Hemodynamic Adaptations Induced by Short-Term Run Interval Training in College Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Body Composition Analysis
2.4. Graded Exercise Test (GXT)
2.5. Hemodynamic Responses
2.6. Run Interval Training
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Acebes-Sánchez, J.; Diez-Vega, I.; Rodriguez-Romo, G. Physical activity among spanish undergraduate students: A descriptive correlational study. Int. J. Environ. Res. Public Health 2019, 16, 2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra-Saldías, M.; Castro-Piñero, J.; Paredes, A.C.; Leal, X.P.; Martínez, X.D.; Rodríguez-Rodríguez, F. Active commuting behaviours from high school to university in Chile: A retrospective study. Int. J. Environ. Res. Public Health 2019, 16, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela-Mato, V.; Cancela, J.M.; Ayan, C.; Martín, V.; Molina, A. Lifestyle and health among spanish university students: Differences by gender and academic discipline. Int. J. Environ. Res. Public Health 2012, 9, 2728–2741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justine, M.; Azizan, A.; Hassan, V.; Salleh, Z.; Manaf, H. Barriers to participation in physical activity and exercise among middle-aged and elderly individuals. Singapore Med. J. 2013, 54, 581–586. [Google Scholar] [CrossRef]
- Bernardo, G.L.; Jomori, M.M.; Fernandes, A.C.; ProenÇa, R.P.C. Consumo alimentar de estudantes universitários. Rev. Nutr. Rev. Nutr. 2017, 30, 847–865. [Google Scholar] [CrossRef] [Green Version]
- Lupi, S.; Bagordo, F.; Stefanati, A.; Grassi, T.; Piccinni, L.; Bergamini, M.; De Donno, A. Assessment of lifestyle and eating habits among undergraduate students in Northern Italy. Ann. dell’Ist. Super. Sanita 2015, 51, 154–161. [Google Scholar] [CrossRef]
- Dos Santos Boni, R.A.; Paiva, C.E.; De Oliveira, M.A.; Lucchetti, G.; Fregnani, J.H.T.G.; Paiva, B.S.R. Burnout among medical students during the first years of undergraduate school: Prevalence and associated factors. PLoS ONE 2018, 13, e0191746. [Google Scholar] [CrossRef] [Green Version]
- Altannir, Y.; Alnajjar, W.; Ahmad, S.O.; Altannir, M.; Yousuf, F.; Obeidat, A.; Al-Tannir, M. Assessment of burnout in medical undergraduate students in Riyadh, Saudi Arabia. BMC Med. Educ. 2019. [Google Scholar] [CrossRef] [PubMed]
- Shankland, R.; Kotsou, I.; Vallet, F.; Bouteyre, E. Burnout in university students: The mediating role of sense of coherence on the relationship between daily hassles and burnout. High. Educ. 2019, 78, 91–113. [Google Scholar] [CrossRef]
- May, R.W.; Sanchez-Gonzalez, M.A.; Fincham, F.D. School burnout: Increased sympathetic vasomotor tone and attenuated ambulatory diurnal blood pressure variability in young adult women. Stress 2014, 18, 11–19. [Google Scholar] [CrossRef] [PubMed]
- May, R.W.; Seibert, G.S.; Sanchez-Gonzalez, M.A.; Fincham, F.D. School burnout and heart rate variability: risk of cardiovascular disease and hypertension in young adult females. Stress 2017, 21, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef]
- Thum, J.S.; Parsons, G.; Whittle, T.; Astorino, T.A. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS ONE 2017, 12, e0166299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliszczewicz, B.; Buresh, R.; Bechke, E.; Williamson, C. Metabolic biomarkers following a short and long bout of high-intensity functional training in recreationally trained men. J. Hum. Sport Exerc. 2017, 12, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Gibala, M.J.; Jones, A.M. Physiological and performance adaptations to high-intensity interval training. Nestle Nutr. Inst. Workshop Ser. 2013, 76, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Utesch, T.; Wu, J.; Robertson, S.; Liu, J.; Hu, G. Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. J. Sci. Med. Sport 2019, 22, 941–947. [Google Scholar] [CrossRef]
- Mckie, G.L.; Islam, H.; Townsend, L.K.; Robertson-wilson, J.; Eys, M.; Hazell, T.J. Modified sprint interval training protocols: Physiological and psychological responses to four weeks of training. Appl. Physiol. Nutr. Metab. 2018. [Google Scholar] [CrossRef]
- Ouerghi, N.; Ben Fradj, M.K.; Bezrati, I.; Khammassi, M.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol. Sport 2017, 34, 385–392. [Google Scholar] [CrossRef]
- Gillen, J.B.; Percival, M.E.; Skelly, L.E.; Martin, B.J.; Tan, R.B.; Tarnopolsky, M.A.; Gibala, M.J. Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS ONE 2014, 9, e0111489. [Google Scholar] [CrossRef]
- Schubert, M.M.; Palumbo, E.; Seay, R.F.; Clarke, E. Energy compensation after sprint- and high- intensity interval training. PLoS ONE 2017, 12, e0189590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.F.; Bradwell, S.N.; Gibala, M.J.; Kirsten, A.; George, J.F. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Heigenhauser, G.J.F.; Gibala, M.J.; Kirsten, A. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J. Appl. Physiol. 2006, 1, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Hsu, W.C.; Cheng, C.F. Physiological Adaptations to Sprint Interval Training with Matched Exercise Volume. Med. Sci. Sports Exerc. 2017, 49, 86–95. [Google Scholar] [CrossRef]
- Kriel, Y.; Askew, C.D.; Solomon, C. The effect of running versus cycling high-intensity intermittent exercise on local tissue oxygenation and perceived enjoyment in 18–30-year-old sedentary men. PeerJ 2018, 6, e5026. [Google Scholar] [CrossRef]
- Macpherson, R.E.K.; Hazell, T.O.M.J.; Olver, T.D.; Paterson, D.O.N.H.; Lemon, P.W.R. Run Sprint Interval Training Improves Aerobic Performance but Not Maximal Cardiac Output. Med. Sci. Sports Exerc. 2011, 43, 115–122. [Google Scholar] [CrossRef]
- Menz, V.; Marterer, N.; Amin, S.B.; Faulhaber, M.; Hansen, A.B.; Lawley, J.S. Functional vs. Running low-volume high-intensity interval training: Effects on vo2max and muscular endurance. J. Sports Sci. Med. 2019, 18, 497–504. [Google Scholar]
- Ling, C.H.Y.; de Craen, A.J.M.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.M.; Westendorp, R.G.J.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef]
- Araújo Naves, J.P.; Silva Rebelo, A.C.; Bento, E.; Silva, L.R.; Silva, M.S.; Ramirez-Campillo, R.; Ramírez-Vélez, R.; Gentil, P. Cardiorespiratory and perceptual responses of two interval training and a continuous training protocol in healthy young men. Eur. J. Sport Sci. 2019. [Google Scholar] [CrossRef]
- Cabral-Santos, C.; Castrillón, C.I.M.M.; Miranda, R.A.T.T.; Monteiro, P.A.; Inoue, D.S.; Campos, E.Z.; Hofmann, P.; Lira, F.S.; Cabral-Santos, C.; Castrillón, C.I.M.M.; et al. Inflammatory Cytokines and BDNF Response to High-Intensity Intermittent Exercise: Effect the Exercise Volume. Front. Physiol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, T.; Lamberts, R.P.; Lambert, M.I. Methods of prescribing relative exercise intensity: Physiological and practical considerations. Sports Med. 2013, 43, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Mcphee, J.S.; Williams, A.G.; Degens, H.; Baar, K.; Jones, D.A. Variability in the magnitude of response of metabolic enzymes reveals patterns of co-ordinated expression. Exp. Physiol. 2011, 699–707. [Google Scholar] [CrossRef]
- Beltz, N.M.; Gibson, A.L.; Janot, J.M.; Kravitz, L.; Mermier, C.M.; Dalleck, L.C. Graded Exercise Testing Protocols for the Determination of VO2 max: Historical Perspectives, Progress, and Future Considerations. J. Sports Med. 2016, 2016, 3968393. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, K.; Nagasaki, K.; Yamaguchi, H.; Yoshioka, A.; Nose, Y.; Takamoto, N. Circadian variations in anaerobic threshold. Kinesiology 2014, 46, 164–170. [Google Scholar]
- Akizuki, K.; Yazaki, S.; Echizenya, Y.; Ohashi, Y. Anaerobic Threshold and Salivary α-amylase during Incremental Exercise. J. Phys. Ther. Sci. 2014, 26, 1059–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajkowska, A.; Mazurek, K.; Lutosławska, G.; Żmijewski, P. Anthropometric and cardio-respiratory indices and aerobic capacity of male and female students. Biomed. Hum. Kinet. 2009, 1, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Billat, L.V. Interval Training for Performance: A Scientific and Empirical Practice. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2018, 39, 409–412. [Google Scholar] [CrossRef]
- Shi, Q.; Tong, T.K.; Sun, S.; Kong, Z.; Kit, C. Influence of recovery duration during 6-s sprint interval exercise on time spent at high rates of oxygen uptake In fl uence of recovery duration during 6-s sprint interval exercise on time spent at high rates of oxygen uptake. J. Exerc. Sci. Fit. 2018, 16, 16–20. [Google Scholar] [CrossRef]
- Astorino, T.A.; Edmunds, R.M.; Clark, A.; King, L.; Gallant, R.A.; Namm, S.; Fischer, A.; Wood, K.M. High-Intensity Interval Training Increases Cardiac Output and V-O2max. Med. Sci. Sports Exerc. 2017, 49, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Horn, T.; Roverud, G.; Sutzko, K.; Browne, M.; Parra, C.; Astorino, T.A. Single session of sprint interval training elicits similar cardiac output but lower oxygen uptake versus ramp exercise to exhaustion in men and women. Int. J. Physiol. Pathophysiol. Pharmacol. 2016, 8, 87–94. [Google Scholar] [PubMed]
- Ikutomo, A.; Kasai, N.; Goto, K. Impact of inserted long rest periods during repeated sprint exercise on performance adaptation. Eur. J. Sport Sci. 2017, 18, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Raleigh, J.; David, M.; Giles, M.; Islam, H.; Nelms, M. Contribution of central and peripheral adaptations to changes in VO2max following four weeks of sprint interval training. Appl. Physiol. Nutr. Metab. 2018, 43, 1059–1068. [Google Scholar] [CrossRef]
- Alansare, A.; Alford, K.; Lee, S.; Church, T.; Jung, H.C. The effects of high-intensity interval training vs. Moderate-intensity continuous training on heart rate variability in physically inactive adults. Int. J. Environ. Res. Public Health 2018, 15, 1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajsadeghi, S.; Mohammadpour, F.; Manteghi, M.J.; Kordshakeri, K.; Tokazebani, M.; Rahmani, E.; Hassanzadeh, M. Effects of energy drinks on blood pressure, heart rate, and electrocardiographic parameters: An experimental study on healthy young adults. Anatol. J. Cardiol. 2016, 16, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tao, J.; Lu, S.; Hu, Y.; Gu, Y. Effects of inverse moxibustion on the translocation of telomerase from cardiomyocyte mitochondria of growing mice following exercise. Int. J. Clin. Exp. Med. 2016, 9, 11268–11275. [Google Scholar]
- Costa, A.; Bosone, D.; Zoppi, A.; D’Aposangelo, A.; Ghiotto, N.; Guaschino, E.; Cotta Ramusino, M.; Fogari, R. Effect of diazepam on 24-hour blood pressure and heart rate in healthy young volunteers. Pharmacology 2018, 101, 86–91. [Google Scholar] [CrossRef]
- Cocks, M.; Shaw, C.S.; Shepherd, S.O.; Fisher, J.P.; Ranasinghe, A.M.; Barker, T.A.; Tipton, K.D.; Wagenmakers, A.J.M. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J. Physiol. 2013, 591, 641–656. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Drukteinis, J.S.; Roman, M.J.; Fabsitz, R.R.; Lee, E.T.; Best, L.G.; Russell, M.; Devereux, R.B. Cardiac and systemic hemodynamic characteristics of hypertension and prehypertension in adolescents and young adults: The Strong Heart Study. Circulation 2007, 115, 221–227. [Google Scholar] [CrossRef] [PubMed]
- McEniery, C.M.; Hall, I.R.; Qasem, A.; Wilkinson, I.B.; Cockcroft, J.R. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity—The Anglo-Cardiff Collaborative Trial (ACCT). J. Am. Coll. Cardiol. 2005, 46, 1753–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, R.W.; Seibert, G.S.; Sanchez-Gonzalez, M.A.; Fincham, F.D. Physiology of school burnout in medical students: Hemodynamic and autonomic functioning. Burn. Res. 2016, 3, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Gómez-López, M.; Gallegos, A.G.; Extremera, A.B. Perceived barriers by university students in the practice of physical activities. J. Sports Sci. Med. 2010, 9, 374–381. [Google Scholar]
- Hargens, T.A.; Griffin, D.C.; Kaminsky, L.A.; Whaley, M.H. The influence of aerobic exercise training on the double product break point in low-to-moderate risk adults. Eur. J. Appl. Physiol. 2011, 111, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, M.; Javadi, H.; Pourbehi, M.; Mogharrabi, M.; Rayzan, M.; Semnani, S.; Jallalat, S.; Amini, A.; Abbaszadeh, M.; Barekat, M.; et al. The association of rate pressure product (RPP) and myocardial perfusion imaging (MPI) findings: A preliminary study. Perfusion 2012, 27, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Faria Terra, D.; Rabelo Mota, M.; Thomaz Rabelo, H.; Aguiar Bezerra, L.M.; Moreno Lima, R.; Garcia Ribeiro, A.; Henrique Vinhal, P.; Ritti Dias, R.M.; Martins da Silva, F. Reduction of arterial pressure and double product at rest after resistance exercise training in elderly hypertensive women. Arq. Bras. Cardiol. 2008, 91, 299–305. [Google Scholar]
- Kimura, G.; Inoue, N.; Mizuno, H.; Izumi, M.; Nagatoya, K.; Ohtahara, A.; Munakata, M.; Takano, H.; Sameshima, M.; Sakihara, T.; et al. Increased double product on Monday morning during work. Hypertens. Res. 2017, 40, 671–674. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Ohkubo, T.; Kikuya, M.; Metoki, H.; Asayama, K.; Kanno, A.; Obara, T.; Hirose, T.; Hara, A.; Hoshi, H.; et al. Predictive value for mortality of the double product at rest obtained by home blood pressure measurement: The ohasama study. Am. J. Hypertens. 2012, 25, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.R.; Herrero, P.; Schechtman, K.B.; Racette, S.B.; Waggoner, A.D.; Kisrieva-Ware, Z.; Dence, C.; Klein, S.; Marsala, J.; Meyer, T.; et al. Effect of Obesity and Insulin Resistance on Myocardial Substrate Metabolism and Efficiency in Young Women. Circulation 2004, 109, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Kurup, S.; Herrero, P.; Schechtman, K.B.; Eagon, J.C.; Klein, S.; Dávila-Román, V.G.; Stein, R.I.; Dorn II, G.W.; Gropler, R.J.; et al. Myocardial Oxygen Consumption Change Predicts Left Ventricular Relaxation Improvement in Obese Humans After Weight Loss. Obesity 2011, 19, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Khammassi, M.; Ouerghi, N.; Hadj-taieb, S.; Feki, M.; Thivel, D.; Bouassida, A. Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. J. Exerc. Rehabil. 2018, 14, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster-Schubert, K.E.; Alfano, C.M.; Duggan, C.R.; Xiao, L.; Campbell, K.L.; Kong, A.; Bain, C.E.; Wang, C.Y.; Blackburn, G.L.; Mctiernan, A. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity 2012, 20, 1628–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layman, D.K.; Evans, E.; Baum, J.I.; Seyler, J.; Erickson, D.J.; Boileau, R.A. Dietary Protein and Exercise Have Additive Effects on Body Composition during Weight Loss in Adult Women. J. Nutr. 2018, 135, 1903–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleg, J.L.; Piña, I.L.; Balady, G.J.; Chaitman, B.R.; Fletcher, B.; Lavie, C.; Limacher, M.C.; Stein, R.A.; Williams, M.; Bazzarre, T. Assessment of Functional Capacity in Clinical and Research Applications. Circulation 2000, 8721, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Gaesser, G.A. Response of ventilatory and lactate thresholds to continuous and interval training. J. Appl. Physiol. 1985, 58, 1115–1121. [Google Scholar] [CrossRef]
- Burke, J.; Thayer, R.; Belcamino, M. Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds. Br. J. Sports Med. 1994, 28, 18–21. [Google Scholar] [CrossRef] [Green Version]
Variable | CON (n = 10) | RIT (n = 9) | ||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Weight (kg) | 65.7 ± 5.9 | 65.9 ± 5.9 | 68.4 ± 7.0 | 68.0 ± 7.3 |
BMI (kg·m2) | 22.4 ± 2.1 | 22.5 ± 2.1 | 23.2 ± 2.0 | 23.1 ± 2.1 |
Body fat (%) | 14.9 ± 3.2 | 14.9 ± 3.9 | 14.5 ± 4.0 | 15.1 ± 4.0 |
Muscle mass (kg) | 31.6 ± 2.8 | 31.8 ± 3.1 | 33.3 ± 4.0 | 32.8 ± 4.0 |
Lean leg mass (kg) | 17.5 ± 2.1 | 17.5 ± 2.1 | 16.6 ± 3.6 | 17.4 ± 2.7 |
Exhaustion time (min) | 19.9 ±2.4 | 22.4 ± 4.1 | 17.7 ± 3.8 | 19.6 ± 2.4 |
HRrest (bpm) | 64.4 ± 10.4 | 71.3 ± 10.0 * | 70.1 ± 6.5 | 58.6 ± 7.4 #§ |
SBP (mmHg) | 120.2 ± 7.8 | 127.0 ± 5.1 | 115.5 ± 15.2 | 114.3 ± 7.5 |
DBP (mmHg) | 70.7 ± 2.8 | 74.6 ± 10.4 | 66.4 ± 11.8 | 64.1 ± 7.5 |
DP (mmHg·bpm/100) | 77.4 ± 13.4 | 90.4 ± 11.5 ¥ | 81.3 ± 15.3 | 67.2 ± 11.4 ¶¤ |
VO2max (mL·kg−1·min−1) | 53.7 ± 9.9 | 51.4 ± 6.4 | 51.3 ± 3.8 | 52.3 ± 5.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Suárez, P.C.; Rentería, I.; García Wong-Avilés, P.; Franco-Redona, F.; Gómez-Miranda, L.M.; Aburto-Corona, J.A.; Plaisance, E.P.; Moncada-Jiménez, J.; Jiménez-Maldonado, A. Hemodynamic Adaptations Induced by Short-Term Run Interval Training in College Students. Int. J. Environ. Res. Public Health 2020, 17, 4636. https://doi.org/10.3390/ijerph17134636
García-Suárez PC, Rentería I, García Wong-Avilés P, Franco-Redona F, Gómez-Miranda LM, Aburto-Corona JA, Plaisance EP, Moncada-Jiménez J, Jiménez-Maldonado A. Hemodynamic Adaptations Induced by Short-Term Run Interval Training in College Students. International Journal of Environmental Research and Public Health. 2020; 17(13):4636. https://doi.org/10.3390/ijerph17134636
Chicago/Turabian StyleGarcía-Suárez, Patricia C., Iván Rentería, Priscilla García Wong-Avilés, Fernanda Franco-Redona, Luis M. Gómez-Miranda, Jorge A. Aburto-Corona, Eric P. Plaisance, José Moncada-Jiménez, and Alberto Jiménez-Maldonado. 2020. "Hemodynamic Adaptations Induced by Short-Term Run Interval Training in College Students" International Journal of Environmental Research and Public Health 17, no. 13: 4636. https://doi.org/10.3390/ijerph17134636
APA StyleGarcía-Suárez, P. C., Rentería, I., García Wong-Avilés, P., Franco-Redona, F., Gómez-Miranda, L. M., Aburto-Corona, J. A., Plaisance, E. P., Moncada-Jiménez, J., & Jiménez-Maldonado, A. (2020). Hemodynamic Adaptations Induced by Short-Term Run Interval Training in College Students. International Journal of Environmental Research and Public Health, 17(13), 4636. https://doi.org/10.3390/ijerph17134636