Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Participants
2.2. Sociodemographic Data, Lifestyle, and Eating Habits
2.3. Body Composition and Anthropometry
2.4. Biochemical Tests and Health Condition
2.5. Ethical Aspects
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.S.A.C.; Rodrigues, A.P.S.; Rosa, L.P.S.; Sarrafzadegan, N.; Silveira, E.A. Cardiometabolic risk factors and Framingham Risk Score in severely obese patients: Baseline data from DieTBra trial. Nutr. Metab. Cardiovasc. Dis. 2020, 3, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Association, A.D. Standards of Medical Care in Diabetes—2017. Available online: https://care.diabetesjournals.org/content/diacare/suppl/2016/12/15/40.Supplement_1.DC1/DC_40_S1_final.pdf (accessed on 10 October 2019).
- International Diabetes Federation. IDF Diabetes Atlas [Internet], 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Leitner, D.R.; Frühbeck, G.; Yumuk, V.; Schindler, K.; Micic, A.; Woodward, E.; Toplak, H. Obesity and Type 2 Diabetes: Two Diseases with a Need for Combined Treatment Strategies—EASO Can Lead the Way. Obes. Facts 2017, 10, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, J.; Zhang, M.; Wang, G.; Shen, Y.; Wu, D.; Wang, C.; Li, L.; Ren, Y.; Wang, B.; et al. Association of type 2 diabetes mellitus with the interaction between low-density lipoprotein receptor-related protein 5 (LRP5) polymorphisms and overweight and obesity in rural Chinese adults. J. Diabetes 2017, 9, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Vinciguerra, F.; Baratta, R.; Farina, M.G.; Tita, P.; Padova, G.; Vigneri, R.; Frittitta, L. Very severely obese patients have a high prevalence of type 2 diabetes mellitus and cardiovascular disease. Acta Diabetol. 2013, 50, 443–449. [Google Scholar] [CrossRef]
- Abbatini, F.; Capoccia, D.; Casella, G.; Soricelli, E.; Leonetti, F.; Basso, N. Long-term remission of type 2 diabetes in morbidly obese patients after sleeve gastrectomy. Surg. Obes. Relat. Dis. 2013, 9, 498–502. [Google Scholar] [CrossRef]
- Hariri, K.; Guevara, D.; Jayaram, A.; Kini, S.; Herron, D.M.; Fernandez-Ranvier, G. Preoperative insulin therapy as a marker for type 2 diabetes remission in obese patients after bariatric surgery. Surg. Obes. Relat. Dis. 2018, 14, 332–337. [Google Scholar] [CrossRef]
- Bailly, L.; Schiavo, L.; Sebastianelli, L.; Fabre, R.; Morisot, A.; Pradier, C.; Iannelli, A.; Schneck, A.-S. Preventive effect of bariatric surgery on type 2 diabetes onset in morbidly obese inpatients: A national French survey between 2008 and 2016 on 328,509 morbidly obese patients. Surg. Obes. Relat. Dis. 2019, 15, 478–487. [Google Scholar] [CrossRef]
- Tilles-Tirkkonen, T.; Aittola, K.; Männikkö, R.; Absetz, P.; Kolehmainen, M.; Schwab, U.; Lindstrom, J.; Lakka, T.A.; Pihlajamäki, J.; Karhunen, L. Eating Competence Is Associated with Lower Prevalence of Obesity and Better Insulin Sensitivity in Finnish Adults with Increased Risk for Type 2 Diabetes: The StopDia Study. Nutrients 2019, 12, 104. [Google Scholar] [CrossRef] [Green Version]
- Ley, S.H.; Korat, A.V.A.; Sun, Q.; Tobias, D.K.; Zhang, C.-L.; Qi, L.; Willett, W.C.; Manson, J.E.; Hu, F.B. Contribution of the Nurses’ Health Studies to Uncovering Risk Factors for Type 2 Diabetes: Diet, Lifestyle, Biomarkers, and Genetics. Am. J. Public Health 2016, 106, 1624–1630. [Google Scholar] [CrossRef]
- A Gaesser, G.; Whisner, C.M.; Angadi, S.S.; Rodriguez, J.; Patrie, J.T. Effects of Glycemic Index and Cereal Fiber on Postprandial Endothelial Function, Glycemia, and Insulinemia in Healthy Adults. Nutrients 2019, 11, 2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, R.R.; Chilton, R.; Garvey, W.T. New options for the treatment of obesity and type 2 diabetes mellitus (narrative review). J. Diabetes Complicat. 2013, 27, 508–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.P.; Rosa, L.P.S.; Silva, H.D.; Silveira-Lacerda, E.D.P.; Silveira, E.A. The Single Nucleotide Polymorphism PPARG2 Pro12Ala Affects Body Mass Index, Fat Mass, and Blood Pressure in Severely Obese Patients. J. Obes. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.P.S.; Rosa, L.P.S.; Silveira, E.A. PPARG2 Pro12Ala polymorphism influences body composition changes in severely obese patients consuming extra virgin olive oil: A randomized clinical trial. Nutr. Metab. 2018, 15, 52. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.K.D.S.; Santos, A.S.E.A.D.C.; Rosa, L.P.D.S.; De Mendonça, C.R.; Vitorino, P.V.D.O.; Peixoto, M.D.R.G.; Silveira, E.A. Effect of Extra Virgin Olive Oil and Traditional Brazilian Diet on the Bone Health Parameters of Severely Obese Adults: A Randomized Controlled Trial. Nutrients 2020, 12, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, C.; Fitzgerald, A.P.; Kearney, P.M.; Perry, I.J.; Rennie, K.L.; Kozarski, R.; Phillips, C.M. Number of Days Required to Estimate Habitual Activity Using Wrist-Worn GENEActiv Accelerometer: A Cross-Sectional Study. PLoS ONE 2016, 11, e0109913. [Google Scholar] [CrossRef] [Green Version]
- Furlan-Viebig, R.; Pastor-Valero, M. Development of a food frequency questionnaire to study diet and non-communicable diseases in adult population. Rev. Saude Publica 2004, 38, 581–584. [Google Scholar] [CrossRef] [Green Version]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Mmanual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- World Health Organization. Obesity: Preventing and managing the global epidemic. In Report of a WHO Consultation; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Horie, L.M.; Gonzalez, M.C.; Torrinhas, R.S.; Cecconello, I.; Waitzberg, D.L. New Specific Equation to Estimate Resting Energy Expenditure in Severely Obese Patients. Obesity 2011, 19, 1090–1094. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Third Report of the National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 2002, 106, 3143. [Google Scholar] [CrossRef]
- Geloneze, B.; Repetto, E.M.; Geloneze, S.R.; Tambascia, M.A.; Ermetice, M.N. The threshold value for insulin resistance (HOMA-IR) in an admixtured population. Diabetes Res. Clin. Pract. 2006, 72, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Faludi, A.; Izar, M.; Saraiva, J.; Chacra, A.; Bianco, H.; Neto, A.A.; Bertolami, A.; Pereira, A.; Lottenberg, A.; Sposito, A.C.; et al. ATUALIZAÇÃO DA DIRETRIZ BRASILEIRA DE DISLIPIDEMIAS E PREVENÇÃO DA ATEROSCLEROSE—2017. Arq. Bras. Cardiol. 2017, 109. [Google Scholar] [CrossRef] [PubMed]
- Frese, E.M.; Fick, A.; Sadowsky, S.H. Blood Pressure Measurement Guidelines for Physical Therapists. Cardiopulm. Phys. Ther. J. 2011, 22, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.P.S.; Silveira, E.A. Correlation and association of income and educational level with health and nutritional conditions among the morbidly obese. Cienc. Saude Coletiva 2015, 20, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceriello, A.; Esposito, K.; La Sala, L.; Pujadas, G.; De Nigris, V.; Testa, I.; Bucciarelli, L.; Rondinelli, M.; Genovese, S. The protective effect of the Mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: A preliminary report. Cardiovasc. Diabetol. 2014, 13, 140. [Google Scholar] [CrossRef]
- Malta, D.C.; Bernal, R.T.I.; Nunes, M.L.; De Oliveira, M.M.; Iser, B.P.M.; Andrade, S.S.C.D.A.; Claro, R.M.; Monteiro, C.A.; Barbosa da Silva, J., Jr. Prevalência de fatores de risco e proteção para doenças crônicas não transmissíveis em adultos: Estudo transversal, Brasil 2012. Epidemiologia e Serviços de Saúde 2014, 23, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Adam, K.D.; Wendel, C.S.; Solvas, P.A.; Hoffman, R.M.; Duckworth, W.C.; Murata, G.H.; Shah, J.H.; Bokhari, S.U. Factors affecting diabetes knowledge in Type 2 diabetic veterans. Diabetologia 2003, 46, 1170–1178. [Google Scholar] [CrossRef] [Green Version]
- Delamater, A.M. Improving Patient Adherence. Clin. Diabetes 2006, 24, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Lins, A.P.M.; Sichieri, R.; Coutinho, W.F.; Ramos, E.G.; Peixoto, M.V.M.; Fonseca, V.M. Healthy eating, schooling and being overweight among low-income women. Ciência Saúde Coletiva 2013, 18, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Kyrou, I.; On behalf of the Feel4Diabetes-Study Group; Tsigos, C.; Mavrogianni, C.; Cardon, G.; Van Stappen, V.; Latomme, J.; Kivelä, J.; Wikström, K.; Tsochev, K.; et al. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: A narrative review with emphasis on data from Europe. BMC Endocr. Disord. 2020, 20, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denova-Gutiérrez, E.; Vargas-Chanes, D.; Hernández, S.; Muñoz-Aguirre, P.; Napier, D.; Barquera, S. Linking socioeconomic inequalities and type 2 diabetes through obesity and lifestyle factors among Mexican adults: A structural equations modeling approach. Salud Publica Mex. 2020, 62, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkman, H.-J.; de Pee, S.; Sanogo, I.; Subran, L.; Bloem, M.W. High Food Prices and the Global Financial Crisis Have Reduced Access to Nutritious Food and Worsened Nutritional Status and Health. J. Nutr. 2010, 140, 153S–161S. [Google Scholar] [CrossRef] [PubMed]
- Olah, M.E.; Gaisano, G.; Hwang, S.W. The effect of socioeconomic status on access to primary care: An audit study. Can. Med. Assoc. J. 2013, 185, E263–E269. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.K.; Lim, C.; Kwan, Y.H.; Chan, S.Y.; Fong, W.; Low, L.L.; Tay, H.Y.; Østbye, T.; Tan, C.S. Association between access to health-promoting facilities and participation in cardiovascular disease (CVD) risk screening among populations with low socioeconomic status (SES) in Singapore. Prim. Health Care Res. Dev. 2019, 20, e98. [Google Scholar] [CrossRef] [Green Version]
- Fukui, M.; Tanaka, M.; Toda, H.; Senmaru, T.; Sakabe, K.; Ushigome, E.; Asano, M.; Yamazaki, M.; Hasegawa, G.; Imai, S.; et al. Risk factors for development of diabetes mellitus, hypertension and dyslipidemia. Diabetes Res. Clin. Pract. 2011, 94, e15–e18. [Google Scholar] [CrossRef]
- Arvola, A.; Lähteenmäki, L.; Dean, M.; Vassallo, M.; Winkelmann, M.; Claupein, E.; Saba, A.; Shepherd, R. Consumers’ beliefs about whole and refined grain products in the UK, Italy and Finland. J. Cereal Sci. 2007, 46, 197–206. [Google Scholar] [CrossRef]
- Whitelock, V.; Nouwen, A.; van den Akker, O.; Higgs, S. The role of working memory sub-components in food choice and dieting success. Appetite 2018, 124, 24–32. [Google Scholar] [CrossRef]
- Velázquez-López, L.; Muñoz-Torres, A.V.; García-Peña, C.; López-Alarcón, M.; Islas-Andrade, S.; Escobedo-de la Peña, J. Fiber in Diet Is Associated with Improvement of Glycated Hemoglobin and Lipid Profile in Mexican Patients with Type 2 Diabetes. J. Diabetes Res. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hadrévi, J.; Søgaard, K.; Christensen, J.R. Dietary Fiber Intake among Normal-Weight and Overweight Female Health Care Workers: An Exploratory Nested Case-Control Study within FINALE-Health. J. Nutr. Metab. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 4, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, N.; Stenvinkel, P.; Tonelli, M. Associations of Chronic Inflammation, Insulin Resistance, and Severe Obesity With Mortality, Myocardial Infarction, Cancer, and Chronic Pulmonary Disease. JAMA Netw. Open 2019, 2, e1910456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.I.; Duncan, B.B.; E Silva, G.A.; Menezes, A.M.; Monteiro, C.A.; Barreto, S.M.; Chor, D.; Menezes, P.R. Chronic non-communicable diseases in Brazil: Burden and current challenges. Lancet 2011, 377, 1949–1961. [Google Scholar] [CrossRef]
- Owei, I.; Umekwe, N.; Provo, C.; Wan, J.; Dagogo-Jack, S. Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: Role in prediction of incident pre-diabetes in a longitudinal biracial cohort. BMJ Open Diabetes Res. Care 2017, 5, e000415. [Google Scholar] [CrossRef]
- Purohit, D.A.; Tiwari, D.V. To Study Insulin Resistance in Type 2 Diabetes Mallitus by Homa-IR Score. Int. J. Med. Res. Rev. 2015, 3, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Adiels, M.; Borén, J.; Caslake, M.J.; Stewart, P.; Soro, A.; Westerbacka, J.; Wennberg, B.; Olofsson, S.-O.; Packard, C.; Taskinen, M.-R. Overproduction of VLDL 1 Driven by Hyperglycemia Is a Dominant Feature of Diabetic Dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1697–1703. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Natali, A.; Bell, P.; Cavallo-Perin, P.; Lalic, N.; Mingrone, G. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J. Clin. Investig. 1997, 100, 1166–1173. [Google Scholar] [CrossRef]
- Fronczyk, A.; Molęda, P.; Safranow, K.; Piechota, W.; Majkowska, L. Increased Concentration of C-Reactive Protein in Obese Patients with Type 2 Diabetes Is Associated with Obesity and Presence of Diabetes but Not with Macrovascular and Microvascular Complications or Glycemic Control. Inflammation 2014, 37, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Yadav, N.K.; Thanpari, C.; Shrewastwa, M.; Mittal, R. Comparison of Lipid Profile in Type-2 Obese Diabetics and Obese Non-diabetic Individuals. A hospital Based Study from Western Nepal. Kathmandu Univ. Med. J. 2013, 10, 44–47. [Google Scholar] [CrossRef]
- Colditz, G.A. Weight Gain as a Risk Factor for Clinical Diabetes Mellitus in Women. Ann. Intern. Med. 1995, 122, 481. [Google Scholar] [CrossRef]
- Vistisen, D.; Witte, D.; Tabak, A.G.; Herder, C.; Brunner, E.J.; Kivimaki, M.; Færch, K. Patterns of Obesity Development before the Diagnosis of Type 2 Diabetes: The Whitehall II Cohort Study. PLoS Med. 2014, 11, e1001602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, K.; Maiorino, M.I.; Ceriello, A.; Giugliano, D. Prevention and control of type 2 diabetes by Mediterranean diet: A systematic review. Diabetes Res. Clin. Pract. 2010, 89, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Forman, M. Nutritional Epidemiology. Am. J. Clin. Nutr. 1999, 69, 1020. [Google Scholar] [CrossRef] [Green Version]
- Pedraza, D.F.; De Menezes, T.N. Food Frequency Questionnaire developed and validated for the Brazilian population: A review of the literature. Ciência Saúde Coletiva 2015, 20, 2697–2720. [Google Scholar] [CrossRef] [Green Version]
Variables | Total | Diabetes Mellitus | p-Value 1 | |
---|---|---|---|---|
Prevalence | PR (95% CI) | |||
n (%) | n (%) | |||
Sex | 0.925 | |||
Female | 128 (85.33) | 51 (39.84) | 1.00 | |
Male | 22 (14.67) | 9 (40.91) | 1.02 (0.59–1.77) | |
Age 2 | 0.011 | |||
18–29 years | 19 (12.67) | 4 (21.05) | 1.00 | |
30–39 years | 57 (38.00) | 22 (38.60) | 1.83 (0.72–4.66) | |
40–49 years | 53 (35.33) | 20 (37.74) | 1.79 (0.70–4.59) | |
50–64 years | 21 (14.00) | 14 (66.67) | 3.17 (1.26–7.98) | |
Color | 0.400 | |||
White | 46 (30.67) | 16 (34.78) | 1.00 | |
Pardo/Black | 104 (69.33) | 44 (42.31) | 1.22 (0.77–1.92) | |
Marital status | 0.313 | |||
Without partner | 55 (36.67) | 19 (34.55) | 1.00 | |
With partner | 95 (63.33) | 41 (43.16) | 1.25 (0.81–1.92) | |
Educational level | <0.001 | |||
Up to 8 years of study | 49 (32.67) | 29 (59.18) | 1.93 (1.32–2.80) | |
≥9 years of study | 101 (67.33) | 31 (30.69) | 1.00 | |
Economic class | 0.393 | |||
A/B | 34 (22.67) | 11 (32.35) | 1.00 | |
C | 92 (61.33) | 37 (40.22) | 1.24 (0.72–2.15) | |
D/E | 24 (16.00) | 12 (50.00) | 1.54 (0.82–2.91) | |
Lifestyle | ||||
Smoking habits | 0.616 | |||
Nonsmoker | 101 (67.33) | 39 (38.61) | 1.00 | |
Smoker or ex-smoker | 49 (32.67) | 21 (42.86) | 1.11 (0.74–1.67) | |
Physical activity level | 0.208 | |||
<150 min/week | 132 (93.62) | 49 (37.12) | 1.00 | |
≥150 min/week | 9 (6.38) | 5 (55.56) | 1.49 (0.79–2.80) | |
Food consumption | ||||
Raw vegetables | 0.133 | |||
Not daily | 81 (54.00) | 37 (45.68) | 1.37 (0.91–2.07) | |
Daily | 69 (46.00) | 23 (33.33) | 1.00 | |
Cooked vegetables | 0.882 | |||
Not daily | 109 (72.67) | 44 (40.37) | 1.03 (0.66–1.62) | |
Daily | 41 (27.33) | 16 (39.02) | 1.00 | |
Fresh fruit | 1.000 | |||
Not daily | 110 (73.33) | 44 (40.00) | 1.00 (0.64–1.56) | |
Daily | 40 (26.67) | 16 (40.00) | 1.00 | |
Whole-grain cereals | 0.145 | |||
Not daily | 126 (84.00) | 54 (42.86) | 1.71 (0.83–3.54) | |
Daily | 24 (16.00) | 6 (25.00) | 1.00 | |
Sweets and candy | 0.815 | |||
Not daily | 136 (90.67) | 54 (39.71) | 1.00 | |
Daily | 14 (9.33) | 6 (42.86) | 1.08 (0.57–2.05) | |
Sugary drinks | 0.536 | |||
Not daily | 98 (65.33) | 41 (41.84) | 1.14 (0.74–1.76) | |
Daily | 52 (34.67) | 19 (36.54) | 1.00 | |
Meal fractionation | 0.349 | |||
<3 meals/day | 31 (20.67) | 10 (32.26) | 1.00 | |
≥3 meals/day | 119 (79.33) | 50 (42.02) | 1.30 (0.75–2.27) |
Variables | Total | Diabetes Mellitus | p-Value 1 | |
---|---|---|---|---|
Prevalence | PR (95% CI) | |||
n (%) | n (%) | |||
Arterial hypertension | 0.002 | |||
No | 65 (43.33) | 16 (24.62) | 1.00 | |
Yes | 85 (56.67) | 44 (51.76) | 2.10 (1.31–3.78) | |
Biochemical parameters | ||||
High HOMA-IR | 0.109 | |||
No | 101 (67.33) | 36 (35.64) | 1.00 | |
Yes | 49 (32.67) | 24 (48.98) | 1.37 (0.93–2.03) | |
High fasting insulinemia | 0.093 | |||
No | 23 (15.33) | 5 (21.74) | 1.00 | |
Yes | 127 (54.67) | 55 (43.31) | 1.99 (0.89–4.45) | |
Hypercholesterolemia | 0.891 | |||
No | 94 (62.67) | 38 (40.43) | 0.97 (0.64–1.46) | |
Yes | 56 (37.33) | 22 (39.29) | 1.00 | |
Hypertriglyceridemia | 0.015 | |||
No | 81 (54.00) | 25 (30.86) | 1.00 | |
Yes | 69 (46.00) | 35 (50.72) | 1.64 (1.10–2.46) | |
High LDL-c | 0.739 | |||
No | 113 (76.87) | 47 (41.59) | 1.09 (0.67–1.76) | |
Yes | 34 (23.13) | 13 (38.24) | 1.00 | |
Low HDL-c | 0.118 | |||
No | 14 (9.33) | 8 (57.14) | 1.49 (0.90–2.47) | |
Yes | 136 (90.67) | 52 (38.24) | 1.00 | |
CRP | 0.046 | |||
Nonreactive | 63 (42.00) | 19 (30.16) | 1.00 | |
Reactive | 87 (58.00) | 41 (47.13) | 1.56 (1.01–2.42) | |
BMI | 0.894 | |||
35.0–44.9 kg/m2 | 76 (50.67) | 30 (39.47) | 1.00 | |
≥45.0 kg/m2 | 74 (49.33) | 30 (40.54) | 1.03 (0.69–1.52) | |
Body composition | ||||
Total body fat, % | 0.976 | |||
1st and 2nd quartiles | 71 (48.97) | 28 (49.12) | 1.00 | |
3rd and 4th quartiles | 74 (51.03) | 29 (50.88) | 0.99 (0.66–1.49) | |
Total fat mass, kg | 0.918 | |||
1st and 2nd quartiles | 72 (49.66) | 28 (49.12) | 1.00 | |
3rd and 4th quartiles | 73 (50.34) | 29 (50.88) | 1.02 (0.68-1.53) | |
Fat-free mass, kg | 0.293 | |||
1st and 2nd quartiles | 71 (48.97) | 31 (54.39) | 1.24 (0.83–1.87) | |
3rd and 4th quartiles | 74 (51.03) | 26 (45.61) | 1.00 | |
Total | Nondiabetic | Diabetic | p-value 2 | |
Mean ± SD | Mean ± SD | Mean ± SD | ||
Total body fat, % | 51.58 ± 4.68 | 51.32 ± 4.50 | 51.98 ± 4.97 | 0.409 |
Total fat mass, kg | 61.44 ± 12.96 | 61.84 ± 13.42 | 60.82 ± 12.30 | 0.647 |
Fat-free mass, kg | 57.32 ± 8.95 | 58.05 ± 9.52 | 56.19 ± 7.93 | 0.221 |
Variables | Diabetes Mellitus | p-Value 1 |
---|---|---|
Adjusted PR (95% CI) | ||
1st level | ||
Age | ||
18–29 years | 1.00 | |
30–39 years | 1.84 (0.86–3.96) | 0.117 |
40–49 years | 1.23 (0.59–2.60) | 0.589 |
50–64 years | 1.89 (0.86–4.14) | 0.111 |
Educational level | ||
Up to 8 years of study | 1.49 (1.07–2.09) | 0.018 |
≥9 years of study | 1.00 | |
2nd level | ||
Raw vegetable consumption | ||
Not daily | 1.04 (0.73–1.49) | 0.822 |
Daily | 1.00 | |
Whole-grain cereal consumption | ||
Not daily | 1.67 (1.00–2.80) | 0.049 |
Daily | 1.00 | |
3rd level | ||
Low HDL-c | ||
No | 1.05 (0.69–1.59) | 0.805 |
Yes | 1.00 | |
High fasting insulinemia | ||
No | 1.00 | |
Yes | 1.29 (0.63–2.65) | 0.480 |
CRP | ||
Nonreactive | 1.00 | |
Reactive | 1.19 (0.79–1.78) | 0.401 |
Hypertension | ||
No | 1.00 | |
Yes | 1.29 (0.82–2.02) | 0.270 |
Hypertriglyceridemia | ||
No | 1.00 | |
Yes | 1.37 (0.96–1.93) | 0.077 |
High HOMA-IR | ||
No | 1.00 | |
Yes | 1.54 (1.08–2.18) | 0.016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, E.A.; de Souza Rosa, L.P.; de Carvalho Santos, A.S.e.A.; de Souza Cardoso, C.K.; Noll, M. Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index. Int. J. Environ. Res. Public Health 2020, 17, 3930. https://doi.org/10.3390/ijerph17113930
Silveira EA, de Souza Rosa LP, de Carvalho Santos ASeA, de Souza Cardoso CK, Noll M. Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index. International Journal of Environmental Research and Public Health. 2020; 17(11):3930. https://doi.org/10.3390/ijerph17113930
Chicago/Turabian StyleSilveira, Erika Aparecida, Lorena Pereira de Souza Rosa, Annelisa Silva e Alves de Carvalho Santos, Camila Kellen de Souza Cardoso, and Matias Noll. 2020. "Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index" International Journal of Environmental Research and Public Health 17, no. 11: 3930. https://doi.org/10.3390/ijerph17113930
APA StyleSilveira, E. A., de Souza Rosa, L. P., de Carvalho Santos, A. S. e. A., de Souza Cardoso, C. K., & Noll, M. (2020). Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index. International Journal of Environmental Research and Public Health, 17(11), 3930. https://doi.org/10.3390/ijerph17113930