Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Statistical Analyses
3. Results
3.1. Characteristics of Subjects and Metabolic Biomarkers
3.2. Metabolic Biomarkers for Organic versus Conventional Farmers
3.3. Pesticide Spraying Days of Conventional Farmers
3.4. Change of Metabolic Biomarkers per 10 Days of Pesticide Sprayed
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Zhang, C.; Hu, R.; Li, Y.; Yin, Y.; Chen, Z.; Cai, J.; Cui, F. Association between occupational exposures to pesticides with heterogeneous chemical structures and farmer health in China. Sci. Rep. 2016, 6, 25190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Office of Agricultural Economics, Ministry of Agriculture and Cooperatives. Pesticides Imported Year 2015–2019. Available online: http://www.oae.go.th/view/1/%E0%B8%9B%E0%B8%B1%E0%B8%88%E0%B8%88%E0%B8%B1%E0%B8%A2%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%9C%E0%B8%A5%E0%B8%B4%E0%B8%95/TH-TH# (accessed on 5 May 2020).
- National Health Security Office. Available online: https://www.nhso.go.th/FrontEnd/NewsInformationDetail.aspx?newsid=MjM5OQ== (accessed on 5 May 2020).
- Win, H.E. Organic Agriculture in Thailand. 2017. Available online: http://ap.fftc.agnet.org/ap_db.php?id=734 (accessed on 5 May 2020).
- Chouichom, S.; Yamao, M. Comparing opinions and attitudes of organic and non-organic farmers towards organic rice farming system in north-eastern Thailand. J. Org. Syst. 2010, 5, 25–35. [Google Scholar]
- Beyond Pesticides. Health Benefits of Organic Agriculture. Available online: https://www.beyondpesticides.org/programs/organic-agriculture/why-organic/health-benefits (accessed on 5 May 2020).
- Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, N.; Bunngamchairat, A.; Yimsabai, J.; Pataitiemthong, A.; Woskie, S. A cross-sectional investigation of cardiovascular and metabolic biomarkers among conventional and organic farmers in Thailand. Int. J. Environ. Res. Public Health 2018, 15, 2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Mental Health, Thai Ministry of Public Health. Stress Evaluation. Available online: https://www.dmh.go.th/test/download/view.asp?id=18 (accessed on 6 May 2020).
- Kings, D.; Ilbery, B. Organic and Conventional Farmers’ Attitudes towards Agricultural Sustainability. Available online: https://www.intechopen.com/books/organic-farming-and-food-production/organic-and-conventional-farmers-attitudes-towards-agricultural-sustainability (accessed on 6 May 2020).
- Aungkulanon, S.; Pitayarangsarit, S.; Bundhamcharoen, K.; Akaleephan, C.; Chongsuvivatwong, V.; Phoncharoen, R.; Tangcharoensathien, V. Smoking prevalence and attributable deaths in Thailand: Predicting outcomes of different tobacco control interventions. BMC Public Health 2019, 19, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, M.; McKetin, R.; Banwell, C.; Yiengprugsawan, V.; Kelly, M.; Seubsman, S.; Iso, H.; Sleigh, A.; Thai Cohort Study Team. Alcohol consumption patterns in Thailand and their relationship with non-communicable disease. BMC Public Health 2015, 15, 1297. [Google Scholar] [CrossRef] [Green Version]
- Kalender, S.; Uzun, F.G.; Durak, D.; Demir, F.; Kalender, Y. Malathion induced hepatotoxicty in rats: The effects of vitamins C and E. Food Chem. Toxicol. 2010, 48, 633–638. [Google Scholar] [CrossRef]
- Elsharkawy, E.E.; Yahia, D.; El-Nisr, N.A. Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: Attenuation by glutathione. Environ. Toxicol. Pharmacol. 2013, 35, 218–227. [Google Scholar] [CrossRef]
- Nagaraju, R.; Joshi, A.K.; Rajini, P.S. Organophosphorus insecticide, monocrotophos, possesses the propensity to induce insulin resistance in rats on chronic exposure. J. Diabetes 2015, 7, 47–59. [Google Scholar] [CrossRef]
- Amanvermez, R.; Baydin, A.; Yardan, T.; Başol, N.; Günay, M. Emerging laboratory abnormalities in suicidal patients with acute organophosphate poisoning. J. Biochem. 2010, 35, 29–34. (In Turkish) [Google Scholar]
- Everett, C.J.; Matheson, E.M. Biomarkers of pesticide exposure and diabetes in the 1999–2004. National health and nutrition examination survey. Environ. Int. 2010, 36, 398–401. [Google Scholar] [CrossRef]
- Saldana, T.M.; Basso, O.; Hoppin, J.A.; Baird, D.D.; Knott, C.; Blair, A.; Alavanja, M.C.R.; Sandler, D.P. Pesticide exposure and self-reported gestational diabetes mellitus in the Agricultural Health Study. Diabetes Care 2007, 30, 529–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, A.K.; Rajini, P.S. Reversible hyperglycemia in rats following acute exposure to acephate, an organophosphorus insecticide: Role of gluconeogenesis. Toxicology 2009, 257, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Kamath, V.; Rajini, P.S. Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication. Toxicology 2007, 231, 137–146. [Google Scholar] [CrossRef]
- Ueyama, J.; Kamijima, M.; Asai, K.; Mochizuki, A.; Wang, D.; Kondo, T.; Suzuki, T.; Takagi, K.; Takagi, K.; Kanazawa, H.; et al. Effect of the organophosphorus pesticide diazinon on glucose tolerance in type2 diabetic rats. Toxicol. Lett. 2008, 182, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Panahi, P.; Vosough-Ghanbari, S.; Pournourmohammadi, S.; Ostad, S.N.; Nikfar, S.; Minaie, B.; Abdollahi, M. Stimulatory effects of malathion on the key enzymes activities of insulin secretion in langerhans islets, glutamate dehydrogenase and glucokinase. Toxicol. Mech. Methods 2006, 16, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Clark, J.M.; Park, Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food. Chem. Toxicol. 2017, 105, 456–474. [Google Scholar] [CrossRef]
- Czajk, M.; Matysiak-Kucharek, M.; Jodłowska-Jędrych, B.; Sawicki, K.; Fal, B.; Drop, B.; Kruszewski, M.; Kapka-Skrzypczak, L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ. Res. 2019, 178, 108685. [Google Scholar] [CrossRef]
- Lakshm, J.; Mukhopadhay, K.; Ramaswamy, P.; Mahadevan, S.A. Systematic Review on Organophosphate Pesticide and Type II Diabetes Mellitus. Curr. Diabetes Rev. 2019. [Google Scholar] [CrossRef]
- He, B.; Ni, Y.; Jin, Y.; Fu, Z. Pesticides-induced energy metabolic disorders. Sci. Total Environ. 2020, 729, 139033. [Google Scholar] [CrossRef]
- Zadjali, S.A.; Morse, S.; Chenoweth, J.; Deadman, M. Factors determining pesticide use practices by farmers in the Sultanate of Oman. Sci. Total Environ. 2014, 476–477, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Ecobichon, D.J. Pesticide use in developing countries. Toxicology 2001, 160, 27–33. [Google Scholar] [CrossRef]
- Aminov, Z.; Haase, R.F.; Pavuk, M.; Carpenter, D.O. Anniston Environmental Health Research Consortium. Analysis of the effects of exposure to polychlorinated biphenyls and chlorinated pesticides on serum lipid levels in residents of Anniston, Alabama. Environ. Health 2013, 12, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiss, G.; Haskell, W.; Mowery, R.; Criqui, M.H.; Brockway, M.; Tyroler, H.A. Plasma high-density lipoprotein cholesterol and socioeconomic status. The Lipid Research Clinics Program Prevalence Study. Circulation 1980, 62, 108–115. [Google Scholar]
- Shohaimi, S.; Boekholdt, M.S.; Luben, R.; Wareham, N.J.; Khaw, K.T. Distribution of lipid parameters according to different socio-economic indicators the EPIC-Norfolk prospective population study. BMC Public Health 2014, 1, 782. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Wang, H.; Xu, W.; Zeng, Y.; Hou, Y.; Zhang, Y.; Zhao, X.; Sun, C. Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile. Toxicol. Sci. 2013, 134, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Tuzmen, N.; Candan, N.; Kaya, E.; Demiryas, N. Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochem. Funct. 2008, 26, 119–124. [Google Scholar] [CrossRef]
- Liu, Q.; Shao, W.; Zhang, C.; Xu, C.; Wang, Q.; Liu, H.; Sun, H.; Jiang, Z.; Gu, A. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. Environ. Pollut. 2017, 226, 268–276. [Google Scholar] [CrossRef]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Chang, L.; Zheng, C.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Xiao, X.; Kim, Y.; Kim, D.; Yoon, K.S.; Clark, J.M.; Park, Y. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J Agric. Food Chem 2016, 64, 9293–9306. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qi, W.; Xiao, X.; Yang, S.-H.; Kim, D.; Yoon, K.S.; Clark, J.M.; Park, Y. Imidacloprid promotes high fat diet-induced adiposity in female C57BL/6J mice and enhances adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. J. Agric. Food Chem. 2017, 65, 6572–6581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Kim, Y.; Kim, D.; Yoon, K.S.; Clark, J.M.; Park, Y. Permethrin alters glucose metabolism in conjunction with high fat diet by potentiating insulin resistance and decreases voluntary activities in female C57BL/6J mice. Food Chem. Toxicol. 2017, 108, 161–170. [Google Scholar] [CrossRef]
- Smith, A.; Yu, X.; Yin, L. Diazinon exposure activated transcriptional factors CCAATenhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes. Pestic. Biochem. Phys. 2018, 150, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Hsieh, T.H.; Yue, Y.; Sun, Q.; Clark, J.M.; Park, Y. Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food Chem. Toxicol. 2017, 101, 149–156. [Google Scholar] [CrossRef]
- Yuan, L.; Lin, J.; Peng, Y.; Gao, R.; Sun, Q. Chlorantraniliprole induces adipogenesis in 3T3-L1 adipocytes via the AMPKalpha pathway but not the ER stress pathway. Food Chem. 2020, 311, 125953. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qi, W.; Yang, J.J.; Yoon, K.S.; Clark, J.M.; Park, Y. Fipronil promotes adipogenesis via AMPKα-mediated pathway in 3T3-L1 adipocytes. Food Chem. Toxicol. 2016, 92, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Sancho, E.; Villarroel, M.J.; Ferna’ndez, C.; Andreu, E.; Ferrando, M.D. Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (Danio rerio). Ecotox. Environ. Saf. 2010, 73, 370–376. [Google Scholar] [CrossRef]
- Budoff, M. Triglycerides and triglyceride-rich lipoproteins in the causal pathway of cardiovascular disease. Am. J. Cardiol. 2016, 118, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Pothu, U.K.; Thammisetty, A.K.; Nelakuditi, L.K. Evaluation of cholinesterase and lipid profile levels in chronic pesticide exposed persons. J. Fam. Med. Prim. Care 2019, 8, 2073–2078. [Google Scholar]
- Cypel, Y.; Kress, A.M.; Eber, S.M.; Schneiderman, A.I.; Davey, V.J. Herbicide Exposure, Vietnam Service, and Hypertension Risk in Army Chemical Corps Veterans. J. Occup. Environ. Med. 2016, 58, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.W.; Ohrr, H.; Hong, J.S.; Yi, J.J. Agent Orange exposure and prevalence of self-reported diseases in Korean Vietnam veterans. J. Prev. Med. Public Health 2013, 46, 213–225. [Google Scholar] [CrossRef]
- Trivedi, S.; Arora, R.R. Association of Dioxin and Dioxin-like Congeners with Hypertension. Fed. Pract. 2018, 35, 20–26. [Google Scholar]
- Samsuddin, N.; Rampal, K.G.; Ismail, N.H.; Abdullah, N.Z.; Nasreen, H.E. Pesticides Exposure and Cardiovascular Hemodynamic Parameters Among Male Workers Involved in Mosquito Control in East Coast of Malaysia. Am. J. Hypertens. 2016, 29, 226–233. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Edc-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Zoeller, R.T.; Brown, T.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Woodruff, T.J.; Vom Saal, F.S. Endocrine-disrupting chemicals and public health protection: A statement of principles from the endocrine society. Endocrinology 2012, 153, 4097–4110. [Google Scholar] [CrossRef]
- Grun, F.; Blumberg, B. Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006, 147, S50–S55. [Google Scholar] [CrossRef] [Green Version]
- La Merrill, M.; Birnbaum, L.S. Childhood obesity and environmental chemicals. Mt. Sinaij. Med. 2011, 78, 22–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, P.M.; Lee, D.H.; Jacobs, D.R.; Salihovic, S.; van Bavel, G.; Wolff, M.S.; Lind, L. Circulating levels of persistent organic pollutants are related to retrospective assessment of life-time weight change. Chemosphere 2013, 90, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.F.; Silverstone, A.E.; Weinstock, R.S.; Pavuk, M. Metabolic syndrome and pesticide exposure in the Anniston community health survey. Organohalog. Compd. 2010, 72, 780–782. [Google Scholar]
- Rosenbaum, P.F.; Weinstock, R.S.; Silverstone, A.E.; Sjödin, A.; Pavuk, M. Metabolic syndrome is associated with exposure to organochlorine pesticides in Anniston, AL, United States. Environ. Int. 2017, 108, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, Z.K.; Rodriguez, B.; Davis, J.; Katz, A.R.; Cooney, R.V.; Masaki, K. Association Between Occupational Exposure to Pesticides and Cardiovascular Disease Incidence: The Kuakini Honolulu Heart Program. J. Am. Heart Assoc. 2019, 8, e012569. [Google Scholar] [CrossRef] [PubMed]
Variables | Conventional Farmers n (%) | Organic Farmers n (%) | p-Value | |
---|---|---|---|---|
Age | ||||
Min–max | 18–69 | 28–79 | ||
Mean (SD) | 50.22 (11.1) | 53.20 (10.3) | 0.005 § | |
Sex | ||||
Male | 158 (74.2) | 115 (51.1) | <0.001 † | |
Female | 55 (25.8) | 110 (48.9) | ||
Educational level | ||||
Below elementary | 14 (6.6) | 4 (1.8) | 0.035 † | |
Elementary | 122 (57.3) | 125 (55.6) | ||
High school | 72 (33.8) | 85 (37.8) | ||
Bachelor or higher | 5 (2.3) | 11 (4.9) | ||
Marital status | ||||
Single | 21 (10.1) | 13 (6) | 0.032 † | |
Married | 179 (86.1) | 185 (84.9) | ||
Widowed/divorced | 8 (3.8) | 20 (9.2) | ||
Agricultural work time (h/week) | ||||
Mean (SD) | 26.9 (13.8) | 28.8 (17.2) | 0.011 § | |
Have Second Job | ||||
Yes | 49 (23) | 128 (56.9) | <0.001 † | |
No | 164 (77) | 97 (43.1) | ||
Second job work time (h/week) | ||||
Mean (SD) | 24.9 (13.6) | 26.6 (17.8) | 0.048 § | |
Alcohol intake | ||||
Current drinker | 136 (63.8) | 91 (41) | <0.001 † | |
Non drinker | 77 (36.2) | 131 (59) | ||
Expense adequacy | ||||
Enough for saving | 39 (18.3) | 50 (22.2) | 0.618 † | |
Just enough | 100 (46.9) | 94 (41.8) | ||
In debt | 73 (34.3) | 79 (35.1) | ||
Smoking | ||||
Current smoker | 59 (26.9) | 36 (16.1) | 0.006 † | |
Non smoker | 155 (73.1) | 188 (83.9) | ||
Any stress symptom in past 2–4 weeks | ||||
Yes | 113 (53.3) | 100 (45.0) | 0.085 † | |
No | 99 (46.7) | 122 (55.0) | ||
Insecticide use in home in the past year | ||||
Yes | 191 (89.7) | 33 (14.7) | <0.001 † | |
No | 22 (10.3) | 191 (85.3) |
Parameter | Conventional Farmer Mean (95%CI) | Organic Farmer Mean (95%CI) | p-Value from Model F-Test |
---|---|---|---|
Total Cholesterol (mg/dL) | 217.9 (211.2–224.6) | 193.0 (186.6–199.3) | <0.001 |
LDL (mg/dL) | 132.1 (126.9–137.3) | 117.8 (112.7–122.2) | <0.001 |
HDL (mg/dL) | 56.5 (54.6–58.3) | 45.8 (44.1–47.6) | <0.001 |
Blood glucose (mg/dL) | 109.9 (106.7–113.0) | 104.1 (101.1–107.1) | 0.009 |
Triglyceride (mg/dL) | 157.2 (142.3–172.1) | 147.6 (133.5–161.7) | 0.356 |
Systolic BP (mmHg) | 134.5 (131.9–136.6) | 129.3 (127.1–131.5) | 0.002 |
Diastolic BP (mmHg) | 80.7 (79.3–82.1) | 76.8 (75.4–78.1) | <0.001 |
BMI (kg/m2) | 24.3 (23.7–24.9) | 23.3 (22.8–23.8) | 0.010 |
Body fat (%) | 28.0 (27.0–29.1) | 27.5 (26.4–28.5) | 0.469 |
Waist circumference (cm) | 83.6 (82.1–85.1) | 80.7 (79.2–82.1) | 0.004 |
Days of Spraying Pesticide | Round 1 Mean (IQR) n = 213 | Round 2 Mean (IQR) n = 199 | Round 3 Mean (IQR) n = 185 | Round 4 Mean (IQR) n = 178 |
---|---|---|---|---|
Insecticide | 14 (4–24) | 11 (2–24) | 11 (2–8) | 7 (0–4) |
Herbicide | 7 (4–8) | 9 (4–14) | 7 (4–12) | 8 (2–12) |
Fungicide | 9 (0–8) | 7 (0–8) | 8 (0–8) | 3 (0–2) |
Metabolic Biomarker | Insecticide Spray Days | p-Value | Herbicide Spray Days | p-Value | Fungicide Spray Days | p-Value |
---|---|---|---|---|---|---|
Total cholesterol (mg/dL) | 1.78 (−0.01, 3.56) | 0.052 | 1.76 (−1.2, 4.71) | 0.243 | 2.15 (0.07, 4.24) | 0.043 |
HDL (mg/dL) | 0.96 (0.42, 1.49) | <0.001 | 1.42 (0.53, 2.32) | 0.002 | 1.25 (0.63, 1.87) | <0.001 |
LDL (mg/dL) | 1.56 (0.16, 2.96) | 0.028 | 1.11 (−1.20, 0.34) | 0.345 | 1.75 (0.12, 3.38) | 0.035 |
Glucose (mg/dL) | 0.29 (−0.51, 1.08) | 0.482 | −0.60 (−1.88, 0.68) | 0.358 | 0.13 (−0.79, 1.05) | 0.782 |
Triglyceride (mg/dL) | −2.80 (−7.47, 1.87) | 0.239 | −3.22 (−10.92, 4.49) | 0.413 | −2.57 (−8.02, 2.87) | 0.354 |
Systolic Blood Pressure (mmHg) | 0.19 (−0.39, 0.78) | 0.519 | 1.14 (0.19, 2.09) | 0.018 | 0.16 (−0.52, 0.83) | 0.649 |
Diastolic Blood Pressure (mmHg) | −0.01 (−0.35, 0.32) | 0.937 | 0.58 (0.04, 1.13) | 0.037 | 0.16 (−0.23, 0.55) | 0.412 |
BMI (kg/m2) | −0.03 (−0.10, 0.04) | 0.453 | −0.14 (−0.26, −0.03) | 0.015 | −0.03 (−0.12, 0.05) | 0.444 |
Body fat (%) | 0.11 (−0.17, 0.4) | 0.449 | −0.25 (−0.72, 0.22) | 0.300 | 0.10 (−0.24, 0.43) | 0.573 |
Waist Circumference (cm) | 0.20 (−0.10, 0.49) | 0.171 | −0.02 (−0.48, 0.45) | 0.946 | 0.14 (−0.19, 0.48) | 0.402 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Yimsabai, J.; Woskie, S. Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand. Int. J. Environ. Res. Public Health 2020, 17, 4178. https://doi.org/10.3390/ijerph17114178
Kongtip P, Nankongnab N, Kallayanatham N, Pundee R, Yimsabai J, Woskie S. Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand. International Journal of Environmental Research and Public Health. 2020; 17(11):4178. https://doi.org/10.3390/ijerph17114178
Chicago/Turabian StyleKongtip, Pornpimol, Noppanun Nankongnab, Nichcha Kallayanatham, Ritthirong Pundee, Jutharak Yimsabai, and Susan Woskie. 2020. "Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand" International Journal of Environmental Research and Public Health 17, no. 11: 4178. https://doi.org/10.3390/ijerph17114178
APA StyleKongtip, P., Nankongnab, N., Kallayanatham, N., Pundee, R., Yimsabai, J., & Woskie, S. (2020). Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand. International Journal of Environmental Research and Public Health, 17(11), 4178. https://doi.org/10.3390/ijerph17114178