 2014, 6, 1711–1724. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Loret de Mola, C.; Davies, N.M.; Victora, C.G.; Relton, C.L. Breastfeeding Effects on DNA Methylation in the Offspring: A Systematic Literature Review. PLoS ONE 2017, 12, e0173070. [Google Scholar]
- Rossnerova, A.; Tulupova, E.; Tabashidze, N.; Schmuczerova, J.; Dostal, M.; Rossner, P.; Gmuender, H.; Sram, R.J. Factors Affecting the 27K DNA Methylation Pattern in Asthmatic and Healthy Children from Locations with Various Environments. Mutat. Res. 2013, 741–742, 18–26. [Google Scholar] [CrossRef]
- Obermann-Borst, S.A.; Eilers, P.H.C.; Tobi, E.W.; de Jong, F.H.; Slagboom, P.E.; Heijmans, B.T.; Steegers-Theunissen, R.P.M. Duration of Breastfeeding and Gender Are Associated with Methylation of the LEPTIN Gene in Very Young Children. Pediatr. Res. 2013, 74, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, S.; Symons, L.; Vanautgaerden, E.-L.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; et al. The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients 2019, 11, 1408. [Google Scholar] [CrossRef] [Green Version]
- McDade, T.W.; Ryan, C.; Jones, M.J.; MacIsaac, J.L.; Morin, A.M.; Meyer, J.M.; Borja, J.B.; Miller, G.E.; Kobor, M.S.; Kuzawa, C.W. Social and Physical Environments Early in Development Predict DNA Methylation of Inflammatory Genes in Young Adulthood. Proc. Natl. Acad. Sci. USA 2017, 114, 7611–7616. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, W.B.; Bion, V.; Lockett, G.A.; Ziyab, A.H.; Soto-Ramírez, N.; Mukherjee, N.; Kurukulaaratchy, R.J.; Ewart, S.; Zhang, H.; Arshad, S.H.; et al. Duration of Breastfeeding Is Associated with Leptin (LEP) DNA Methylation Profiles and BMI in 10-Year-Old Children. Clin. Epigenet. 2019, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.H.; Holloway, J.W.; Karmaus, W.; Zhang, H.; Ewart, S.; Mansfield, L.; Matthews, S.; Hodgekiss, C.; Roberts, G.; Kurukulaaratchy, R. Cohort Profile: The Isle Of Wight Whole Population Birth Cohort (IOWBC). Int. J. Epidemiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.H.; Karmaus, W.; Zhang, H.; Holloway, J.W. Multigenerational Cohorts in Patients with Asthma and Allergy. J. Allergy Clin. Immunol. 2017, 139, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshad, S.H.; Hide, D.W. Effect of Environmental Factors on the Development of Allergic Disorders in Infancy. J. Allergy Clin. Immunol. 1992, 90, 235–241. [Google Scholar] [CrossRef]
- Lehne, B.; Drong, A.W.; Loh, M.; Zhang, W.; Scott, W.R.; Tan, S.-T.; Afzal, U.; Scott, J.; Jarvelin, M.-R.; Elliott, P.; et al. A Coherent Approach for Analysis of the Illumina HumanMethylation450 BeadChip Improves Data Quality and Performance in Epigenome-Wide Association Studies. Genome Biol. 2015, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods. Biostatistics 2006, 8, 118–127. [Google Scholar] [CrossRef]
- McCartney, D.L.; Walker, R.M.; Morris, S.W.; McIntosh, A.M.; Porteous, D.J.; Evans, K.L. Identification of Polymorphic and Off-Target Probe Binding Sites on the Illumina Infinium MethylationEPIC BeadChip. Genom. Data 2016, 9, 22–24. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, S. A Reference Panel of 64, 976 Haplotypes for Genotype Imputation. Nat. Genet. 2016, 48, 1279–1283. [Google Scholar] [CrossRef]
- Loh, P.; Danecek, P.; Palamara, P.F.; Fuchsberger, C.; Reshef, A.; Finucane, H.K.; Schoenherr, S.; Forer, L.; Mccarthy, S.; Abecasis, G.R.; et al. Reference-Based Phasing Using the Haplotype Reference Consortium Panel. Nat. Genet. 2016, 48, 1443–1448. [Google Scholar] [CrossRef] [Green Version]
- Durbin, R. Efficient Haplotype Matching and Storage Using the Positional Burrows-Wheeler Transform (PBWT). Bioinformatics 2014, 30, 1266–1272. [Google Scholar] [CrossRef] [Green Version]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A Flexible and Comprehensive Bioconductor Package for the Analysis of Infinium DNA Methylation Microarrays. Bioinformatics 2014, 30, 1363–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houseman, E.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA Methylation Arrays as Surrogate Measures of Cell Mixture Distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Pedersen, B.S.; Schwartz, D.A.; Yang, I.V.; Kechris, K.J. Comb-p: Software for Combining, Analyzing, Grouping and Correcting Spatially Correlated P-Values. Bioinformatics 2012, 28, 2986–2988. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Holbrook, J.D.; Karnani, N.; Kwoh, C.K. Gene, Environment and Methylation (GEM): A Tool Suite to Efficiently Navigate Large Scale Epigenome Wide Association Studies and Integrate Genotype and Interaction between Genotype and Environment. BMC Bioinform. 2016, 17, 299. [Google Scholar] [CrossRef] [Green Version]
- Mansell, G.; Gorrie-Stone, T.J.; Bao, Y.; Kumari, M.; Schalkwyk, L.S.; Mill, J.; Hannon, E. Guidance for DNA Methylation Studies: Statistical Insights from the Illumina EPIC Array. BMC Genom. 2019, 20, 366. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Wang, Y.; Ren, F.; Zhu, S.; Ren, Y.; Jia, B.; Li, Y.-P.; Shi, Y.; Chang, Z. SNX25 Regulates TGF-β Signaling by Enhancing the Receptor Degradation. Cell. Signal 2011, 23, 935–946. [Google Scholar] [CrossRef]
- Hanson, L.Å. Session 1: Feeding and Infant Development Breast-Feeding and Immune Function. Proc. Nutr. Soc. 2007, 66, 384–396. [Google Scholar] [CrossRef] [Green Version]
- Tirado-Rodriguez, B.; Ortega, E.; Segura-Medina, P.; Huerta-Yepez, S. TGF-β: An Important Mediator of Allergic Disease and a Molecule with Dual Activity in Cancer Development. J. Immunol. Res. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zou, Y.; Yu, W.; Shi, R.; Zhang, M.; Yang, W.; Duan, J.; Deng, Y.; Wang, X.; Lü, Y. Expression Pattern of Sorting Nexin 25 in Temporal Lobe Epilepsy: A Study on Patients and Pilocarpine-Induced Rats. Brain Res. 2013, 1509, 79–85. [Google Scholar] [CrossRef]
- Heinemann, U.; Kaufer, D.; Friedman, A. Blood-Brain Barrier Dysfunction, TGFβ Signaling, and Astrocyte Dysfunction in Epilepsy. Glia 2012, 60, 1251–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Vestergaard, M.; Christensen, J.; Olsen, J. Breastfeeding and Risk of Epilepsy in Childhood: A Birth Cohort Study. J. Pediatr. 2011, 158, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Peltola, P.; Pihlajamäki, J.; Koutnikova, H.; Ruotsalainen, E.; Salmenniemi, U.; Vauhkonen, I.; Kainulainen, S.; Gylling, H.; Miettinen, T.A.; Auwerx, J.; et al. Visceral Obesity Is Associated with High Levels of Serum Squalene. Obesity 2006, 14, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, X.; Luo, G.; Zhang, X.; Lu, F.; Qiao, L.; He, W.; Li, G.; Zhang, Y. Discovery of Potential Inhibitors of Squalene Synthase from Traditional Chinese Medicine Based on Virtual Screening and In Vitro Evaluation of Lipid-Lowering Effect. Molecules 2018, 23, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tozawa, R.; Ishibashi, S.; Osuga, J.; Yagyu, H.; Oka, T.; Chen, Z.; Ohashi, K.; Perrey, S.; Shionoiri, F.; Yahagi, N.; et al. Embryonic Lethality and Defective Neural Tube Closure in Mice Lacking Squalene Synthase. J. Biol. Chem. 1999, 274, 30843–30848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagashima, S.; Yagyu, H.; Tozawa, R.; Tazoe, F.; Takahashi, M.; Kitamine, T.; Yamamuro, D.; Sakai, K.; Sekiya, M.; Okazaki, H.; et al. Plasma Cholesterol-Lowering and Transient Liver Dysfunction in Mice Lacking Squalene Synthase in the Liver. J. Lipid Res. 2015, 56, 998–1005. [Google Scholar] [CrossRef] [Green Version]
- Lester, B.M.; Conradt, E.; LaGasse, L.L.; Tronick, E.Z.; Padbury, J.F.; Marsit, C.J. Epigenetic Programming by Maternal Behavior in the Human Infant. Pediatrics 2018, 142, e20171890. [Google Scholar] [CrossRef] [Green Version]
- Rozek, L.S.; Dolinoy, D.C.; Sartor, M.A.; Omenn, G.S. Epigenetics: Relevance and Implications for Public Health. Annu. Rev. Public Health 2014, 35, 105–122. [Google Scholar] [CrossRef] [Green Version]
- Odintsova, V.V.; Hagenbeek, F.A.; Suderman, M.; Caramaschi, D.; van Beijsterveldt, C.E.M.; Kallsen, N.A.; Ehli, E.A.; Davies, G.E.; Sukhikh, G.T.; Fanos, V.; et al. DNA Methylation Signatures of Breastfeeding in Buccal Cells Collected in Mid-Childhood. Nutrients 2019, 11, 2804. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Smith, G.D.; Simpkin, A.J.; Victora, C.G.; Relton, C.L.; Caramaschi, D. Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Felix, J.F.; Joubert, B.R.; Baccarelli, A.A.; Sharp, G.C.; Almqvist, C.; Annesi-Maesano, I.; Arshad, H.; Baïz, N.; Bakermans-Kranenburg, M.J.; Bakulski, K.M.; et al. Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int. J. Epidemiol. 2018, 47, 22–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | IOWBC (n = 1536) | Guthrie (n = 885) | 10 Years (n = 410) | 18 Years (n = 109) | 26 Years (n = 302) |
---|---|---|---|---|---|
Child sex (female) | 750 (48.8%) | 457 (51.6%) | 169 (41.2%) | 4 (3.7%) | 171 (56.6%) |
Low birth weight (<2500 g) | 64 (4.2%) | 32 (3.6%) | 16 (3.9%) | 6 (5.5%) | 15 (5.0%) |
Socioeconomic status | |||||
1 (lowest) | 209 (13.6%) | 121 (13.7%) | 52 (12.7%) | 11 (10.1%) | 46 (15.2%) |
2 | 240 (15.6%) | 154 (17.4%) | 78 (19.0%) | 20 (18.3%) | 60 (19.9%) |
3 | 403 (26.2%) | 299 (33.8%) | 126 (30.7%) | 36 (33.0%) | 84 (27.8%) |
4 | 394 (25.7%) | 220 (24.9%) | 114 (27.8%) | 34 (31.2%) | 82 (27.2%) |
5 (highest) | 111 (7.2%) | 70 (7.9%) | 37 (9.0%) | 7 (6.4%) | 23 (7.6%) |
Maternal Smoking | 384 (25.0%) | 185 (20.9%) | 80 (19.5%) | 19 (17.4%) | 58 (19.2%) |
Maternal age (mean, standard deviation) | 26.77, 5.36 | 26.78, 5.16 | 27.06, 5.19 | 26.89, 4.84 | 26.86, 5.11 |
Never breastfed | 358 (23.3%) | 599 (67.7%) | 83 (20.2%) | 23 (21.1%) | 49 (16.2%) |
CpG | Chr | Map Info | UCSC Gene Name | Beta | SE | p-Value * | FDR-Adjusted p-Value † |
---|---|---|---|---|---|---|---|
cg03592955 | 10 | 44373919 | LINC00840 | −0.032 | 0.006 | 5.82 × 10−8 | 0.019 |
cg08188863 | 4 | 186253778 | SNX25 | 0.024 | 0.005 | 1.24 × 10−7 | 0.020 |
cg25268605 | 1 | 47698518 | TAL1 | −0.037 | 0.008 | 3.05 × 10−6 | 0.241 |
cg04957663 | 6 | 29587487 | GABBR1 | −0.016 | 0.004 | 3.32 × 10−6 | 0.241 |
cg14723566 | 15 | 80711027 | ARNT2 | −0.011 | 0.002 | 3.73 × 10−6 | 0.241 |
Location | No. of Probes | Slk p-Value | Sidak p-Value | Ref. Gene Name and Genomic Feature | CpG Feature | |
---|---|---|---|---|---|---|
chr8: 11666256–11666619 | 6 | 9.44 × 10−10 | 6.65 × 10−5 | FDFT1 | S_Shore | NA |
CpG | Chr | Map Info | UCSC Gene Name | Beta | SE | p-Value * |
---|---|---|---|---|---|---|
cg03592955 | 10 | 44373919 | LINC00840 | −0.019 | 0.006 | 0.002 |
cg08188863 | 4 | 186253778 | SNX25 | 0.010 | 0.005 | 0.028 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherwood, W.B.; Kothalawala, D.M.; Kadalayil, L.; Ewart, S.; Zhang, H.; Karmaus, W.; Arshad, S.H.; Holloway, J.W.; Rezwan, F.I. Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children. Int. J. Environ. Res. Public Health 2020, 17, 3569. https://doi.org/10.3390/ijerph17103569
Sherwood WB, Kothalawala DM, Kadalayil L, Ewart S, Zhang H, Karmaus W, Arshad SH, Holloway JW, Rezwan FI. Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children. International Journal of Environmental Research and Public Health. 2020; 17(10):3569. https://doi.org/10.3390/ijerph17103569
Chicago/Turabian StyleSherwood, William B., Dilini M. Kothalawala, Latha Kadalayil, Susan Ewart, Hongmei Zhang, Wilfried Karmaus, S. Hasan Arshad, John W. Holloway, and Faisal I. Rezwan. 2020. "Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children" International Journal of Environmental Research and Public Health 17, no. 10: 3569. https://doi.org/10.3390/ijerph17103569
APA StyleSherwood, W. B., Kothalawala, D. M., Kadalayil, L., Ewart, S., Zhang, H., Karmaus, W., Arshad, S. H., Holloway, J. W., & Rezwan, F. I. (2020). Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children. International Journal of Environmental Research and Public Health, 17(10), 3569. https://doi.org/10.3390/ijerph17103569