Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard
2.2. Chemicals, Reagents and Other Materials
2.3. Dust Sample Collection
2.4. Extraction Procedure and Analysis
2.5. Data Quality
2.6. Quantitative Analysis
3. Results and Discussion
3.1. Method Performances
3.2. Indoor Sample Analysis
3.3. Estimate of Human Exposure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shaw, S.D.; Blum, A.; Weber, R.; Kannan, K.; Rich, D.; Lucas, D.; Koshland, C.P.; Dobraca, D.; Hanson, S.; Birnbaum, L.S. Halogenated flame retardants: Do the fire safety benefits justify the risks? Rev. Environ. Health 2010, 25, 261–305. [Google Scholar] [CrossRef]
- Liang, R.; Chen, J.; Shi, Y.; Lu, Y.; Sarvajayakesavalu, S.; Xu, X.; Zheng, X.; Khan, K.; Su, C. Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point. Environ. Pollut. 2018, 240, 653–660. [Google Scholar] [CrossRef]
- Darnerud, P.O. Brominated flame retardants as possible endocrine disrupters. Int. J. Androl. 2008, 31, 152–160. [Google Scholar] [CrossRef]
- Taheran, M.; Komtchou, S.; Lonappan, L.; Naji, T.; Brar, S.K.; Cledon, M.; Drogui, P. Environmental issues of Polybrominated Diphenyl Ethers. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1107–1142. [Google Scholar] [CrossRef]
- He, Y.; Peng, L.; Zhang, W.; Liu, C.; Yang, Q.; Zheng, S.; Bao, M.; Huang, Y.; Wu, K. Adipose tissue levels of polybrominated diphenyl ethers and breast cancer risk in Chinese women: A case–control study. Environ. Res. 2018, 167, 160–168. [Google Scholar] [CrossRef]
- UNEP. Decision SC-4/14, Listing of Hexabromodiphenyl Ether and Heptabromodiphenyl Ether; UNEP: Nairobi, Kenya, 2009. [Google Scholar]
- UNEP. Decision SC-4/18, Listing of Tetrabromodiphenyl Ether and Pentabromodiphenyl Ether; UNEP: Nairobi, Kenya, 2009. [Google Scholar]
- Stapleton, H.M.; Allen, J.G.; Kelly, S.M.; Konstantinov, A.; Klosterhaus, S.; Watkins, D.; Mcclean, M.D.; Webster, T.F. Alternate and new brominated flame retardants detected in U.S. house dust. Environ. Sci. Technol. 2008, 42, 9453–9454. [Google Scholar] [CrossRef]
- Abafe, O.A.; Martincigh, B.S. Determination and human exposure assessment of polybrominated diphenyl ethers and tetrabromobisphenol A in indoor dust in South Africa. Env. Sci. Pollut. Res. 2016, 23, 7038–7049. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, C.; Yu, L.; Zhou, B. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicol. Appl. Pharmacol. 2010, 243, 87–95. [Google Scholar] [CrossRef]
- Covaci, A.; Harrad, S.; Abdallah, M.A.E.; Ali, N.; Law, R.J.; Herzke, D.; de Wit, C.A. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environ. Int. 2011, 37, 532–556. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Li, W.L.; Liu, L.Y.; Song, W.W.; Ma, W.L.; Li, Y.F. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning. Sci. Total Environ. 2014, 491–492, 60–66. [Google Scholar] [CrossRef] [PubMed]
- WHO/ICPS (World Health Organization/International Programme on Chemical Safety). Environmental Health Criteria 172. Tetrabromobisphenol A and Derivatives; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Jans, U. Emerging Brominated Flame Retardants in Sediments and Soils: A Review. Curr. Pollut. Rep. 2016, 2, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Egloff, C.; Crump, D.; Chiu, S.; Manning, G.; McLaren, K.K.; Cassone, C.G.; Letcher, R.J.; Gauthier, L.T.; Kennedy, S.W. In vitro and in ovo effects of four brominated flame retardants on toxicity and hepatic mRNA expression in chicken embryos. Toxicol. Lett. 2011, 207, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Courtney, K.D.; Andrews, J.E. Teratogenic evaluation and fetal deposition of hexabromobenzene (hbb) and hexafluorobenzene (hfb) in cd-1 mice. J. Environ. Sci. Heal. B 1984, 19, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Ezechiáš, M.; Svobodová, K.; Cajthaml, T. Hormonal activities of new brominated flame retardants. Chemosphere 2012, 87, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.M.V.; Higley, E.B.; Hecker, M.; Mankidy, R.; Giesy, J.P. In vitro endocrine disruption and TCDD-like effects of three novel brominated flame retardants: TBPH, TBB, & TBCO. Toxicol. Lett. 2013, 223, 252–259. [Google Scholar] [CrossRef]
- Khalaf, H.; Larsson, A.; Berg, H.; McCrindle, R.; Arsenault, G.; Olsson, P.E. Diastereomers of the brominated flame retardant 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane induce androgen receptor activation in the HepG2 hepatocellular carcinoma cell line and the LNCaP prostate cancer cell line. Environ. Health Perspect. 2009, 117, 1853–1859. [Google Scholar] [CrossRef]
- Melzer, D.; Rice, N.; Depledge, M.H.; Henley, W.E.; Galloway, T.S. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ. Health Perspect. 2010, 118, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Darrow, L.A.; Groth, A.C.; Winquist, A.; Shin, H.M.; Bartell, S.M.; Steenland, K. Modeled perfluorooctanoic acid (PFOA) exposure and liver function in a Mid-Ohio Valley community. Environ. Health Perspect. 2016, 124, 1227–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitz-Simon, N.; Fletcher, T.; Luster, M.I.; Steenland, K.; Calafat, A.M.; Kato, K.; Armstrong, B. Reductions in serum lipids with a 4-year decline in serum perfluorooctanoic acid and perfluorooctanesulfonic acid. Epidemiology 2013, 24, 569–576. [Google Scholar] [CrossRef]
- Wang, N.; Szostek, B.; Buck, R.C.; Folsom, P.W.; Sulecki, L.M.; Gannon, J.T. 8-2 Fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites, and metabolite yields. Chemosphere 2009, 75, 1089–1096. [Google Scholar] [CrossRef]
- Stubbings, W.A.; Harrad, S. Extent and mechanisms of brominated flame retardant emissions from waste soft furnishings and fabrics: A critical review. Environ. Int. 2014, 71, 164–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buiarelli, F.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Bartocci, M. A liquid chromatography tandem mass spectrometry method for simultaneous analysis of 46 atmospheric particulate-phase persistent organic pollutants and comparison with gas chromatography/mass spectrometry. Int. J. Environ. Anal. Chem. 2017, 97, 797–818. [Google Scholar] [CrossRef]
- Pomata, D.; Di Filippo, P.; Riccardi, C.; Rossi, V.; Simonetti, G.; Sonego, E.; Buiarelli, F. Method optimisation for the simultaneous determination of legacy and emerging halogenated flame retardants in particulate matter collected in an electronic waste recycling facility. Int. J. Environ. Anal. Chem. 2019, 1–18. [Google Scholar] [CrossRef]
- Brown, F.R.; Whitehead, T.P.; Park, J.S.; Metayer, C.; Petreas, M.X. Levels of non-polybrominated diphenyl ether brominated flame retardants in residential house dust samples and fire station dust samples in California. Environ. Res. 2014, 135, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Cruz, T.; Martínez-Carballo, E.; Simal-Gándara, J. Optimization of selective pressurized liquid extraction of organic pollutants in placenta to evaluate prenatal exposure. J. Chromatogr. A 2017, 1495, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, P.; Pomata, D.; Riccardi, C.; Buiarelli, F.; Gallo, V. Oxygenated polycyclic aromatic hydrocarbons in size-segregated urban aerosol. J. Aerosol Sci. 2015, 87, 126–134. [Google Scholar] [CrossRef]
- Cecinato, A.; Mabilia, R.; Brachetti, A.; Di Filippo, P.; Liberti, A. Nitrated-PAH in urban air of Italy as indicators of motor vehicle emission and light-induced reactions. Anal. Lett. 2001, 34, 927–936. [Google Scholar] [CrossRef]
- Borsella, E.; Di Filippo, P.; Riccardi, C.; Spicaglia, S.; Cecinato, A. Data quality of PAH determinations in environmental monitoring. Ann. Chim. 2004, 94, 691–698. [Google Scholar] [CrossRef]
- Fromme, H.; Hilger, B.; Kopp, E.; Miserok, M.; Völkel, W. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and “novel” brominated flame retardants in house dust in Germany. Environ. Int. 2014, 64, 61–68. [Google Scholar] [CrossRef]
- De la Torre, A.; Navarro, I.; Sanz, P.; Martínez, M.d.L.Á. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure. J. Hazard. Mater. 2020, 382, 121009. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Eyengho, S.B.; Egobueze, F.E.; Odali, E.W.; Tesi, G.O.; Nwajei, G.E.; Martincigh, B.S. Science of the Total Environment Polybrominated diphenyl ethers and polychlorinated biphenyls in indoor dust from electronic repair workshops in southern Nigeria: Implications for onsite human exposure. Sci. Total Environ. 2019, 671, 914–927. [Google Scholar] [CrossRef]
- Rudel, R.A.; Seryak, L.M.; Brody, J.G. PCB-containing wood floor finish is a likely source of elevated PCBs in residents’ blood, household air and dust: A case study of exposure. Environ. Heal. A Glob. Access Sci. Source 2008, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, Y.; Shi, Z.; Zhou, X.; Sun, Z. Science of the Total Environment Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement. Sci. Total Environ. 2018, 618, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Wemken, N.; Drage, D.S.; Abdallah, M.A.E.; Harrad, S.; Coggins, M.A. Concentrations of Brominated Flame Retardants in Indoor Air and Dust from Ireland Reveal Elevated Exposure to Decabromodiphenyl Ethane. Environ. Sci. Technol. 2019, 53, 9826–9836. [Google Scholar] [CrossRef] [PubMed]
- Venier, M.; Vojta, Š.; Be, J.; Romanak, K.; Melymuk, L.; Krátká, M.; Kuku, P.; Okeme, J.; Saini, A.; Diamond, M.L.; et al. Brominated flame retardants in the indoor environment—Comparative study of indoor contamination from three countries. Environ. Int. 2016, 94, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Binh, T.; Moon, H.; et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015, 83, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Sjo, A. Flame Retardants in Indoor Air at an Electronics Recycling Plant and at Other Work Environments. Environ. Sci. Technol. 2001, 35, 448–454. [Google Scholar]
- Kajiwara, N.; Noma, Y.; Takigami, H. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008. J. Hazard. Mater. 2011, 192, 1250–1259. [Google Scholar] [CrossRef]
- Cequier, E.; Ionas, A.C.; Covaci, A.; Marce, R.M.; Becher, G.; Thomsen, C. Occurrence of a Broad Range of Legacy and Emerging Flame Retardants in Indoor Environments in Norway. Environ. Sci. Technol. 2014, 48, 6827–6835. [Google Scholar] [CrossRef]
- Genisoglu, M.; Sofuoglu, A.; Kurt-karakus, P.B.; Birgul, A.; Sofuoglu, S.C. Chemosphere Brominated flame retardants in a computer technical service: Indoor air gas phase, submicron (PM 1) and coarse (PM 10) particles, associated inhalation exposure, and settled dust. Chemosphere 2019, 231, 216–224. [Google Scholar] [CrossRef]
- Dodson, R.E.; Perovich, L.J.; Covaci, A.; Van Den Eede, N.; Ionas, A.C.; Dirtu, A.C.; Brody, J.G.; Rudel, R.A. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California. Environ. Sci. Technol. 2012, 46, 13056–13066. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.H.; Sellström, U.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Haug, L.S.; de Wit, C.A. Assessment of dermal exposure to halogenated flame retardants: Comparison using direct measurements from hand wipes with an indirect estimation from settled dust concentrations. Environ. Int. 2018, 115, 285–294. [Google Scholar] [CrossRef] [PubMed]
- US EPA (Environmental Protection Agency). Chapter 5: Soil and Dust Ingestion. In Exposure Factors Handbook; Update; EPA/600/R-17/384F; US EPA Office of Research and Development: Washington, DC, USA, 2017. [Google Scholar]
- Jones-Otazo, H.A.; Clarke, J.P.; Diamond, M.L.; Archbold, J.A.; Ferguson, G.; Harner, T.; Richardson, G.M.; Ryan, J.J.; Wilford, B. Is house dust the missing exposure pathway for PBDEs? An analysis of the urban fate and human exposure to PBDEs. Environ. Sci. Technol. 2005, 39, 5121–5130. [Google Scholar] [CrossRef] [PubMed]
- Roosens, L.; Cornelis, C.; D’Hollander, W.; Bervoets, L.; Reynders, H.; Van Campenhout, K.; Van Den Heuvel, R.; Neels, H.; Covaci, A. Exposure of the Flemish population to brominated flame retardants: Model and risk assessment. Environ. Int. 2010, 36, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; Xue, J.; Williams, R.; Jones, P.; Whitaker, D. Polychlorinated Biphenyls (PCBs) in School Buildings: Sources, Environmental Levels, and Exposure; US EPA Office of Research and Development: Washington, DC, USA, 2012.
- Pawar, G.; Abdallah, M.A.E.; De Sáa, E.V.; Harrad, S. Dermal bioaccessibility of flame retardants from indoor dust and the influence of topically applied cosmetics. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 100–105. [Google Scholar] [CrossRef] [PubMed]
- US EPA (Environmental Protection Agency). Exposure Factors Handbook: 2011 Edition; US EPA Office of Research and Development: Washington, DC, USA, 2011; ISBN EPA/600/R-090/052F.
- Chen, M.; Jiang, J.; Gan, Z.; Yan, Y.; Ding, S.; Su, S.; Bao, X. Grain size distribution and exposure evaluation of organophosphorus and brominated flame retardants in indoor and outdoor dust and PM10 from Chengdu, China. J. Hazard. Mater. 2019, 365, 280–288. [Google Scholar] [CrossRef]
- Knudsen, G.A.; Hughes, M.F.; Sanders, J.M.; Hall, S.M.; Birnbaum, L.S. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP). Toxicol. Appl. Pharmacol. 2016, 311, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, M.; Vorkamp, K.; Jensen, N.M.; Sørensen, J.A.; Knudsen, L.E.; Sørensen, L.S.; Webster, T.F.; Nielsen, J.B. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model. Chemosphere 2016, 162, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Faroon, O.M.; Keith, S.L.; Smith-Simon, C.; De Rosa, C.T. Polychlorinated biphenyls—human health aspects. Int. Multidiscip. Sci. GeoConference Surv. Geol. Min. Ecol. Manag. SGEM 2015, 1, 647–654. [Google Scholar]
- US EPA (Environmental Protection Agency). US EPA’s Integrated Risk Information System (IRIS) Database. 2008. Available online: http://www.epa.gov/ncea/iris/subst/ (accessed on 1 March 2020).
- US EPA (Environmental Protection Agency). Provisional Peer-Reviewed Toxicity Values 2,4,6-Tribromophenol (CASRN 118-79-6); EPA/690/R-09/063F; US EPA Office of Research and Development: Washington, DC, USA, 2012.
- Niu, D.; Qiu, Y.; Du, X.; Li, L.; Zhou, Y.; Yin, D.; Lin, Z.; Chen, L.; Zhu, Z.; Zhao, J.; et al. Novel brominated flame retardants in house dust from Shanghai, China: Levels, temporal variation, and human exposure. Environ. Sci. Eur. 2019, 31. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Zhang, X.; Qiu, J.W.; Leung, K.M.Y.; Lam, J.C.W.; Lam, P.K.S. Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human Exposure. Environ. Sci. Technol. 2018, 52, 8183–8193. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ali, L.; Mehdi, T.; Dirtu, A.C.; Al-Shammari, F.; Neels, H.; Covaci, A. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion. Environ. Int. 2013, 55, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, D.; Thompson, C.; Perry, C.; White, M.; Borghoff, S.; Fitzgerald, L.; Haws, L.C. Development of toxicity values and exposure estimates for tetrabromobisphenol A: Application in a margin of exposure assessment. J. Appl. Toxicol. 2015, 35, 1292–1308. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Nomenclature | Restriction | Application and Use |
---|---|---|---|
TBBPA | Tetrabromobisphenol A | ✓ * | Additive in resins used in plastic casings of electronic devices and in printed circuit boards and in several types of polymers [9]. |
TBPH | bis (2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate | X | Used in the foams of polyurethane as a mixture of TBB and TBPH (ratio about 4:1 in mass) commercially known as “Firemaster 550”. |
TBB | 2-Ethylhexyl-2,3,4,5-tetrabrombenzoate | X | Additive in foams of polyurethane. |
TBP | 2,4,6-tribromophenol | X | Added in polyurethanes plastic, resins and paper-based products and flame retardant intermediate [10]. |
BTBPE | 1,2-bis(2,4,6-tribromophenoxy) ethane | ✓ ** | Additive used in acrylonitrile-butadiene styrene copolymers (ABS), high impact polystyrenes (HIPS), and in electronics. |
DPTE | 2,3-dibromopropyl-2, 4, 6-tribromophenylether | ✓ ** | Main component of the brominated flame retardant (BFR) Bromkal 73-5 PE. |
ATE | Allyl-2,4,6-tribromophenyl ether | ✓ ** | Additive use in EPS and PS foam (both rigid and flexible foams). |
HBB | Hexabromobenzene | X | Additive flame retardant in paper, textiles, electronics, and plastics and decomposition product of other FRs. |
HCDBCO | Hexachlorocyclopentadienyldibromocyclooctane | X | Additive in plastics and polymers, especially in polystyrene [11]. |
PBBA | Pentabromobenzyl Acrylate | X | Used as monomer in dispersion polymerization process polyester and polystyrene. |
PBEB | 2,3,4,5,6-pentabromoethylbenzene | ✓ ** | Additive in circuit boards, textiles, wire coatings, and polyurethane foam [12]. |
TBCO | 1,2,5,6–tetrabromocycloctane | X | Additive in plastics, paints and in the textile industry. |
TBECH | 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane | X | Additive in construction materials, electric cables, polystyrene-based insulation panels, plastics and adhesives. |
Compound | D1 (ng/g) | D2 (ng/g) | D3 (ng/g) | D4 (ng/g) | D5 (ng/g) | Houses Average (ng/g) | Workplaces Average (ng/g) |
---|---|---|---|---|---|---|---|
PCB 77+110 | 1 n.d. | 1 n.d. | 150.3 | 1 n.d. | 204.9 | 177.6 | |
PCB 81 | 24.9 | 9.7 | 1 n.d. | 19.5 | 1 n.d | 17.3 | 9.8 |
PCB 99 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | ||
PCB 101 | 1 n.d. | 1 n.d. | 37.4 | 1 n.d. | 1 n.d | 18.7 | |
PCB 105 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 56.6 | 56.6 | |
PCB 114 | 7.3 | 7.0 | 1 n.d. | 1 n.d. | 1 n.d. | 7.2 | |
PCB 126 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 3.9 | 3.9 | |
PCB 138 | 1 n.d. | 11.0 | 10.2 | 31.2 | 83.4 | 11.0 | 41.6 |
PCB 146 | <2.8 | <2.8 | 1 n.d. | 3.7 | 12.7 | 8.2 | |
PCB 151 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | ||
PCB 156 | 1 n.d. | 4.7 | 1 n.d. | 5.1 | 11.2 | 4.7 | 8.1 |
PCB 157 | 1 n.d. | 8.5 | 1 n.d. | 1 n.d. | 8.8 | 8.5 | 8.8 |
PCB 167 | 1 n.d. | 10.1 | 1 n.d. | 1 n.d. | 13.3 | 10.1 | 13.3 |
PCB 169 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | ||
PCB 170+190 | 4.4 | 5.2 | 1 n.d. | 13.8 | 24.7 | 4.8 | 19.3 |
PCB 177 | 1 n.d. | 2.9 | 1 n.d. | 6.0 | 17.6 | 2.9 | 11.8 |
PCB 180 | 8.7 | 12.7 | 5.0 | 33.0 | 65.1 | 10.7 | 34.4 |
PCB 183 | 18.3 | 17.4 | 1 n.d. | 19.8 | 24.8 | 17.9 | 22.3 |
PCB 187 | <1.4 | <1.4 | 1 n.d. | 8.2 | 19.0 | 13.6 | |
2 ΣPCBs | 63.6 | 89.3 | 203.0 | 140.4 | 546.1 | 76.4 | 296.5 |
Compound | D1 (ng/g) | D2 (ng/g) | D3 (ng/g) | D4 (ng/g) | D5 (ng/g) | Houses Average (ng/g) | Workplaces Average (ng/g) | Fromme et al. [32] (ng/g) | de la Torre et al. [33] (ng/g) |
---|---|---|---|---|---|---|---|---|---|
BDE 28 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 0.08 (<0.03–0.36) | |||
BDE 47 | 13.8 | 25.4 | 12.1 | 42.1 | 38.3 | 19.6 | 30.8 | 11.7 (1.3–52.3) | 2.74 (0.08–23.1) |
BDE 49 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | ||||
BDE 66 | 1 n.d. | 1 n.d. | 53.8 | 1 n.d. | 1 n.d. | 53.8 | (<0.02–0.40) | ||
BDE 85 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 0.19 (<0.01–3.7) | |||
BDE 99 | 20.5 | 54.4 | 23.6 | 56.5 | 58.8 | 37.4 | 46.3 | 21.7 (1.0–84.1) | 4.97 (0.11–46.7) |
BDE 100 | 47.9 | 20.5 | 6.4 | 1 n.d. | 51.9 | 34.2 | 29.2 | 3.5 (2.0–15.8) | 0.65 (0.03–6.83) |
BDE 153 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 16.1 | 4.6 (2.0–20.5) | 0.78 (<0.02–6.47) | |
BDE 154 | 1 n.d. | 6.4 | 2.0 | 1 n.d. | 9.0 | 6.4 | 5.5 | 2.5 (2.0–9.5) | 2.59 (<0.04–25.3) |
BDE 183 | 1 n.d. | 12.4 | 12.5 | 134.4 | 74.3 | 12.4 | 73.7 | 27.9 (2.0–394) | 1.11 (0.1–22.9) |
BDE 197 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | ||||
BDE 209 | 1 n.d. | 1 n.d. | 1 n.d. | 1 n.d. | 2368.0 | 2368.0 | 232 (5.36–2470) | ||
2 ΣBDEs | 82.2 | 119.0 | 126.5 | 233.0 | 2600.3 | 100.6 | 986.6 |
Compound | D1 (ng/g) | D2 (ng/g) | D3 (ng/g) | D4 (ng/g) | D5 (ng/g) | Houses Average (ng/g) | Workplaces Average (ng/g) | Fromme et al. [32] (ng/g) | de la Torre et al. [33] (ng/g) |
---|---|---|---|---|---|---|---|---|---|
TBBPA | 1 n.d. | 1 n.d. | 1 n.d. | 32320.10 | <248.2 | 32,320.1 | 44.1 (2.9–233) | ||
TBPH | 182.9 | 464.5 | 64.5 | <44 | <44 | 323.7 | 64.5 | 20 (25–2274) | |
TBB | 12.0 | 11.7 | 1 n.d. | 9.6 | 9.7 | 11.9 | 9.7 | 4.2 (<3.0–13.6) | |
TBP | 26.4 | 51.7 | 16.7 | 788.4 | 54.4 | 39.0 | 286.5 | ||
BTBPE | 1 n.d. | 1 n.d. | 17.6 | 124.7 | 26.2 | 56.2 | 7 (<10–34) | 1.67 (<0.07–26.9) | |
DPTE | 1 n.d. | 1 n.d. | 5.4 | 58.1 | 1 n.d. | 31.7 | |||
ATE | 1 n.d. | 1 n.d. | 14.5 | 1 n.d. | 1 n.d. | 14.5 | |||
HBB | 1 n.d. | 1 n.d. | 28.3 | 24.2 | 138.2 | 63.6 | 0.36 (<0.003–2.11) | ||
HCDBCO | 32.0 | 1 n.d. | 40.4 | 1 n.d. | 1 n.d. | 32.0 | 40.4 | ||
PBBA | 6.4 | 4.6 | 14.2 | 15.8 | 1 n.d. | 5.5 | 15.0 | ||
PBEB | <2.2 | <2.2 | 1 n.d. | 4.1 | <2.2 | 4.1 | 0.06 (<0.003–0.25) | ||
TBCO | 1 n.d. | 1 n.d. | <26.7 | <26.7 | 40.7 | 40.7 | |||
TBECH | 41.8 | 33.7 | 38.3 | 41.5 | 228.7 | 37.7 | 102.8 | ||
2 ΣnBFRs | 301.4 | 566.2 | 239.9 | 33386.5 | 497.8 | 433.8 | 11,374.7 |
Parameter | Reference | |
---|---|---|
IRdust | 60 mg/day | [46] |
AFgastro for BDEs and nBFRs | 100% | [47,48] |
AFgastro for PCBs | 85% | [49] |
EF home | 64% | [50] |
EF workplace | 22% | [50] |
DAS | 0.1 mg/cm2 | [50] |
BW | 80 kg | [51] |
ESA | 4615 cm2 | [52] |
Compound | Percent | Reference |
---|---|---|
BDE 28 | 27 | [53] |
BDE 47 | 33 | [53] |
BDE 49 | 33 | [53] |
BDE 66 | 33 | [53] |
BDE 85 | 34 | [53] |
BDE 99 | 34 | [53] |
BDE 100 | 34 | [53] |
BDE 153 | 37 | [53] |
BDE 154 | 37 | [53] |
BDE 183 | 37 | [53] |
BDE 197 | 8 | [53] |
BDE 209 | 8 | [53] |
TBBPA | 40 | [50] |
TBPH | 8 | [53] |
TBB | 11 | [53] |
TBP | 11 | [53] |
BTBPE | 11 | [54] |
HBB | 11 | [45] |
PBBA | 34 | |
TBECH | 27 | [45] |
D1 | D2 | D3 | D4 | D5 | RfD [Ref] | |
---|---|---|---|---|---|---|
ΣEDI(ingestion+dermal) | ΣEDI(ingestion+dermal) | ΣEDI(ingestion+dermal) | ΣEDI(ingestion+dermal) | ΣEDI(ingestion+dermal) | ||
PCB 77 + 110 | 2.1 | 2.9 | 4.0 × 10+1 [55] | |||
PCB 81 | 1.0 | 4.0 × 10−1 | 2.7 × 10−1 | 2.0 × 10+1 [55] | ||
PCB 101 | 5.3 × 10−1 | 2.0 × 10+1 [55] | ||||
PCB 105 | 8.0 × 10−1 | 2.0 × 10+1 [55] | ||||
PCB 114 | 3.0 × 10−1 | 2.9 × 10−1 | 2.0 × 10+1 [55] | |||
PCB 126 | 5.4 × 10−2 | 2.0 × 10+1 [55] | ||||
PCB 138 | 4.5 × 10−1 | 1.4 × 10−1 | 4.4 × 10−1 | 1.2 | 2.0 × 10+1 [55] | |
PCB 146 | 5.2 × 10−2 | 1.8 × 10−1 | 2.0 × 10+1 [55] | |||
PCB 156 | 1.9 × 10−1 | 7.2 × 10−2 | 1.6 × 10−1 | 2.0 × 10+1 [55] | ||
PCB 157 | 3.5 × 10−1 | 1.2 × 10−1 | 2.0 × 10+1 [55] | |||
PCB 167 | 4.1 × 10−1 | 1.9 × 10−1 | 2.0 × 10+1 [55] | |||
PCB 170 + 190 | 1.8 × 10−1 | 2.1 × 10−1 | 1.9 × 10−1 | 3.5 × 10−1 | 4.0 × 10+1 [55] | |
PCB 177 | 1.2 × 10−1 | 8.5 × 10−2 | 2.5 × 10−1 | 2.0 × 10+1 [55] | ||
PCB 180 | 3.5 × 10−1 | 5.2 × 10−1 | 7.1 × 10−2 | 4.6 × 10−1 | 9.2 × 10−1 | 2.0 × 10+1 [55] |
PCB 183 | 7.5 × 10−1 | 7.1 × 10−1 | 2.8 × 10−1 | 3.5 × 10−1 | 2.0 × 10+1 [55] | |
PCB 187 | 1.2 × 10−1 | 2.7 × 10−1 | 2.0 × 10+1 [55] | |||
ΣEDI PCBs | 2.6 | 3.6 | 2.9 | 2.0 | 7.7 | |
BDE 47 | 6.7 × 10−1 | 1.2 | 2.0 × 10−1 | 7.0 × 10−1 | 6.4 × 10−1 | 1.00 × 10+2 [56] |
BDE 66 | 8.9 × 10−1 | 1.00 × 10+2 [56] | ||||
BDE 99 | 9.9 × 10−1 | 2.6 | 3.9 × 10−1 | 9.4 × 10−1 | 9.8 × 10−1 | 1.00 × 10+2 [56] |
BDE 100 | 2.3 | 9.9 × 10−1 | 1.1 × 10−1 | 8.6 × 10−1 | 1.00 × 10+2 [48] | |
BDE 153 | 2.7 × 10−1 | 2.00 × 10+2 [56] | ||||
BDE 154 | 3.1 × 10−1 | 3.3 × 10−2 | 1.5 × 10−1 | 1.00 × 10+1 [48] | ||
BDE 183 | 6.0 × 10−1 | 2.1 × 10−1 | 2.2 | 1.2 | 2.00 × 10+2 [56] | |
BDE 209 | 3.9 × 10+1 | 7.00 × 10+3 [56] | ||||
ΣEDI BDEs | 4.0 | 5.7 | 2.1 | 3.9 | 4.3 × 10+1 | |
TBP | 1.3 | 2.5 | 2.8 × 10−1 | 1.3 × 10+1 | 9.0 × 10−1 | 9.2 × 10+4 [55,57] |
BTBPE | 2.9 × 10−1 | 2.1 | 4.3 × 10−1 | 2.00 × 10+4 [58] | ||
HBB | 4.7 × 10−1 | 4.0 × 10−1 | 2.3 | 2.00 × 1+3 [33] | ||
PBBA | 3.1 × 10−1 | 2.2 × 10−1 | 2.4 × 10−1 | 2.6 × 10−1 | ||
TBB | 5.8 × 10−1 | 5.6 × 10−1 | 1.6 × 10−1 | 1.6 × 10−1 | 2.00 × 10+4 [58] | |
TBECH | 2.0 | 1.6 | 6.4 × 10−1 | 6.9 × 10−1 | 3.8 | 6.8 × 10+3 [59] |
TBPH | 8.8 | 2.2 × 10+1 | 1.1 | 2.00 × 10+4 [60] | ||
TBBPA | 5.4 × 10+2 | 6.00 × 10+5 [61] | ||||
ΣEDI nBFRs | 1.3 × 10+1 | 2.7 × 10+1 | 3.0 | 5.5 × 10+2 | 7.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonetti, G.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Sonego, E.; Buiarelli, F. Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust. Int. J. Environ. Res. Public Health 2020, 17, 3813. https://doi.org/10.3390/ijerph17113813
Simonetti G, Di Filippo P, Riccardi C, Pomata D, Sonego E, Buiarelli F. Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust. International Journal of Environmental Research and Public Health. 2020; 17(11):3813. https://doi.org/10.3390/ijerph17113813
Chicago/Turabian StyleSimonetti, Giulia, Patrizia Di Filippo, Carmela Riccardi, Donatella Pomata, Elisa Sonego, and Francesca Buiarelli. 2020. "Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust" International Journal of Environmental Research and Public Health 17, no. 11: 3813. https://doi.org/10.3390/ijerph17113813
APA StyleSimonetti, G., Di Filippo, P., Riccardi, C., Pomata, D., Sonego, E., & Buiarelli, F. (2020). Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust. International Journal of Environmental Research and Public Health, 17(11), 3813. https://doi.org/10.3390/ijerph17113813