Predictive Variables of Adolescents’ Intention to Be Physically Active after Graduation. Is Gender a Conditioning Factor?
Abstract
:1. Introduction
- −
- H0: Gender exerts a moderating effect among all the variables of the model, explaining the intention to be physically active after graduation.
- −
- TPB’s variables hypotheses:
- −
- H1: Attitude towards physical activity practice directly and positively influences the intention to be physically active after graduation.
- −
- H2a: The perception that people from their environment see physical activity practice as something desirable (subjective norm), directly and positively influences the intention to be physically active after graduation.
- −
- H2b: The perception that people from their environment see physical activity practice as something desirable (subjective norm) directly and positively influences the attitude towards physical activity practice.
- −
- H2c: The perception that people from their environment see physical activity practice as something desirable (subjective norm), directly and positively influences the perceived behavioral control.
- −
- H3: The perception of having the control and capacity to practice physical activity regularly (perceived behavioral control), directly and positively influences the intention to be physically active after graduation.
- −
- Self-concept dimensions’ hypotheses:
- −
- H4a: The strength perception directly and positively influences the attitude towards physical activity practice.
- −
- H4b: The strength perception directly and positively influences the perception of having the control and capacity to practice physical activity regularly (perceived behavioral control).
- −
- H5a: The physical attractiveness perception directly and positively influences the attitude towards physical activity practice.
- −
- H5b: The physical attractiveness perception directly and positively influences the perception of having the control and capacity to practice physical activity regularly (perceived behavioral control).
- −
- H6a: The physical condition perception directly and positively influences the attitude towards physical activity practice.
- −
- H6b: The physical condition perception directly and positively influences the perception of having the control and capacity to practice physical activity regularly (perceived behavioral control).
- −
- H7a: The athletic identity directly and positively influences the attitude towards physical activity practice.
- −
- H7b: The athletic identity directly and positively influences the perception of having the control and capacity to practice physical activity regularly (perceived behavioral control).
2. Materials and Methods
2.1. Participants
2.2. Instrument
- (a)
- The measure of the Intentionality to be Physically Active (MIFA) from [69] translated into Spanish and validated by [16]. This scale measures the personal intention to be physically active after graduating. It consists of five items grouped into the same factor or variable, so they measure the same aspect (i.e., “I am interested in the development of my physical form”). The items are preceded by the phrase “Regarding your intention to practice some physical-sports activity
- (b)
- The scale of Physical Self-Concept (CAF-A) extracted from [70], which validated the psychometric properties of this Spanish version with adolescents. This scale consists of eight items that measure four dimensions of physical self-concept: strength (two items: “I have more strength than most people my age “and “I am strong”); physical attractiveness (two items: “I feel happy with my body image” and “I like my face and my body”); physical skills (two items: “I’m one of those people who has trouble learning a new sport” and “I see myself clumsy in sports activities”); and physical condition (two items: “I have a lot of physical endurance” and “I can run and exercise for a long time without getting tired”). For this purpose, an ascending Likert scale is used, where 1 means false, 2 means almost always false, 3 means sometimes true sometimes false, 4 almost always true and 5 true.
- (c)
- The scale of the Theory of Planned Behavior by [71], in which four items compose the subjective norm construct, seven for the perceived behavioral and the attitude towards the behavior. Subjective norm, refers to the assessment that people in their immediate environment make of physical and sporting practice (i.e., “Most of the people who are important to me think that I should do sport or physical exercise at least three times a week”). Specifically, the items refer to what people in the immediate environment think (one item), want (one item), and expect (one item) about doing sport or physical exercise at least three times a week. Perceived behavioral control measures the subjects’ perception of their ability to perform physical exercise or sport at least three times a week (i.e., “I think I can do sport/exercise at least three times a week”). Precisely, it measures predisposition (one item), the locus of control (one item), capacity (one item), and finally, difficulties (one item). Attitude towards behavior measures how important is to practice physical activity three times a week, by presenting different adjectives: important (one item), enjoyable (one item), relaxing (one item), useful (one item), beneficial (one item) to intelligent (one item). As a measure of these items, a 5-point ascending Likert scale is used, where 1 means no agreement and 5 means total agreement.
- (d)
- Exercise Identity Scale (EIS) by [72], in its Spanish version by [73]. The scale is composed of five items that measure the subjects’ perception of their sports identity (i.e., “I am the type of person who enjoys exercising/sports in my free time”). The items refer to whether they perceive themselves as an athletic person. Also, they refer to the feeling of discomfort if they were forced to stop practicing physical activity and the enjoyment of doing physical activity or sport during free time. To measure these items a 5-point ascending Likert scale is used where 1 meant completely disagree, and 5 completely agree. Finally, several sociodemographic variables that are considered of interest for the study are measured, such as: the course, age, and gender of the students.
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Reliability and Validity Analysis
3.1.1. Convergent Validity and Reliability of Measurements
3.1.2. Discriminant Validity
3.2. Mean Comparisons Between Adolescents Gender
3.3. Invariance Assessment
3.4. Structural Equation Models: A Multi-Group Analysis
4. Discussion
Limitations and Future Lines of Research
5. Conclusions
6. Practical Application
Author Contributions
Funding
Conflicts of Interest
References
- Ding, D. Surveillance of global physical activity: Progress, evidence, and future directions. Lancet Glob. Health 2018, 6, e1046–e1047. [Google Scholar] [CrossRef] [Green Version]
- De Rezende, L.F.M.; Rabacow, F.M.; Viscondi, J.Y.K.; do Carmo Luiz, O.; Matsudo, V.K.R.; Lee, I.-M. Effect of physical inactivity on major noncommunicable diseases and life expectancy in Brazil. J. Phys. Act. Health 2015, 12, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S.B.; Eaton, S.B. Physical inactivity, obesity, and type 2 diabetes: An evolutionary perspective. Res. Q. Exerc. Sport 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Group, L.P.A.S.W. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D. Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1· 6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Hagströmer, M.; Kwak, L.; Oja, P.; Sjöström, M. A 6 year longitudinal study of accelerometer-measured physical activity and sedentary time in Swedish adults. J. Sci. Med. Sport 2015, 18, 553–557. [Google Scholar] [CrossRef]
- Huotari, P.; Nupponen, H.; Mikkelsson, L.; Laakso, L.; Kujala, U. Adolescent physical fitness and activity as predictors of adulthood activity. J. Sports Sci. 2011, 29, 1135–1141. [Google Scholar] [CrossRef]
- Van Mechelen, W.; Twisk, J.W.; Post, G.B.; Snel, J.A.N.; Kemper, H.C. Physical activity of young people: The Amsterdam Longitudinal Growth and Health Study. Med. Sci. Sports Exerc. 2000, 32, 1610–1616. [Google Scholar] [CrossRef]
- Moreno-Murcia, J.A.; Hellín, P.; González-Cutre, D.; Martínez-Galindo, C. Influence of perceived sport competence and body attractiveness on physical activity and other healthy lifestyle habits in adolescents. Span. J. Psychol. 2011, 14, 282–292. [Google Scholar] [CrossRef] [Green Version]
- De Looze, M.; Elgar, F.J.; Currie, C.; Kolip, P.; Stevens, G.W. Gender inequality and sex differences in physical fighting, physical activity, and injury among adolescents across 36 countries. J. Adolesc. Health 2019, 64, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Baena, A.; Mayorga-Vega, D.; Viciana, J. Motivación hacia la Educación Física y su relación con la condición física saludable en escolares de Educación Secundaria Obligatoria. Nutr. Hosp. 2016, 33, 948–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhat, T.; Iannotti, R.J.; Simons-Morton, B.G. Overweight, obesity, youth, and health-risk behaviors. Am. J. Prev. Med. 2010, 38, 258–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litt, D.M.; Iannotti, R.J.; Wang, J. Motivations for adolescent physical activity. J. Phys. Act. Health 2011, 8, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Melkevik, O.; Torsheim, T.; Iannotti, R.J.; Wold, B. Is spending time in screen-based sedentary behaviors associated with less physical activity: A cross national investigation. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, J.A.; Moreno, R.; Cervelló, E. El autoconcepto físico como predictor de la intención de ser físicamente activo. Psicol. Salud 2007, 17, 261–267. [Google Scholar]
- Moreno, J.A.; Cervello, E.M. Physical self-perception in Spanish adolescents: Effects of gender and involvement in physical activity. J. Hum. Mov. Stud. 2005, 48, 291–311. [Google Scholar]
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef]
- Baños, R. Intención de práctica, satisfacción con la educación física y con la vida en función del género en estudiantes mexicanos y españoles. Retos 2020, 37, 412–418. [Google Scholar]
- Baños, R.; del Ortiz-Camacho, M.; Baena-Extremera, A.; Tristán-Rodríguez, J.L. Satisfacción, motivación y rendimiento académico en estudiantes de Secundaria y Bachillerato: Antecedentes, diseño, metodología y propuesta de análisis para un trabajo de investigación. Espiral Cuad. Profr. 2017, 10, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Moreno Murcia, J.A.; Martínez Galindo, C.; Alonso Villodre, N. Actitudes hacia la práctica físico-deportiva según el sexo del practicante. RICYDE Rev. Int. Cienc. Deporte 2006, 2, 20–43. [Google Scholar] [CrossRef]
- Telama, R.; Yang, X. Decline of physical activity from youth to young adulthood in Finland. Med. Sci. Sports Exerc. 2000, 32, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Parri, M.; Ceciliani, A. Best Practice in PE for gender equity-A review. J. Phys. Educ. Sport 2019, 19, 1943–1952. [Google Scholar]
- Clément-Guillotin, C.; Chalabaev, A.; Fontayne, P. Is sport still a masculine domain. Int. J. Sport Psychol. 2011, 42, 1–12. [Google Scholar]
- Miller, J.L.; Heinrich, M.D.; Baker, R. A Look at Title IX and Women’s Participation in Sport. Phys. Educ. 2000, 57, 8–12. [Google Scholar]
- Hagger, M.; Chatzisarantis, N.; Biddle, S. A meta-analytic review of the theories of reasoned action and planned behavior in physical activity: Predictive validity and the contribution of additional variables. J. Sport Exerc. Psychol. 2002, 24, 3–32. [Google Scholar] [CrossRef]
- Duncan, M.J.; Rivis, A.; Jordan, C. Brief report: Understanding intention to be physically active and physical activity behaviour in adolescents from a low socio-economic status background: An application of the Theory of Planned Behaviour. J. Adolesc. 2012, 35, 761–764. [Google Scholar] [CrossRef]
- Schwarzer, R.; Luszczynska, A.; Ziegelmann, J.P.; Scholz, U.; Lippke, S. Social-cognitive predictors of physical exercise adherence: Three longitudinal studies in rehabilitation. Health Psychol. 2008, 27, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Abraham, C.; Graham-Rowe, E. Are worksite interventions effective in increasing physical activity? A systematic review and meta-analysis. Health Psychol. Rev. 2009, 3, 108–144. [Google Scholar] [CrossRef]
- Gourlan, M.; Boiché, J.; Takito, M.; Fregeac, B.; Cousson-Gélie, F. Predicting physical activity among children: Investigating interaction effects in the theory of planned behavior. Research Q. Exerc. Sport 2018, 89, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.; White, K.M. Extending the theory of planned behavior: The role of self and social influences in predicting adolescent regular moderate-to-vigorous physical activity. J. Sport Exerc. Psychol. 2008, 30, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; McEwan, D.; Rebar, A.L. Theories of physical activity behaviour change: A history and synthesis of approaches. Psychol. Sport Exerc. 2019, 42, 100–109. [Google Scholar] [CrossRef]
- Martin, J.J.; Kulinna, P.H.; McCaughtry, N.; Cothran, D.; Dake, J.; Fahoome, G. The theory of planned behavior: Predicting physical activity and cardiorespiratory fitness in African American children. J. Sport Exerc. Psychol. 2005, 27, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; McCaughtry, N.; Martin, J. The influence of self-determination in physical education on leisure-time physical activity behavior. Res. Q. Exerc. Sport 2007, 78, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Ho, S.S. Applying the theory of planned behavior: Examining how communication, attitudes, social norms, and perceived behavioral control relate to healthy lifestyle intention in Singapore. Int. J. Healthc. Manag. 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Neipp, M.C.; Quiles, M.J.; León, E.; Tirado, S.; Rodríguez-Marín, J. Aplicando la Teoría de la Conducta Planeada:?` qué factores influyen en la realización de ejercicio físico? Atención Primaria 2015, 47, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Sniehotta, F. An experimental test of the theory of planned behavior. Appl. Psychol. Health Well-Being 2009, 1, 257–270. [Google Scholar] [CrossRef]
- Mummery, W.K.; Spence, J.C.; Hudec, J.C. Understanding physical activity intention in Canadian school children and youth: An application of the theory of planned behavior. Res. Q. Exerc. Sport 2000, 71, 116–124. [Google Scholar] [CrossRef]
- Trigueros, R.; Aguilar-Parra, J.M.; Cangas, A.J.; López-Liria, R.; Álvarez, J.F. Influence of physical education teachers on motivation, embarrassment and the intention of being physically active during adolescence. Int. J. Environ. Res. Public Health 2019, 16, 2295. [Google Scholar] [CrossRef] [Green Version]
- Miguel, P.A.S.; González, J.J.P.; Alonso, D.A.; Oliva, D.S.; Marcos, F.M.L. Percepción de la conducta de los padres en los comportamientos antisociales mostrados por los jóvenes participantes de deportes colectivos. Univ. Psychol. 2014, 13, 299–310. [Google Scholar]
- Fuchs, R. Causal models of physical exercise participation: Testing the predictive power of the construct “pressure to change. ” J. Appl. Soc. Psychol. 1996, 26, 1931–1960. [Google Scholar] [CrossRef]
- Santina, T.; Godin, G.; Gagné, C.; Guillaumie, L. Psychosocial determinants of physical activity at school among Lebanese children: An application of the planned behavior theory. J. Phys. Educ. Sport 2017, 26, 171–181. [Google Scholar]
- Armitage, C.J.; Conner, M. Efficacy of the theory of planned behaviour: A meta-analytic review. Br. J. Soc. Psychol. 2001, 40, 471–499. [Google Scholar] [CrossRef] [Green Version]
- Ekkekakis, P.E.; Cook, D.B.; Craft, L.L.; Culos-Reed, S.; Etnier, J.L.; Hamer, M.E.; Martin Ginis, K.A.; Reed, J.E.; Smits, J.A.; Ussher, M.E. Routledge Handbook of Physical Activity and Mental Health; Routledge/Taylor & Francis Group: Washington, DC, USA, 2013. [Google Scholar]
- Fox, K.R.; Wilson, P.M. Self-perceptual systems and physical activity. Adv. Sport Psychol. 2008, 3, 49–64. [Google Scholar]
- Isasti, L.M.Z. Educación física y mejora del autoconcepto. Revisión de la investigación. Rev. Psicodidáctica 1999, 8, 101–120. [Google Scholar]
- Babic, M.J.; Morgan, P.J.; Plotnikoff, R.C.; Lonsdale, C.; White, R.L.; Lubans, D.R. Physical activity and physical self-concept in youth: Systematic review and meta-analysis. Sports Med. 2014, 44, 1589–1601. [Google Scholar] [CrossRef]
- Chacón-Cuberos, R.; Zurita-Ortega, F.; García-Marmol, E.; Castro-Sánchez, M. Autoconcepto multidimensional según práctica deportiva en estudiantes universitarios de Educación Física de Andalucía. Retos 2020, 37, 174–180. [Google Scholar]
- Cumming, S.P.; Standage, M.; Loney, T.; Gammon, C.; Neville, H.; Sherar, L.B.; Malina, R.M. The mediating role of physical self-concept on relations between biological maturity status and physical activity in adolescent females. J. Adolesc. 2011, 34, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Simmons, S.; Childers, K. Effects of intercollegiate athletics and intramural participation on self-esteem and physical self-description: A pilot study. Recreat. Sports J. 2013, 37, 160–168. [Google Scholar] [CrossRef]
- Garrido, R.E.R.; García, A.V.; Tamayo, I.M.; De Mier, R.J.R. Importància de l’autoconcepte físic i l’autoeficàcia general en la predicció de la conducta de pràctica física. Apunts. Educ. Física Esports 2013, 2, 46–51. [Google Scholar]
- Wichstrøm, L.; von Soest, T.; Kvalem, I.L. Predictors of growth and decline in leisure time physical activity from adolescence to adulthood. Health Psychol. 2013, 32, 775. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Arena, D.; Bailenson, J.N. Virtual reality: A survival guide for the social scientist. J. Media Psychol. 2009, 21, 95–113. [Google Scholar] [CrossRef]
- Grandmontagne, A.G.; de Azúa García, S.R.; Fernández, A.R. Deporte y autoconcepto físico en la preadolescencia. Apunts. Educ. Física Deportes 2004, 3, 18–24. [Google Scholar]
- García-Sánchez, A.; Burgueño-Menjibar, R.; López-Blanco, D.; Ortega, F.B. Condición física, adiposidad y autoconcepto en adolescentes. Estudio piloto. Rev. Psicol. Depporte 2013, 22, 453–461. [Google Scholar]
- Moreno, J.A.; Cervelló, E.M.; Moreno, R. Importancia de la práctica físico-deportiva y del género en el autoconcepto físico de los 9 a los 23 años. Int. J. Clin. Health Psychol. 2008, 8, 171–183. [Google Scholar]
- Soriano, J.A.; Navas, L.; Holgado, F.P. El autoconcepto físico y su relación con el género y la edad en estudiantes de educación física. Apunts. Educ. Física Deportes 2011, 106, 36–41. [Google Scholar] [CrossRef]
- Kendzierski, D. Exercise self-schemata: Cognitive and behavioral correlates. Health Psychol. 1990, 9, 69–82. [Google Scholar] [CrossRef]
- Erdvik, I.B.; Øverby, N.C.; Haugen, T. Students’ self-determined motivation in physical education and intention to be physically active after graduation: The role of perceived competence and identity. J. Phys. Educ. Sport 2014, 14, 232–241. [Google Scholar]
- Theodorakis, Y. Planned behavior, attitude strength, role identity, and the prediction of exercise behavior. Sport Psychol. 1994, 8, 149–165. [Google Scholar] [CrossRef]
- Theodorakis, Y.; Bagiatis, K.; Goudas, M. Attitudes toward teaching individuals with disabilities: Application of planned behavior theory. Adapt. Phys. Act. Q. 1995, 12, 151–160. [Google Scholar] [CrossRef]
- Wilson, P.M.; Muon, S. Psychometric properties of the exercise identity scale in a university sample. Int. J. Sport Exerc. Psychol. 2008, 6, 115–131. [Google Scholar] [CrossRef]
- Rise, J.; Sheeran, P.; Hukkelberg, S. The role of self-identity in the theory of planned behavior: A meta-analysis. J. Appl. Soc. Psychol. 2010, 40, 1085–1105. [Google Scholar] [CrossRef]
- Sparks, P.; Guthrie, C.A. Self-identity and the theory of planned behavior: A useful addition or an unhelpful artifice? 1. J. Appl. Soc. Psychol. 1998, 28, 1393–1410. [Google Scholar] [CrossRef]
- Terry, D.J.; Hogg, M.A.; White, K.M. The theory of planned behaviour: Self-identity, social identity and group norms. Br. J. Soc. Psychol. 1999, 38, 225–244. [Google Scholar] [CrossRef]
- De Bruijn, G.-J.; van den Putte, B. Exercise promotion: An integration of exercise self-identity, beliefs, intention, and behaviour. Eur. J. Sport Sci. 2012, 12, 354–366. [Google Scholar] [CrossRef]
- Wang, S.; Wu, L.; Lee, S. Role of dispositional aspects of self-identity in the process of planned behavior of outbound travel. J. Vacat. Mark. 2018, 24, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Hein, V.; Müür, M.; Koka, A. Intention to be physically active after school graduation and its relationship to three types of intrinsic motivation. Eur. Phys. Educ. Rev. 2004, 10, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Fernández, A.; Axpe, I.; Goñi, A. Propiedades psicométricas de una versión abreviada del Cuestionario de Autoconcepto Físico (CAF). Actas Esp. Psiquiatr. 2015, 43, 125–132. [Google Scholar]
- González, S.T.; López, M.C.N.; Marcos, Y.Q.; Rodríguez-Marín, J. Development and validation of the theory of planned behavior questionnaire in physical activity. Span. J. Psychol. 2012, 15, 801–816. [Google Scholar] [CrossRef]
- Anderson, D.F.; Cychosz, C.M. Development of an exercise identity scale. Percept. Mot. Ski. 1994, 78, 747–751. [Google Scholar] [CrossRef]
- Pascual, C.M.; García, F.G.; Henríquez, J.J.G. Análisis de las propiedades psicométricas de la versión española de la exercise identity scale. Rev. Mex. Psicol. 2010, 27, 25–34. [Google Scholar]
- WMA. WMA Declaration of Helsinki-Ethical Principles for Medical Research Involving Human Subjects; WMA: Fortaleza, Brazil, 2013. [Google Scholar]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4, 2–77. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Franco, M.J.; Roldán, J.L. Web acceptance and usage model. Internet Research 2005, 15, 21–48. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares; Springer: Berlin, Germany, 2010; pp. 655–690. [Google Scholar]
- Sinkovics, R.R.; Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing measurement invariance of composites using partial least squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal. 2015, 81, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Lévy-Mangin, J.P.; Varela, J. Modelización con estructuras de covarianzas en ciencias sociales. In Temas Esenciales, Avanzados y Aportaciones Especiales; A Coruña: Netbiblo: Oleiros, Spain, 2006. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics; SAGE Publications: Los Angeles, CA, USA, 1981. [Google Scholar]
- Schlägel, C.; Sarstedt, M. Assessing the measurement invariance of the four-dimensional cultural intelligence scale across countries: A composite model approach. Eur. Manag. J. 2016, 34, 633–649. [Google Scholar] [CrossRef]
- López, A.T. Diferencias en los niveles de actividad física, grado de adherencia a la dieta mediterránea y autoconcepto físico en adolescentes en función del sexo. Retos 2019, 36, 185–192. [Google Scholar]
- Murcia, J.A.M.; Gimeno, E.C.; Vera Lacárcel, J.A.; Ruiz Pérez, L.M.R. Physical self-concept of Spanish schoolchildren: Differences by gender, sport practice and levels of sport involvement. J. Educ. Hum. Dev. 2007, 1, 1–17. [Google Scholar]
- Román, M.L.; Matador, J.G.; García, J.P.F.; Castuera, R.J. Análisis de variables motivacionales y de estilos de vida saludables en practicantes de ejercicio físico en centros deportivos en función del género. Retos 2018, 34, 166–171. [Google Scholar]
- Moreno, J.M.; Baena, A.C.M.; Guerrero, J.T. Motivaciones para la práctica físico-deportiva en adolescentes españoles, al terminar la Educación Secundaria Obligatoria. Electron. J. Res. Educ. Psychol. 2017, 10, 371–396. [Google Scholar]
- Godin, G. The theories of reasoned action and planned behavior: Overview of findings, emerging research problems and usefulness for exercise promotion. J. Appl. Sport Psychol. 1993, 5, 141–157. [Google Scholar] [CrossRef]
- González-Valero, G.; Zurita-Ortega, F.; Puertas-Molero, P.; Chacón-Cuberos, R.; Garcés, T.E.; Sánchez, M.C. Educación para la salud: Implementación del programa” Sportfruits” en escolares de Granada. SPORT TK-Rev. Euroam. Cienc. Deporte 2017, 6, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Arufe-Giráldez, V.; Barcala-Furelos, R.; Mateos-Padorno, C. School sport programs in spain and the participation of the educational agents. Rev. Int. Med. Cienc. Act. Física Deporte 2017, 17, 397–411. [Google Scholar]
- Vlachopoulos, S.P.; Kaperoni, M.; Moustaka, F.C. The relationship of self-determination theory variables to exercise identity. Psychol. Sport Exerc. 2011, 12, 265–272. [Google Scholar] [CrossRef]
- Wang, C.J.; Biddle, S.J. Young people’s motivational profiles in physical activity: A cluster analysis. J. Sport Exerc. Psychol. 2001, 23, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ardoy, D.N.; Fernández-Rodríguez, J.M.; Chillón, P.; Artero, E.G.; España-Romero, V.; Jiménez-Pavón, D.; Ruiz, J.R.; Guirado-Escámez, C.; Castillo, M.J.; Ortega, F.B. Educando para mejorar el estado de forma física, estudio EDUFIT: Antecedentes, diseño, metodología y análisis del abandono/adhesión al estudio. Rev. Española Salud Pública 2010, 84, 151–168. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 2 April 2020).
- Taylor, I.M.; Ntoumanis, N.; Standage, M.; Spray, C.M. Motivational predictors of physical education students’ effort, exercise intentions, and leisure-time physical activity: A multilevel linear growth analysis. J. Sport Exerc. Psychol. 2010, 32, 99–120. [Google Scholar] [CrossRef] [Green Version]
Constructs | Indicators | Male Sample | Female Sample | |||||||
---|---|---|---|---|---|---|---|---|---|---|
λ | λ | α | CR | AVE | λ | α | CR | AVE | ||
ATB | 1 | 0.78 | 0.80 | 0.90 | 0.92 | 0.66 | 0.76 | 0.82 | 0.87 | 0.52 |
2 | 0.77 | 0.77 | 0.76 | |||||||
3 | 0.71 | 0.76 | 0.64 | |||||||
4 | 0.81 | 0.85 | 0.77 | |||||||
5 | 0.78 | 0.84 | 0.67 | |||||||
6 | 0.81 | 0.86 | 0.73 | |||||||
PATR | 7 | 0.92 | 0.89 | 0.76 | 0.89 | 0.81 | 0.91 | 0.81 | 0.91 | 0.84 |
8 | 0.89 | 0.90 | 0.92 | |||||||
CON | 9 | 0.94 | 0.92 | 0.85 | 0.93 | 0.87 | 0.94 | 0.87 | 0.94 | 0.88 |
10 | 0.94 | 0.94 | 0.94 | |||||||
STR | 11 | 0.95 | 0.92 | 0.82 | 0.92 | 0.85 | 0.96 | 0.90 | 0.95 | 0.91 |
12 | 0.94 | 0.92 | 0.95 | |||||||
PS | 13 | 0.83 | 0.78 | 0.41 | 0.41 | 0.77 | 0.82 | 0.58 | 0.59 | 0.83 |
14 | 0.81 | 0.81 | 0.86 | |||||||
AI | 15 | 0.89 | 0.89 | 0.89 | 0.92 | 0.70 | 0.87 | 0.92 | 0.94 | 0.76 |
16 | 0.71 | 0.62 | 0.83 | |||||||
17 | 0.82 | 0.82 | 0.82 | |||||||
18 | 0.92 | 0.91 | 0.92 | |||||||
19 | 0.92 | 0.93 | 0.91 | |||||||
CCP | 20 | 0.81 | 0.76 | 0.75 | 0.84 | 0.56 | 0.86 | 0.88 | 0.92 | 0.74 |
21 | 0.73 | 0.62 | 0.80 | |||||||
22 | 0.82 | 0.85 | 0.88 | |||||||
23 | 0.92 | 0.75 | 0.89 | |||||||
IPA | 24 | 0.92 | 0.69 | 0.84 | 0.89 | 0.62 | 0.60 | 0.80 | 0.86 | 0.57 |
25 | 0.64 | 0.81 | 0.89 | |||||||
26 | 0.85 | 0.73 | 0.60 | |||||||
27 | 0.67 | 0.82 | 0.79 | |||||||
28 | 0.81 | 0.86 | 0.79 | |||||||
SN | 29 | 0.71 | 0.61 | 0.74 | 0.74 | 0.51 | 0.85 | 0.81 | 0.88 | 0.71 |
30 | 0.72 | 0.60 | 0.83 | |||||||
31 | 0.91 | 0.96 | 0.85 |
ATB | PATR | PC | STR | AI | PBC | IPA | SN | |
---|---|---|---|---|---|---|---|---|
ATB | 0.81(0.71) | . | ||||||
PATR | 0.22**(0.22*) | 0.90 (0.92) | ||||||
PC | 22**(0.22*) | 46***(0.37***) | 0.93(0.94) | |||||
STR | 23**(0.21*) | 0.38***(0.20) | 39***(0.49***) | 0.92(0.96) | ||||
AI | 39***(0.49***) | 26**(0.13*) | 52***(0.56***) | 0.48***(0.41***) | 0.84(0.87) | |||
PBC | 14(0.26**) | 28***(14*) | 17*(0.37***) | 0.79***(0.13**) | 37**(0.53***)* | 0.75(0.86) | ||
IPA | 34***(0.39***) | 28***(0.07) | 0.57***(0.44***) | 0.35***(0.35***) | 18*(0.81***) | 0.30***(0.44***) | 0.79(0.75) | |
SN | 18*(0.26**) | 08(0.08) | 22**(0.19*) | 0.49***(0.26**) | 26**(0.41***) | 39***(0.30**) | 26***(0.29***) | 0.81(0.84) |
Variable | Male | Female | p | Cohen’s d |
---|---|---|---|---|
Attitude towards behavior | 4.14 (0.76) | 4.12 (0.63) | 0.194 | - |
Attractiveness | 3.93(0.95) | 3.65 (1.09) | 0.031 | 0.27 |
Condition | 3.82 (1.08) | 3.06(1.11) | 0.000 | 0.69 |
Strength | 3.50 (0.98) | 2.70 (1.18) | 0.000 | 0.74 |
Athletic identity | 4.21 (0.94) | 3.72 (1.22) | 0.000 | 0.45 |
Perceived behavioral control | 4.52 (0.71) | 4.39 (0.87) | 0.194 | - |
Intention to be physically active | 4.41 (0.75) | 4.07 (0.78) | 0.000 | 0.44 |
Subjective norm | 3.83 (0.95) | 3.67 (1.05) | 0.728 | - |
Variables | c | 5% Quantile of cu |
---|---|---|
Attitude towards behavior | 1.00 | 0.98 |
Attractiveness | 1.00 | 0.95 |
Condition | 1.00 | 0.99 |
Strength | 1.00 | 0.99 |
Ability | 0.99 | 0.62 |
Athletic Identity | 1.00 | 1.00 |
Perceived behavioral control | 0.99 | 0.99 |
Intention to be physically active | 1.00 | 0.99 |
Subjective norm | 0.94 | 0.87 |
Path Coefficients (pc) | Male Students (t Value) | Female Students (t Value) | Male–Female | t Value |
---|---|---|---|---|
ATB > IPA | 0.21***(2.70) | 0.28***(2.90) | −0.07 | 0.58 |
PATR > ATB | 0.07 (0.79) | 0.12(1.03) | −0.05 | 0.30 |
PATR > PBC | 0.36***(4.65) | −0.08(0.82) | 0.44*** | 3.47 |
PC ->ATB | −0.10 (0.84) | −0.16 (1.54) | 0.06 | 0.35 |
PC ->PBC | −0.24*(2.09) | 0.24** (2.46) | −0.48*** | 3.02 |
STR > ATB | 0.17(1.87) | 0.13(1.36) | 0.04 | 0.33 |
STR >PBC | 0.03(0.37) | −0.24***(3.20) | 0.27* | 2.39 |
ID >ATB | 0.37 ***(3.32) | 0.56***(5.20) | −0.19 | 1.23 |
ID>PBC | 0.56 ***(5.00) | 0.56***(6.32) | 0.00 | 0.02 |
PBC>IPA | 0.28 ***(3.23) | 0.44***(4.66) | −0.16 | 1.15 |
SN>ATB | 0.04(0.36) | 0.00(0.02) | 0.03 | 0.23 |
SN>PBC | 0.03 (.0.27) | 0.13(1.19) | −0.10 | 0.68 |
SN>IPA | 0.36***(4.49) | 0.03(0.28) | 0.33** | 2.61 |
R2 | ||||
ATB | 0.20*** | 0.30*** | ||
PBC | 0.42*** | 0.51*** | ||
IPA | 0.38*** | 0.38*** | ||
SRMR | 0.06 | 0.06 | ||
d_ULS | 1.60 (HI95 = 2.04) | 1.62 (HI95 = 2.19) | ||
d_G | 0.93 (HI95 = 1.19) | 1.24 (HI95 = 1.66) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Serrano, M.H.; Gómez-Tafalla, A.; Calabuig-Moreno, F. Predictive Variables of Adolescents’ Intention to Be Physically Active after Graduation. Is Gender a Conditioning Factor? Int. J. Environ. Res. Public Health 2020, 17, 4308. https://doi.org/10.3390/ijerph17124308
González-Serrano MH, Gómez-Tafalla A, Calabuig-Moreno F. Predictive Variables of Adolescents’ Intention to Be Physically Active after Graduation. Is Gender a Conditioning Factor? International Journal of Environmental Research and Public Health. 2020; 17(12):4308. https://doi.org/10.3390/ijerph17124308
Chicago/Turabian StyleGonzález-Serrano, María Huertas, Ana Gómez-Tafalla, and Ferran Calabuig-Moreno. 2020. "Predictive Variables of Adolescents’ Intention to Be Physically Active after Graduation. Is Gender a Conditioning Factor?" International Journal of Environmental Research and Public Health 17, no. 12: 4308. https://doi.org/10.3390/ijerph17124308
APA StyleGonzález-Serrano, M. H., Gómez-Tafalla, A., & Calabuig-Moreno, F. (2020). Predictive Variables of Adolescents’ Intention to Be Physically Active after Graduation. Is Gender a Conditioning Factor? International Journal of Environmental Research and Public Health, 17(12), 4308. https://doi.org/10.3390/ijerph17124308