Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Dependent Variables
2.2.1. LULCC in the MRYRUA from 1995 to 2015
2.2.2. ESV in the MRYRUA from 1995 to 2015
2.3. Independent Variables
2.4. Regression Analysis
2.4.1. Spatial Correlation Analysis
2.4.2. Spatial Regression Analysis
3. Results
3.1. Spatial Autocorrelation
3.2. Spatial Regression
4. Discussion and Implications
4.1. A Summary of the Findings
4.2. Policy Implications
4.3. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling regional sustainable development scenarios using the urbanization and eco-environment coupler: Case study of Beijing-Tianjin-Hebei urban agglomeration, China. Sci. Total Environ. 2018, 689, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.; Yu, H.; Wang, Y. Tracing the spatial variation and value change of ecosystem services in Yellow River Delta, China. Ecol. Indic. 2019, 96, 270–277. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- National Development and Reform Commission (NDRC). The Yangtze River Middle Reach City Group Development Plan. 2015. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201504/t20150416_963800.html (accessed on 4 February 2020).
- Ehrlich, P.R.; Ehrlich, A.H. Extinction: The Causes and Consequences of the Disappearance of Species; RandomHouse: New York, NY, USA, 1981. [Google Scholar]
- Carroll, M.; Wilson, W.H.M. Man’s Impact on the Global Environment; MIT Press: Cambridge, UK, 1970. [Google Scholar]
- Westman, W.E. How much are nature’s services worth? Science 1977, 197, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; DArge, R.; DeGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 378, 253–260. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Schröter, M.; Koellner, T.; Alkemade, R.; Arnhold, S.; Bagstad, K.J.; Erb, K.; Frank, K.; Kastner, T.; Kissinger, M.; Liu, J.; et al. Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosyst. Serv. 2018, 31, 231–241. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Chi, G.; Marcouiller, D.W. Natural amenities and their effects on migration along the urban-rural continuum. Ann. Reg. Sci. 2013, 50, 861–883. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Wang, S. Exploring spatiotemporal changes in ecosystem-service values and hotspots in China. Sci. Total Environ. 2016, 545–546, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, Y.; Ling, L.; Wan, Y.; Luo, Z.; Huang, H. Drivers of changes in ecosystem service values in Ganjiang upstream watershed. Land Use Policy 2015, 47, 247–252. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, J.; Fan, X.; Lan, Y.; Zhao, M. Response of ecosystem services to socioeconomic development in the Yangtze River Basin, China. Ecol. Indic. 2017, 72, 481–493. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Zhang, L.; Lü, Y.; Fu, B.; Dong, Z.; Zeng, Y.; Wu, B. Mapping ecosystem services for China’s ecoregions with a biophysical surrogate approach. Landsc. Urban Plan. 2017, 161, 22–31. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Locatelli, B.; Lavorel, S.; Sloan, S.; Tappeiner, U.; Geneletti, D. Characteristic trajectories of ecosystem services in mountains. Front. Ecol. Environ. 2017, 15, 150–159. [Google Scholar] [CrossRef]
- Sil, Â.; Rodrigues, A.P.; Carvalho-Santos, C.; Nunes, J.P.; Honrado, J.; Alonso, J.; Marta-Pedroso, C.; Azevedo, J.C. Trade-offs and synergies between provisioning and regulating ecosystem services in a mountain area in Portugal affected by landscape change. Mt. Res. Dev. 2016, 36, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Messerli, B.; Grosjean, M.; Hofer, T.; Núñezc, L.; Pfisterd, C. From nature-dominated to human-dominated environmental changes. Quat. Sci. Rev. 2000, 19, 459–479. [Google Scholar] [CrossRef]
- Kertész, Á.; Nagy, L.A.; Balázs, B. Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy 2019, 80, 430–438. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Chazdon, R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Z.; Marrs, R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. J. Environ. Manag. 2000, 59, 205–215. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Black, R.; Adger, W.N.; Arnell, N.W.; Dercon, S.; Geddes, A.; Thomas, D. The effect of environmental change on human migration. Glob. Environ. Chang. 2011, 21, S3–S11. [Google Scholar] [CrossRef]
- Hu, X.; Hong, W.; Qiu, R.; Hong, T.; Chen, C.; Wu, C. Geographic variations of ecosystem service intensity in Fuzhou City, China. Sci. Total Environ. 2015, 512–513, 215–226. [Google Scholar] [CrossRef]
- Spellerberg, I. Ecological effects of roads and traffic: A literature review. Glob. Eco. Biogeogr. Lett. 1998, 7, 317–333. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Chi, G. The impacts of highway expansion on population change: An integrated spatial approach. Rural Sociol. 2010, 75, 58–89. [Google Scholar] [CrossRef]
- Tan, R.; Liu, Y.; Liu, Y.; He, Q.; Ming, L.; Tang, S. Urban growth and its determinants across the Wuhan urban agglomeration, central China. Habitat Int. 2014, 44, 268–281. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. D Earth Sci. 2003, 46, 373–384. [Google Scholar]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Res. 2008, 23, 911–919. [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Res. 2003, 18, 189–196. [Google Scholar]
- Chen, W.; Li, J.; Zhu, L. Spatial heterogeneity and sensitivity analysis of ecosystem services value in the Middle Yangtze River region. J. Nat. Resour. 2019, 34, 325–337. [Google Scholar]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2019, 701, 134690. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607–608, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. A test for spatial autocorrelation in seemingly unrelated regressions. Econ. Lett. 1988, 28, 335–341. [Google Scholar] [CrossRef]
- Chi, G.; Zhu, J. Spatial Regression Models for the Social Sciences; SAGE Publications: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Chi, G.; Zhu, J. Spatial regression models for demographic analysis. Popul. Res. Policy Rev. 2008, 27, 17–42. [Google Scholar] [CrossRef]
- Brander, L.M.; Wagtendonk, A.J.; Hussain, S.S.; McVittie, A.; Verburg, P.H.; de Groot, R.S.; van der Ploeg, S. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 2012, 1, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Müller, K.; Steinmeier, C.; Küchler, M. Urban growth along motorways in Switzerland. Landsc. Urban Plan. 2010, 98, 3–12. [Google Scholar] [CrossRef]
- Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Riera, J.; Voss, P.R.; Carpenter, S.R.; Riera, J.; Voss, P.R.; Carpenter, S.R.; Kratz, T.K.; Lillesand, T.M.; Schnaiberg, J.A.; Turner, M.G.; et al. Nature, society and history in two contrasting landscapes in Wisconsin, USA: Interactions between lakes and humans during the twentieth century. Land Use Policy 2001, 18, 41–51. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; Ting, H. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, D.; Hu, Y.N.; Xiao, R.; Zhang, Y. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecol. Indic. 2014, 45, 332–339. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Chen, W.; Ye, X.; Li, J.; Fan, X.; Liu, Q.; Dong, W. Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations. Land Use Policy 2019, 83, 134–146. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China’s local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy 2017, 67, 716–724. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain. J. Geogr. Sci. 2016, 26, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Lian, X. Review on advanced practice of provincial spatial planning: Case of a western, less developed province. Int. Rev. Spat. Plan. Sustain. Dev. 2018, 6, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, C. Panel data analysis—Advantages and challenges. Test 2007, 16, 1–22. [Google Scholar] [CrossRef] [Green Version]
Land Use Type | Units | 1995 | 2005 | 2015 | 1995–2005 | 2005–2015 | 1995–2015 |
---|---|---|---|---|---|---|---|
Farmland | Area (km2) | 176,032.81 | 174,649.62 | 170,191.07 | −1383.19 | −4458.55 | −5841.74 |
Proportion (%) | 31.17 | 30.93 | 30.14 | −0.24 | −0.79 | −1.03 | |
Forestland | Area (km2) | 330,189.84 | 331,286.12 | 327,894.71 | 1096.28 | −3391.41 | −2295.13 |
Proportion (%) | 58.47 | 58.67 | 58.07 | 0.19 | −0.60 | −0.41 | |
Grassland | Area (km2) | 21,920.51 | 20,241.30 | 20,585.03 | −1679.20 | 343.73 | −1335.47 |
Proportion (%) | 3.88 | 3.58 | 3.65 | −0.30 | 0.06 | −0.24 | |
Water area | Area (km2) | 25,857.54 | 27,360.30 | 28,500.41 | 1502.76 | 1140.11 | 2642.87 |
Proportion (%) | 4.58 | 4.84 | 5.05 | 0.26 | 0.21 | 0.47 | |
Construction land | Area (km2) | 10,575.69 | 11,055.84 | 17,402.33 | 480.15 | 6346.48 | 6826.64 |
Proportion (%) | 1.87 | 1.96 | 3.08 | 0.09 | 1.12 | 1.21 | |
Unused land | Area (km2) | 95.3 | 78.52 | 97.66 | −16.78 | 19.14 | 2.35 |
Proportion (%) | 0.02 | 0.01 | 0.02 | 0 | 0 | 0 |
Year | Land Use Type | Farmland | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
1995–2015 | Farmland | 161,659.56 | 5906.48 | 538.05 | 1299.92 | 781.48 | 5.58 |
Forestland | 5459.57 | 320,176.40 | 1814.89 | 297.64 | 137.81 | 8.39 | |
Grassland | 340.46 | 922.65 | 19,248.44 | 57.82 | 13.96 | 1.70 | |
Water area | 3567.13 | 786.77 | 115.73 | 23,919.71 | 109.77 | 1.30 | |
Construction land | 5001.00 | 2375.86 | 202.15 | 280.69 | 9532.21 | 10.41 | |
Unused land | 5.04 | 21.27 | 1.22 | 1.76 | 0.45 | 67.93 | |
1995–2005 | Farmland | 163,167.32 | 7641.20 | 657.95 | 1596.11 | 1576.59 | 10.45 |
Forestland | 7628.76 | 320,480.64 | 2467.68 | 465.45 | 233.64 | 9.95 | |
Grassland | 415.38 | 905.03 | 18,681.15 | 221.52 | 16.40 | 1.83 | |
Water area | 3092.75 | 641.96 | 79.69 | 23,421.04 | 124.19 | 0.67 | |
Construction land | 1724.81 | 517.59 | 33.58 | 152.23 | 8624.30 | 3.33 | |
Unused land | 3.79 | 3.42 | 0.47 | 1.19 | 0.56 | 69.08 | |
2005–2015 | Farmland | 159,171.53 | 7739.92 | 491.30 | 1827.54 | 956.79 | 4.17 |
Forestland | 7279.17 | 318,331.52 | 1509.28 | 531.42 | 238.84 | 5.62 | |
Grassland | 531.49 | 2160.83 | 17,828.35 | 44.50 | 19.24 | 1.20 | |
Water area | 2631.06 | 850.68 | 232.88 | 24,640.65 | 144.49 | 0.69 | |
Construction land | 5026.10 | 2181.54 | 178.46 | 314.46 | 9694.74 | 7.05 | |
Unused land | 10.42 | 22.30 | 1.65 | 1.75 | 1.74 | 59.80 |
Year | Land Use Type | Supplying Services | Regulating Services | Supporting Services | Cultural Services | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Food Production | Raw Material | Gas Regulation | Climate Regulation | Hydrological Regulation | Waste Treatment | Soil Formation and Retention | Biodiversity Protection | Recreation and Culture | Total | ||
1995 | Farmland | 6218.56 | 2425.24 | 4477.36 | 6032.00 | 4788.29 | 8643.80 | 9141.28 | 6342.93 | 1057.16 | 49,126.63 |
Forestland | 3908.02 | 35,290.64 | 51,159.59 | 48,198.96 | 48,435.81 | 20,369.09 | 47,606.84 | 53,409.66 | 24,632.39 | 333,011.01 | |
Grassland | 336.79 | 281.97 | 1174.87 | 1221.86 | 1190.53 | 1033.88 | 1754.47 | 1464.67 | 681.42 | 9140.46 | |
Water area | 398.88 | 264.43 | 1308.69 | 6996.09 | 14,435.87 | 13,109.26 | 1075.63 | 3191.04 | 4091.88 | 44,871.76 | |
Unused land | 0.06 | 0.13 | 0.19 | 0.41 | 0.22 | 0.83 | 0.54 | 1.27 | 0.76 | 4.43 | |
2005 | Farmland | 6238.38 | 2432.97 | 4491.63 | 6051.23 | 4803.55 | 8671.34 | 9170.41 | 6363.14 | 1060.52 | 49,283.17 |
Forestland | 3935.44 | 35,538.25 | 51,518.54 | 48,537.14 | 48,775.65 | 20,512.01 | 47,940.86 | 53,784.40 | 24,805.22 | 335,347.51 | |
Grassland | 313.19 | 262.20 | 1092.52 | 1136.22 | 1107.08 | 961.42 | 1631.49 | 1362.01 | 633.66 | 8499.79 | |
Water area | 429.32 | 284.61 | 1408.56 | 7530.02 | 15,537.60 | 14,109.74 | 1157.72 | 3434.58 | 4404.17 | 48,296.33 | |
Unused land | 0.05 | 0.11 | 0.16 | 0.36 | 0.19 | 0.71 | 0.47 | 1.09 | 0.66 | 3.80 | |
2015 | Farmland | 6083.02 | 2372.38 | 4379.78 | 5900.53 | 4683.93 | 8455.40 | 8942.04 | 6204.68 | 1034.11 | 48,055.87 |
Forestland | 3965.86 | 35,812.95 | 51,916.76 | 48,912.32 | 49,152.67 | 20,670.56 | 48,311.43 | 54,200.13 | 24,996.96 | 337,939.63 | |
Grassland | 326.22 | 273.11 | 1137.96 | 1183.48 | 1153.13 | 1001.41 | 1699.36 | 1418.66 | 660.02 | 8853.34 | |
Water area | 443.93 | 294.29 | 1456.49 | 7786.24 | 16,066.30 | 14,589.85 | 1197.12 | 3551.45 | 4554.03 | 49,939.70 | |
Unused land | 19.82 | 7.73 | 14.27 | 19.22 | 15.26 | 27.54 | 29.13 | 20.21 | 3.37 | 156.54 | |
1995–2005 | Farmland | 27.42 | 247.61 | 358.95 | 338.18 | 339.84 | 142.92 | 334.02 | 374.74 | 172.83 | 2336.51 |
Forestland | −23.61 | −19.76 | −82.35 | −85.64 | −83.45 | −72.47 | −122.97 | −102.66 | −47.76 | −640.67 | |
Grassland | 30.44 | 20.18 | 99.88 | 533.93 | 1101.73 | 1000.48 | 82.09 | 243.54 | 312.29 | 3424.56 | |
Water area | −0.01 | −0.02 | −0.03 | −0.06 | −0.03 | −0.12 | −0.08 | −0.18 | −0.11 | −0.63 | |
Unused land | −155.36 | −60.59 | −111.86 | −150.69 | −119.62 | −215.94 | −228.37 | −158.46 | −26.41 | −1227.31 | |
2005–2015 | Farmland | 30.42 | 274.70 | 398.22 | 375.18 | 377.02 | 158.55 | 370.57 | 415.73 | 191.74 | 2592.12 |
Forestland | 13.03 | 10.91 | 45.44 | 47.26 | 46.05 | 39.99 | 67.86 | 56.65 | 26.36 | 353.55 | |
Grassland | 14.61 | 9.68 | 47.93 | 256.22 | 528.70 | 480.11 | 39.39 | 116.87 | 149.86 | 1643.37 | |
Water area | 0.01 | 0.03 | 0.04 | 0.09 | 0.05 | 0.18 | 0.12 | 0.27 | 0.16 | 0.95 | |
Unused land | −135.54 | −52.86 | −97.59 | −131.47 | −104.37 | −188.40 | −199.24 | −138.25 | −23.04 | −1070.76 | |
1995–2015 | Farmland | 57.84 | 522.31 | 757.17 | 713.35 | 716.86 | 301.47 | 704.59 | 790.47 | 364.56 | 4928.63 |
Forestland | −10.58 | −8.86 | −36.91 | −38.38 | −37.40 | −32.48 | −55.11 | −46.01 | −21.40 | −287.12 | |
Grassland | 45.05 | 29.86 | 147.81 | 790.16 | 1630.43 | 1480.59 | 121.48 | 360.40 | 462.15 | 5067.94 | |
Water area | 0.00 | 0.01 | 0.01 | 0.03 | 0.02 | 0.06 | 0.04 | 0.09 | 0.06 | 0.33 | |
Unused land | 19.82 | 7.73 | 14.27 | 19.22 | 15.26 | 27.54 | 29.13 | 20.21 | 3.37 | 156.54 |
Variable Category | Variable | Description | Data Sources |
---|---|---|---|
Dependent variable | AESV | Average ecosystem services value | Calculated from Section 2.2.2 |
Physical driving forces | Elevation (m) | Average elevation | Geospatial Data Cloud Site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn) |
Precipitation (mm) | Annual average precipitation | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) | |
River density (km/km2) | River length per square kilometer | National Geomatics Center of China (NGCC) (http://ngcc.sbsm.gov.cn/) | |
Proportion of developed land | Total developed land divided by the administrative area | Extracted from LULCC data | |
Proportion of forestland land | Total forestland divided by the administrative area | Extracted from LULCC data | |
Socioeconomic driving forces | Population density (person/km2) | Total population divided by the administrative area | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) |
Railway density (km/km2) | Railway length per square kilometer | National Geomatics Center of China (NGCC) (http://ngcc.sbsm.gov.cn/) | |
Highway density (km/km2) | Highway length per square kilometer | National Geomatics Center of China (NGCC) (http://ngcc.sbsm.gov.cn/) | |
National road density (km/km2) | National road length per square kilometer | National Geomatics Center of China (NGCC) (http://ngcc.sbsm.gov.cn/) | |
Distance to socioeconomic center (km) | Distance to socioeconomic center | Calculated by ArcGIS10.3 software’s Near tool |
Variable | 1995 | 2005 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | |
Population density | −0.104 (0.094) | −0.086 (0.086) | −0.085 (0.073) | −0.009 (0.098) | 0.008 (0.086) | 0.020 (0.075) | −0.050 (0.088) | −0.033 (0.080) | −0.001 (0.071) |
Railway density | −0.063 (0.055) | −0.051 (0.051) | −0.004 (0.042) | −0.174 * (0.093) | −0.180 ** (0.082) | −0.161 ** (0.066) | −0.012 (0.096) | −0.049 (0.089) | −0.017 (0.067) |
Highway density | 0.006 (0.046) | 0.025 (0.042) | −0.030 (0.041) | −0.021 (0.048) | −0.009 (0.042) | −0.006 (0.041) | −0.078 * (0.041) | −0.087 ** (0.038) | −0.056 (0.035) |
National road density | −0.076 (0.052) | −0.088 * (0.048) | −0.022 (0.037) | −0.107 ** (0.054) | −0.126 *** (0.048) | −0.049 (0.038) | −0.072 (0.058) | −0.097 * (0.054) | −0.039 (0.043) |
Distance to socioeconomic center | 0.061 ** (0.030) | 0.055 ** (0.028) | 0.030 (0.035) | 0.086 *** (0.031) | 0.075 *** (0.028) | 0.096 *** (0.035) | 0.042 (0.029) | 0.043 * (0.026) | 0.075 ** (0.033) |
Proportion of developed land | −0.383 *** (0.073) | −0.284 *** (0.069) | −0.437 *** (0.057) | −0.367 *** (0.077) | −0.226 *** (0.071) | −0.367 *** (0.061) | −0.558 *** (0.085) | −0.402 *** (0.082) | −0.527 *** (0.067) |
Proportion of forestland land | 0.238 *** (0.027) | 0.185 *** (0.027) | 0.394 *** (0.031) | 0.216 *** (0.027) | 0.164 *** (0.026) | 0.326 *** (0.031) | 0.193 *** (0.026) | 0.158 *** (0.025) | 0.308 *** (0.030) |
Elevation | 0.124 ** (0.048) | 0.059 (0.045) | 0.179 *** (0.059) | 0.150 *** (0.048) | 0.055 (0.044) | 0.124 ** (0.058) | 0.201 *** (0.044) | 0.105 ** (0.043) | 0.135 ** (0.055) |
Precipitation | 0.053 ** (0.026) | 0.026 (0.024) | 0.113 (0.076) | 0.004 (0.025) | −0.011 (0.022) | 0.020 (0.057) | 0.041 * (0.024) | 0.016 (0.022) | 0.054 (0.053) |
River density | −0.132 *** (0.040) | −0.133 *** (0.037) | −0.013 (0.028) | −0.089 *** (0.040) | −0.092 ** (0.035) | −0.001 (0.029) | −0.092 ** (0.037) | −0.095 *** (0.034) | −0.005 (0.028) |
Spatial lag term | 0.359 *** (0.058) | 0.419 *** (0.054) | 0.334 *** (0.053) | ||||||
Spatial error term | 0.827 *** (0.034) | 0.753 *** (0.042) | 0.742 *** (0.043) | ||||||
Constant | 0.503 *** (0.025) | 0.324 *** (0.034) | 0.345 *** (0.051) | 0.570 *** (0.026) | 0.330 *** (0.035) | 0.462 *** (0.041) | 0.576 *** (0.023) | 0.390 *** (0.034) | 0.468 *** (0.036) |
Moran’s I (error) | 0.400 *** | 0.426 *** | 0.398 *** | ||||||
LM (lag) | 47.520 *** | 67.119 *** | 43.151 *** | ||||||
Robust LM (lag) | 10.205 ** | 2.860 * | 3.965 * | ||||||
LM (error) | 132.710 *** | 150.926 *** | 131.176 *** | ||||||
Robust LM (error) | 95.395 *** | 86.667 *** | 91.989 *** | ||||||
LM (lag and error) | 142.915 *** | 153.786 *** | 135.141 *** | ||||||
Measures of fit | |||||||||
Log likelihood | 341.339 | 360.724 | 415.646 | 339.456 | 367.692 | 409.750 | 367.818 | 386.784 | 431.184 |
AIC | −660.678 | −697.449 | −809.292 | −656.913 | −711.383 | −797.501 | −713.636 | −749.568 | −840.368 |
SC | −619.056 | −652.043 | −767.670 | −615.291 | −665.977 | −755.878 | −672.014 | −704.162 | −798.746 |
N | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 |
Variable | 1995 | 2005 | 2015 |
---|---|---|---|
Population density | −0.074 (0.071) | 0.021 (0.074) | 0.002 (0.070) |
Railway density | −0.014 (0.041) | −0.156 ** (0.065) | −0.006 (0.066) |
Highway density | −0.041 (0.039) | −0.001 (0.040) | −0.045 (0.035) |
National road density | 0.001 (0.036) | −0.035 (0.038) | −0.025 (0.043) |
Distance to socioeconomic center | 0.047 (0.035) | 0.107 *** (0.036) | 0.086 ** (0.034) |
Proportion of developed land | −0.497 *** (0.057) | −0.402 *** (0.063) | −0.566 *** (0.069) |
Proportion of forestland land | 0.410 *** (0.030) | 0.340 *** (0.031) | 0.319 *** (0.030) |
Elevation | 0.200 *** (0.059) | 0.136 ** (0.060) | 0.148 *** (0.056) |
Precipitation | 0.096 (0.086) | 0.025 (0.063) | 0.056 (0.057) |
River density | 0.003 (0.027) | 0.008 (0.029) | 0.002 (0.027) |
Spatial lag term | −0.276 *** (0.071) | −0.134 * (0.071) | −0.121 * (0.066) |
Spatial error term | 0.864 *** (0.029) | 0.790 *** (0.038) | 0.774 *** (0.040) |
Constant | 0.499 *** (0.073) | 0.533 *** (0.062) | 0.533 *** (0.056) |
Measures of fit | |||
Log likelihood | 422.660 | 411.177 | 432.621 |
AIC | −821.320 | −798.355 | −841.242 |
SC | −775.914 | −752.949 | −795.836 |
N | 325 | 325 | 325 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Chi, G.; Li, J. Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China. Int. J. Environ. Res. Public Health 2020, 17, 3717. https://doi.org/10.3390/ijerph17103717
Chen W, Chi G, Li J. Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China. International Journal of Environmental Research and Public Health. 2020; 17(10):3717. https://doi.org/10.3390/ijerph17103717
Chicago/Turabian StyleChen, Wanxu, Guangqing Chi, and Jiangfeng Li. 2020. "Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China" International Journal of Environmental Research and Public Health 17, no. 10: 3717. https://doi.org/10.3390/ijerph17103717
APA StyleChen, W., Chi, G., & Li, J. (2020). Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China. International Journal of Environmental Research and Public Health, 17(10), 3717. https://doi.org/10.3390/ijerph17103717