Augmented Reality as a Resource for Improving Learning in the Physical Education Classroom
Abstract
:1. Introduction
1.1. Augmented Reality in Teaching and Learning Processes
1.2. Augmented Reality in Physical Education
1.3. Study Dimensions
- Socio-educational: It relates variables of a social scope such as age, gender, nationality, place of residence, and of an educational scope, such as the course, methodology, learning difficulties and technologies used.
- Motivation: Indicates the degree of interest shown by students during their teaching and learning process.
- Interactions: Reveals the different types of interaction that can be carried out during the performance of training actions, such as the interaction between teacher and students, between students themselves or between students and the content of the subject.
- Autonomy: It shows what capacities each student has during the implementation of the teaching contents, as well as the degree of autonomy acquired during the development of the teaching.
- Collaboration: Indicates the degree of joint work that the students have developed during the teaching experience.
- Deepening of the contents: It refers to the degree of dedication of the teaching staff with respect to the contents of the subject according to the methodology selected during the teaching practice.
- Problem solving: It indicates the students’ capacity to solve the different difficulties raised by the teacher during the implementation of the didactic contents.
- Class time: Period of time in which the student must acquire the learning contents proposed by the teacher during the course of the class.
- Ratings: These are the self-evaluations developed by the students on the learning acquired during the development of the teaching and learning process.
- Teachers’ ratings: It shows the students’ grades, through the realization of several techniques and evaluation instruments applied by the teachers of the subject.
2. Justification and Objectives
- RQ1: Do the means used by teachers to monitor tasks influence student motivation?
- RQ2: Do the means used by the teaching staff to follow up the tasks influence the interaction between students and teachers?
- RQ3: Do the means used by teachers to monitor tasks influence students’ interaction with the teaching content?
- RQ4: Do the means used by teachers to monitor tasks influence the interaction between students?
- RQ5: Do the means used by teachers to monitor tasks influence student autonomy?
- RQ6: Do the means used by teachers to monitor tasks influence student collaboration?
- RQ7: Do the resources used by teachers to carry out the tasks influence the level of deepening the content?
- RQ8: Do the means used by the teaching staff to follow up on the tasks influence the degree of resolution of the students’ problems?
- RQ9: Do the means used by the teacher influence the monitoring of class-time tasks by the students?
- RQ10: Does the medium used by teachers to track assignments influence students’ ratings?
3. Materials and Methods
3.1. Research Design and Data Analysis
3.2. Participants
3.3. Instrument
3.4. Procedure
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hrastinski, S.; Rising, M. Communities, networks and ICT professional development across schools in close physical proximity. Technol. Pedagog. Educ. 2020, 29, 219–229. [Google Scholar] [CrossRef]
- Bardakci, S.; Kocadag, T. Preservice ICT teachers’ technology metaphors in the margin of technological determinism. Educ. Inf. Technol. 2020, 25, 905–925. [Google Scholar] [CrossRef]
- Aznar-Díaz, I.; Trujillo-Torres, J.M.; Romero-Rodríguez, J.M. Estudio bibliométrico sobre la realidad virtual aplicada a la neurorrehabilitación y su influencia en la literatura científica. Revista Cubana De Información En Ciencias De La Salud 2018, 29, 1–11. [Google Scholar] [CrossRef]
- Rodríguez-García, A.M.; Cáceres-Reche, M.P.; Alonso-García, S. La competencia digital del futuro docente: Análisis bibliométrico de la productividad científica indexada en Scopus. Int. J. Educ. Res. Innov. IJERI 2018, 10, 317–333. [Google Scholar]
- Ifinero, E.; Rikala, J.; Hamalainen, T. Factors affecting Nigerian teacher educators’ technology integration: Considering characteristics, knowledge constructs, ICT practices and beliefs. Comput. Educ. 2020, 146, 103760. [Google Scholar] [CrossRef]
- Chen, C.L.; Wu, C.C. Students’ behavioral intention to use and achievements in ICT-Integrated mathematics remedial instruction: Case study of a calculus course. Comput. Educ. 2020, 145, 103740. [Google Scholar] [CrossRef]
- Gubbels, J.; Swart, N.M.; Groen, M.A. Everything in moderation: ICT and reading performance of Dutch 15-year-olds. Large-Scale Assess. Educ. 2020, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Hinojo-Lucena, F.J.; Aznar-Díaz, I.; Romero-Rodríguez, J.M.; Marín-Marín, J.A. Influencia del aula invertida en el rendimiento académico. Una revisión sistemática. Campus Virtuales 2019, 8, 9–18. [Google Scholar]
- Andyani, H.; Setyosarin, P.; Wiyono, B.B.; Djatmika, E.T. Does Technological Pedagogical Content Knowledge Impact on the Use of ICT in Pedagogy? Int. J. Emerg. Technol. Learn. 2020, 15, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.L.; Kim, H.S.; Lai, W.H.; Hwang, G.J. Cognitive regulations in ICT-supported flipped classroom interactions: An activity theory perspective. Br. J. Educ. Technol. 2020, 51, 103–130. [Google Scholar] [CrossRef]
- Genta, A. Factors Affecting the Use of ICT Services in Ethiopia: The Case of Illubabor Zone—Oromia Regional State. Int. J. Inf. Commun. Technol. Educ. 2020, 16, 50–60. [Google Scholar] [CrossRef]
- Rodríguez-García, A.M.; Raso-Sánchez, F.; Ruiz-Palmero, J. Competencia digital, educación superior y formación del profesorado: Un estudio de meta-análisis en la Web of Science. Píxel-BIT Revista De Medios y Educ. 81. [CrossRef] [Green Version]
- Molodozhnikova, N.M.; Biryukova, N.V.; Galustyan, O.V.; Lazareva, J.B.; Stroiteleva, N.N. Formation of Professional Orientation of High School Students to Medical Profession by Using ICT Tools. Int. J. Emerg. Technol. Learn. 2020, 15, 231–239. [Google Scholar] [CrossRef]
- Sharma, E. Developing ICT adoption model based on the perceived awareness and perceived usefulness of technology among telecom users. Int. J. Technol. Enhanc. Learn. 2020, 12, 99–114. [Google Scholar] [CrossRef]
- Senkbeil, M.; Ihme, J.M.; Shöeber, C. Are first-semester and advanced university students ready for life and work in the digital world? Results of a standard setting method to describe ICT-related proficiency levels. Z. Für Erzieh. 2019, 22, 1359–1384. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Aizpurua, B.; Correa, J.M.; Gitíerrez-Cabello, A. ICT in the attention to educational diversity: The case of the Basque Autonomous Community. Red. Rev. De Educ. A Distancia 2019, 61, 1–21. [Google Scholar] [CrossRef]
- Enakrire, R.T. ICT-related training and support Programmes for information professionals. Educ. Inf. Technol. 2019, 24, 3269–3287. [Google Scholar] [CrossRef]
- Meng, L.; Qiu, C.; Boyd-Wilson, B. Measurement invariance of the ICT engagement construct and its association with students’ performance in China and Germany: Evidence from PISA 2015 data. Br. J. Educ. Technol. 2019, 50, 3233–3251. [Google Scholar] [CrossRef]
- Sáez-López, J.M.; Sevillano-García, M.L.; Pascual-Sevillano, M.A. Aplicación del juego ubicuo con realidad aumentada en Educación Primaria. Comunicar 2019, 27, 71–82. [Google Scholar] [CrossRef]
- Chin, K.Y.; Wang, C.S.; Chen, Y.L. Effects of an augmented reality-based mobile system on students’ learning achievements and motivation for a liberal arts course. Interact. Learn. Environ. 2018, 27, 927–941. [Google Scholar] [CrossRef]
- Jukanak, L.; Zounek, J.; Zaleska, K.; Barta, O.; Vlckova, K. The relationship between the age at first computer use and students’ perceived competence and autonomy in ICT usage: A mediation analysis. Comput. Educ. 2019, 141, 103614. [Google Scholar] [CrossRef]
- López-Faican, L.; Jaén, J. EmoFindAR: Evaluation of a mobile multiplayer augmented reality game for primary school children. Comput. Educ. 2020, 149, 103814. [Google Scholar] [CrossRef]
- Madanipour, P.; Cohrssen, C. Augmented reality as a form of digital technology in early childhood education. Australas. J. Early Child. 2020, 45, 5–13. [Google Scholar] [CrossRef]
- Lim, K.Y.T.; Lim, R. Semiotics, memory and augmented reality: History education with learner-generated augmentation. Br. J. Educ. Technol. 2020, 51, 673–691. [Google Scholar] [CrossRef]
- Gómez-García, G.; Rodríguez-Jiménez, C.; Marín-Marín, J.A. La trascendencia de la Realidad Aumentada en la motivación estudiantil. Una revisión sistemática y meta-análisis. Alteridad 2020, 15, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Adedokun-Shittu, N.A.; Hammed, A.; Muritala, K.; Kehinde, A. Augmented reality instructional tool in enhancing geography learners academic performance and retention in Osun state Nigeria. Educ. Inf. Technol. 2020, 1–13. [Google Scholar] [CrossRef]
- Cabero, J.; Barroso, J. Los escenarios tecnológicos en Realidad Aumentada (RA): Posibilidades educativas. Aula Abierta 2018, 47, 327–336. [Google Scholar] [CrossRef]
- Lester, S.; Hofmann, J. Some pedagogical observations on using augmented reality in a vocational practicum. Br. J. Educ. Technol. 2020, 51, 607–866. [Google Scholar] [CrossRef]
- Lee, I.J. Kinect-for-windows with augmented reality in an interactive roleplay system for children with an autism spectrum disorder. Interact. Learn. Environ. 2020, 1–17. [Google Scholar] [CrossRef]
- El Kabtane, H.; El Adanani, M.; Sadgal, M.; Mourdi, Y. Virtual reality and augmented reality at the service of increasing interactivity in MOOCs. Educ. Inf. Technol. 2020, 1–27. [Google Scholar] [CrossRef]
- Salar, R.; Arici, F.; Caliklar, S.; Yilmaz, R.M. A Model for Augmented Reality Immersion Experiences of University Students Studying in Science Education. J. Sci. Educ. Technol. 2020, 1–15. [Google Scholar] [CrossRef]
- Rivadulla, J.C.; Rodríguez, M. Incorporation of augmented reality in Science classroom. Contextos educativos. Rev. Educ. 2020, 25, 237–255. [Google Scholar] [CrossRef]
- Flores-Bascunana, M.; Diago, P.D.; Villena-Taranilla, R.; Yañez, D.F. On Augmented Reality for the Learning of 3D-Geometric Contents: A Preliminary Exploratory Study with 6-Grade Primary Students. Educ. Sci. 2020, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Cabero, J.; Roig, R. The motivation of technological scenarios in augmented reality (AR): Results of different experiments. Appl. Sci. 2019, 9, 2907. [Google Scholar] [CrossRef] [Green Version]
- Vasilevski, N.; Birt, J. Analysing construction student experiences of mobile mixed reality enhanced learning in virtual and augmented reality environments. Res. Learn. Technol. 2020, 28, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Demitriadou, E.; Stavroulia, K.E.; Lanitis, A. Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education. Educ. Inf. Technol. 2020, 25, 381–401. [Google Scholar] [CrossRef]
- Villalustre, L. Methodological proposal for the didactic integration of augmented reality in Early Childhood Education. EDMETIC 2020, 9, 170–187. [Google Scholar] [CrossRef]
- De Almeida, G.N.; Cabero, J. Aid-augmented reality for reinforced concrete class: Students’ perception. Alteridad 2020, 15, 12–24. [Google Scholar] [CrossRef]
- Pérez-Lisboa, S.; Rios-Binimelis, C.G.; Allaria, J.C. Augmented reality and stellarium: Astronomy for children of five years. Alteridad 2020, 15, 25–35. [Google Scholar] [CrossRef]
- Marín-Díaz, V.; Sampedro-Requena, B.E. Augmented Reality in Primary Education since students’ visions. Alteridad 2020, 15, 61–73. [Google Scholar] [CrossRef]
- Rodríguez, A.M.; Hinojo, F.J.; Ágreda, M. Diseño e implementación de una experiencia para trabajar la interculturalidad en Educación Infantil a través de realidad aumentada y códigos QR. Educar 2019, 55, 59–77. [Google Scholar] [CrossRef]
- Sahin, D.; Yilmaz, R.M. The effect of Augmented Reality Technology on middle school students’ achievements and attitudes towards science education. Comput. Educ. 2020, 144, 103710. [Google Scholar] [CrossRef]
- Habig, S. Who can benefit from augmented reality in chemistry? Sex differences in solving stereochemistry problems using augmented reality. Br. J. Educ. Technol. 2019, 51, 629–644. [Google Scholar] [CrossRef]
- Arici, F.; Yildirim, P.; Caliklar, S.; Yilmaz, R.M. Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Comput. Educ. 2019, 142, 103647. [Google Scholar] [CrossRef]
- Fidan, M.; Tuncel, M. Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Comput. Educ. 2019, 142, 103635. [Google Scholar] [CrossRef]
- Yeh, H.C.; Tseng, S.S. Enhancing multimodal literacy using augmented reality. Lang. Learn. Technol. 2020, 24, 27–37. [Google Scholar]
- Fombona, J.; Vázquez, E. Posibilidades de utilización de la Geolocalización y Realidad Aumentada en el ámbito educativo. Educ. Xx1 2017, 20, 319–342. [Google Scholar] [CrossRef]
- Heradio, R.; de la Torre, L.; Galán, D.; Cabrerizo, F.J.; Herrera, E.; Dormido, S. Virtual and remote labs in education: A bibliometric analysis. Comput. Educ. 2016, 98, 14–38. [Google Scholar] [CrossRef]
- Álvarez, A.; Castillo, M.; Geldes, C. Análisis Bibliométrico de la Realidad Aumentada y su Relación con la Administración de Negocios. Inf. Tecnológica 2017, 28, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Celik, C.; Guven, G.; Kozcu, N. Integration of mobile augmented reality (MAR) applications into biology laboratory: Anatomic structure of the heart. Res. Learn. Technol. 2020, 28, 1–11. [Google Scholar] [CrossRef]
- Ok, M.W.; Haggerty, N.; Whaley, A. Effects of Video Modeling Using an Augmented Reality iPad Application on Phonics Performance of Students Who Struggle with Reading. Read. Writ. Q. 2020, 1–16. [Google Scholar] [CrossRef]
- Jaramillo, A.M.; Silva, G.J.; Adarve, C.A.; Velásquez, S.M.; Páramo, C.A.; Gómez, L.L. Aplicaciones de Realidad Aumentada en educación para mejorar los procesos de enseñanza-aprendizaje: Una revisión sistemática. Rev. Espac. 2019, 39, 1–15. [Google Scholar]
- Hsiao, K.F. Using augmented reality for student’s health—Case of combining educational learning with standard fitness. Multimed. Tools Appl. 2013, 64, 407–421. [Google Scholar] [CrossRef]
- Chang, K.E.; Zhang, J.; Huang, Y.S.; Liu, T.C.; Sung, Y.T. Applying augmented reality in physical education on motor skills learning. Interact. Learn. Environ. 2019, 1–13. [Google Scholar] [CrossRef]
- Huang, Y.J.; Reynoso, L.C. Based on Physical Self-Concept to Discuss the Effect of Environmental Education on Health Related Physical Education. EKOLOJI 2018, 27, 1645–1651. [Google Scholar]
- Gómez-García, G.; Trujillo-Torres, J.M.; Aznar-Díaz, I.; Cáceres-Reche, M.P. Augment reality and virtual reality for the improvement of spatial competences in Physical Education. J. Hum. Sport Exerc. 2018, 13, 189–198. [Google Scholar]
- Gallego-Lema, V.; Muñoz-Cristobal, J.A.; Arribas-Cubero, H.F.; Rubia-Avi, B. Orienteering in the natural environment: Ubiquitous learning through the use of technology. Movimento 2017, 23, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ariza, A.; Casuso, R.A.; Suarez-Manzano, S.; Martínez-López, E.J. Effect of augmented reality game Pokémon GO on cognitive performance and emotional intelligence in adolescent young. Comput. Educ. 2018, 116, 49–63. [Google Scholar] [CrossRef]
- Muñoz-Cristobal, J.A.; Gallego-Lema, V.; Arribas-Cubero, H.F.; Martínez-Mones, A.; Asensio-Pérez, J.I. Using virtual learning environments in bricolage mode for orchestrating learning situations across physical and virtual spaces. Comput. Educ. 2017, 109, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Díaz, I.; Cáceres-Reche, M.P.; Trujillo-Torres, J.M.; Romero-Rodríguez, J.M. Mobile learning y tecnologías móviles emergentes en Educación Infantil: Percepciones de los maestros en formación. Rev. Espac. 2019, 40, 14–21. [Google Scholar]
- Castro-Lemus, N.; Gomez, I. Incorporating QR codes in Physical Education in Secondary. RETOS 2016, 29, 114–119. [Google Scholar]
- Moreno-Guerrero, A.J.; Rodríguez-Jiménez, C.; Ramos, M.; Sola-Reche, J.M. Interés y Motivación del Estudiantado de Educación Secundaria en el uso de Aurasma en el Aula de Educación Física. Retos 2020, 38, 333–340. [Google Scholar]
- Pozo, S.; López, J.; Moreno-Guerrero, A.J.; López, J.A. Impact of Educational Stage in the Application of Flipped Learning: A Contrasting Analysis with Traditional Teaching. Sustainability 2019, 11, 5968. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Guerrero, A.J.; Rodríguez-Jiménez, C.; Gómez-García, G.; Ramos, M. Educational Innovation in Higher Education: Use of Role Playing and Educational Video in Future Teachers’ Training. Sustainability 2020, 12, 2558. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Guerrero, A.J.; Romero-Rodríguez, J.M.; López-Belmonte, J.; Alonso-García, S. Flipped Learning Approach as Educational Innovation in Water Literacy. Water 2020, 12, 574. [Google Scholar] [CrossRef] [Green Version]
- López, J.A.; López, J.; Moreno-Guerrero, A.J.; Pozo, S. Effectiveness of Innovate Educational Practices with Flipped Learning and Remote Sensing in Earth and Environmental Sciences—A Case Study. Remote Sens. 2020, 12, 897. [Google Scholar] [CrossRef] [Green Version]
- Hernández, R.; Fernández, C.; Baptista, M.P. Metodología De La Investigación, 6th ed.; McGraw Hill: Madrid, Spain, 2014; pp. 129–168. [Google Scholar]
- Chou, P.N.; Feng, S.T. Using a Tablet Computer Application to Advance High School Students’ Laboratory Learning Experiences: A Focus on Electrical Engineering Education. Sustainability 2019, 11, 381. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, A.; Soyer, F. Effect of Physical Education and Play Applications on School Social Behaviors of Mild-Level Intellectually Disabled Children. Educ. Sci. 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, T. Flipped Learning and Democratic Education. Ph.D. Thesis, Columbia University, New York, NY, USA, 2012. [Google Scholar]
- Santiago, R.; Bergmann, J. Aprender Al Revés, 1st ed.; Paidós Educación: Barcelona, Spain, 2018; pp. 133–142. [Google Scholar]
- Jöreskog, K.G. Analysis of Ordinal Variables 2: Cross-Sectional Data. Text of the Workshop “Structural Equation Modelling with LISREL 8.51”; Friedrich-Schiller-Universität Jena: Jena, Germany, 2001; pp. 116–119. [Google Scholar]
Group | n | Composition | Pre-Test | Treatment | Post-Test |
---|---|---|---|---|---|
1: Control | 30 | Natural | - | - | O1 |
2: Experimental | 30 | Natural | - | X | O2 |
3: Control | 30 | Natural | - | - | O3 |
4: Experimental | 30 | Natural | - | X | O4 |
Control Group | Experimental Group |
---|---|
Deepening the work of physical conditioning focused on one’s own needs. | Deepening the work of physical conditioning focused on one’s own needs. |
Specific activities of activation and recovery of efforts. | Specific activities of activation and recovery of efforts. |
Awareness of one’s own characteristics and possibilities. | Awareness of one’s own characteristics and possibilities. |
The norm as an element regulating behaviour in social-motor activities. | The norm as an element regulating behaviour in social-motor activities. |
Group | Likert Scale n (%) | Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
Dimensions | None | Few | Enough | Completely | M | SD | Skw | Kme | |
Control Group | Motivation | 27(38.6) | 23(32.9) | 16(22.9) | 4(5.7) | 1.96 | 0.924 | 0.541 | −0.719 |
Teacher-student | 26(37.1) | 22(31.4) | 17(24.3) | 5(7.1) | 2.01 | 0.955 | 0.484 | −0.833 | |
Student-content | 29(41.4) | 18(25.7) | 17(24.3) | 6(8.6) | 2.00 | 1.01 | 0.526 | −0.954 | |
Student-student | 27(38.6) | 20(28.6) | 17(24.3) | 6(8.6) | 2.03 | 0.992 | 0.491 | −0.918 | |
Autonomy | 35(50) | 17(24.3) | 14(20) | 4(5.7) | 1.81 | 0.952 | 0.800 | −0.553 | |
Collaboration | 37(52.9) | 15(21.4) | 16(22.9) | 2(2.9) | 1.76 | 0.908 | 0.746 | −0.758 | |
Deepening | 37(52.9) | 15(21.4) | 15(21.4) | 3(4.3) | 1.77 | 0.935 | 0.807 | −0.627 | |
Resolution | 36(51.4) | 16(22.9) | 14(20) | 4(5.7) | 1.80 | 0.957 | 0.825 | −0.544 | |
Class-time | 37(52.9) | 12(17.1) | 18(25.7) | 3(4.3) | 1.81 | 0.967 | 0.683 | −0.964 | |
Ratings a | 16(22.9) | 22(31.4) | 24(34.3) | 8(11.4) | 2.34 | 0.961 | 0.060 | −0.967 | |
Teacher-ratings a | 14(20) | 24(34.3) | 21(30) | 11(15.7) | 2.41 | 0.985 | 0.106 | −0.975 | |
Experimental Group | Motivation | 1(1.4) | 14(20) | 12(17.1) | 43(61.4) | 3.39 | 0.856 | −0.988 | −0.476 |
Teacher-student | 10(14.3) | 12(17.1) | 9(12.9) | 39(55.7) | 3.10 | 1.14 | −0.799 | −0.941 | |
Student-content | 8(11.4) | 12(17.1) | 8(11.4) | 42(60) | 3.20 | 1.09 | −0.952 | −0.639 | |
Student-student | 9(12.9) | 9(12.9) | 14(20) | 38(54.3) | 3.16 | 1.08 | −0.952 | −0.512 | |
Autonomy | 10(14.3) | 10(14.3) | 12(17.1) | 38(54.3) | 3.11 | 1.12 | −0.862 | −0.767 | |
Collaboration | 9(12.9) | 10(14.3) | 13(18.6) | 38(54.3) | 3.14 | 1.09 | −0.907 | −0.625 | |
Deepening | 6(8.6) | 11(15.7) | 19(27.1) | 34(48.6) | 3.16 | 0.987 | −0.883 | −0.361 | |
Resolution | 7(10) | 12(17.1) | 17(24.3) | 34(48.6) | 3.11 | 1.02 | −0.810 | −0.608 | |
Class-time | 6(8.6) | 13(18.6) | 16(22.9) | 35(50) | 3.14 | 1.01 | −0.814 | −0.602 | |
Ratings a | 7(10) | 11(15.7) | 14(20) | 38(54.3) | 3.19 | 1.04 | −0.943 | −0.453 | |
Teacher-ratings a | 5(7.1) | 13(18.6) | 15(21.4) | 37(52.9) | 3.20 | 0.987 | −0.883 | −0.480 |
Dimensions | µ (X1–X2) | tn1+n2-2 | df | d | rxy |
---|---|---|---|---|---|
Motivation | −1.429(1.96–3.39) | −9.490 ** | 138 | 0.079 | 0.628 |
Teacher-student | −1.086(2.01–3.10) | −6.095 ** | 138 | 0.029 | 0.461 |
Student-content | −1.200(2.00–3.20) | −6.738 ** | 138 | 0.070 | 0.498 |
Student-student | −1.129(2.03–3.16) | −6.421 ** | 138 | 0.033 | 0.480 |
Autonomy | −1.300(1.81–3.11) | −7.385 ** | 138 | 0.087 | 0.532 |
Collaboration | −1.386(1.76–3.14) | −8.155 ** | 138 | 0.110 | 0.570 |
Deepening | −1.386(1.77–3.16) | −8.525 ** | 138 | 0.128 | 0.587 |
Resolution | −1.314(1.80–3.11) | −7.824 ** | 138 | 0.120 | 0.554 |
Class-time | −1.329(1.81–3.14) | −7.942 ** | 138 | 0.151 | 0.560 |
Ratings a | −0.843(2.34–3.19) | −4.980 ** | 138 | −0.009 | 0.390 |
Teacher-ratings a | −0.786(2.41–3.20) | −4.714 ** | 138 | −0.009 | 0.372 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Guerrero, A.-J.; Alonso García, S.; Ramos Navas-Parejo, M.; Campos-Soto, M.N.; Gómez García, G. Augmented Reality as a Resource for Improving Learning in the Physical Education Classroom. Int. J. Environ. Res. Public Health 2020, 17, 3637. https://doi.org/10.3390/ijerph17103637
Moreno-Guerrero A-J, Alonso García S, Ramos Navas-Parejo M, Campos-Soto MN, Gómez García G. Augmented Reality as a Resource for Improving Learning in the Physical Education Classroom. International Journal of Environmental Research and Public Health. 2020; 17(10):3637. https://doi.org/10.3390/ijerph17103637
Chicago/Turabian StyleMoreno-Guerrero, Antonio-José, Santiago Alonso García, Magdalena Ramos Navas-Parejo, María Natalia Campos-Soto, and Gerardo Gómez García. 2020. "Augmented Reality as a Resource for Improving Learning in the Physical Education Classroom" International Journal of Environmental Research and Public Health 17, no. 10: 3637. https://doi.org/10.3390/ijerph17103637
APA StyleMoreno-Guerrero, A.-J., Alonso García, S., Ramos Navas-Parejo, M., Campos-Soto, M. N., & Gómez García, G. (2020). Augmented Reality as a Resource for Improving Learning in the Physical Education Classroom. International Journal of Environmental Research and Public Health, 17(10), 3637. https://doi.org/10.3390/ijerph17103637