Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Inoculum and Substrates
2.2. Analytical Methods
2.3. Biochemical Methane Potential Test
2.4. Response Surface Analysis
3. Results and Discussion
3.1. Characteristics of the Substrates
3.2. Biochemical Methane Potential Test Results
3.3. Response Surface Modeling Results
3.4. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
References
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Makaka, G.; Simon, M.; Okoh, A.I. An overview of the control of bacterial pathogens in cattle manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Li, Y.-Y. Recycling of Livestock Manure into Bioenergy. In Recycling of Solid Waste for Biofuels and Bio-Chemicals; Springer: Singapore, 2016; pp. 165–186. [Google Scholar]
- Musa, M.A.; Idrus, S.; Harun, M.R.; Marzuki, T.M.; Farhana, T.; Wahab, A.; Malek, A. A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors. Int. J. Environ. Res. Public Health 2020, 17, 283. [Google Scholar] [CrossRef] [Green Version]
- EBA. European Biogas Association Annual Report 2019; European Biogas Association: Brussels, Belgium, 2019. [Google Scholar]
- US_EPA. AgSTAR Livestock Anaerobic Digester Database. In October, 2019th ed.; US Environmental Protection Agency: Washington, DC, USA, 2019. [Google Scholar]
- Castrillon, L.; Vázquez, I.; Maranon, E.; Sastre, H. Anaerobic thermophilic treatment of cattle manure in UASB reactors. Waste Manag. Res. 2002, 20, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Ehimen, E.A.; Holm-Nielsen, J.-B.; Poulsen, M.; Boelsmand, J. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew. Energy 2013, 50, 476–480. [Google Scholar] [CrossRef]
- Li, R.; Chen, S.; Li, X.; Saifullah Lar, J.; He, Y.; Zhu, B. Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels 2009, 23, 2225–2228. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Zheng, M.; Fu, G.; Lar, J.S. Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy Fuels 2009, 23, 4635–4639. [Google Scholar] [CrossRef]
- Cavinato, C.; Fatone, F.; Bolzonella, D.; Pavan, P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresour. Technol. 2010, 101, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tang, Y.-Q.; Matsui, T.; Morimura, S.; Wu, X.-L.; Kida, K. Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure. J. Biosci. Bioeng. 2009, 107, 54–60. [Google Scholar] [CrossRef]
- Callaghan, F.; Wase, D.; Thayanithy, K.; Forster, C. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 2002, 22, 71–77. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Baek, G.; Lee, C. Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production. Waste Manag. 2017, 60, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Xie, S.; Sivakumar, M.; Nghiem, L.D. Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading. Int. Biodeterior. Biodegrad. 2017, 124, 155–161. [Google Scholar] [CrossRef]
- Kim, J.; Baek, G.; Kim, J.; Lee, C. Energy production from different organic wastes by anaerobic co-digestion: Maximizing methane yield versus maximizing synergistic effect. Renew. Energy 2019, 136, 683–690. [Google Scholar] [CrossRef]
- Dennehy, C.; Lawlor, P.G.; Croize, T.; Jiang, Y.; Morrison, L.; Gardiner, G.E.; Zhan, X. Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion. Waste Manag. 2016, 56, 173–180. [Google Scholar] [CrossRef]
- Pagés-Díaz, J.; Pereda-Reyes, I.; Taherzadeh, M.J.; Sárvári-Horváth, I.; Lundin, M. Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chem. Eng. J. 2014, 245, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Korea_MOE. Produciton and Management of Livestock Manure in 2017; Korea Ministry of Environment: Sejong City, Korea, 2019. (In Korean)
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater, 21th ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Edmunds, C.W.; Hamilton, C.; Kim, K.; Chmely, S.C.; Labbé, N. Using a chelating agent to generate low ash bioenergy feedstock. Biomass Bioenergy 2017, 96, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Bah, H.; Zhang, W.; Wu, S.; Qi, D.; Kizito, S.; Dong, R. Evaluation of batch anaerobic co-digestion of palm pressed fiber and cattle manure under mesophilic conditions. Waste Manag. 2014, 34, 1984–1991. [Google Scholar] [CrossRef]
- Chiumenti, A.; da Borso, F.; Limina, S. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Waste Manag. 2018, 71, 704–710. [Google Scholar] [CrossRef]
- André, L.; Zdanevitch, I.; Pineau, C.; Lencauchez, J.; Damiano, A.; Pauss, A.; Ribeiro, T. Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale. Bioresour. Technol. 2019, 289, 121737. [Google Scholar] [CrossRef]
- Lübken, M.; Wichern, M.; Schlattmann, M.; Gronauer, A.; Horn, H. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res. 2007, 41, 4085–4096. [Google Scholar] [CrossRef]
- Joseph, G.; Zhang, B.; Mahzabin Rahman, Q.; Wang, L.; Shahbazi, A. Two-stage thermophilic anaerobic co-digestion of corn stover and cattle manure to enhance biomethane production. J. Environ. Sci. Health Part A 2019, 54, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Maranon, E.; Salter, A.M.; Castrillon, L.; Heaven, S.; Fernández-Nava, Y. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Manag. 2011, 31, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Michel, F.C., Jr.; Pecchia, J.A.; Rigot, J.; Keener, H.M. Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost Sci. Util. 2004, 12, 323–334. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Domínguez, J. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 2008, 72, 1013–1019. [Google Scholar] [CrossRef]
- Aboudi, K.; Álvarez-Gallego, C.J.; Romero-García, L.I. Biomethanization of sugar beet byproduct by semi-continuous single digestion and co-digestion with cow manure. Bioresour. Technol. 2016, 200, 311–319. [Google Scholar] [CrossRef]
- Fontaine, D.; Feng, L.; Labouriau, R.; Møller, H.B.; Eriksen, J.; Sørensen, P. Nitrogen and Sulfur Availability in Digestates from Anaerobic Co-digestion of Cover Crops, Straw and Cattle Manure. J. Soil Sci. Plant Nutr. 2020, 20, 621–636. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Macé, S.; Llabres, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C. Response of a continuous biomethanation process to transient organic shock loads under controlled and uncontrolled pH conditions. Water Res. 2015, 73, 68–77. [Google Scholar] [CrossRef]
- Jung, H.; Kim, J.; Lee, C. Biomethanation of Harmful Macroalgal Biomass in Leach-Bed Reactor Coupled to Anaerobic Filter: Effect of Water Regime and Filter Media. Int. J. Environ. Res. Public Health 2018, 15, 866. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Do, T.H.; Kim, S.D.; Hwang, S. The effect of calcium on the anaerobic digestion treating swine wastewater. Biochem. Eng. J. 2006, 30, 33–38. [Google Scholar] [CrossRef]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, Y.; Li, H.; Borrion, A.; Yu, Z.; Li, J. Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste. Appl. Energy 2018, 213, 136–147. [Google Scholar] [CrossRef]
- Shin, S.G.; Han, G.; Lee, J.; Cho, K.; Jeon, E.-J.; Lee, C.; Hwang, S. Characterization of food waste-recycling wastewater as biogas feedstock. Bioresour. Technol. 2015, 196, 200–208. [Google Scholar] [CrossRef] [PubMed]
- El-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef]
- Vivekanand, V.; Mulat, D.G.; Eijsink, V.G.H.; Horn, S.J. Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour. Technol. 2018, 249, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, K.-J.; Han, G.; Lee, C.; Hwang, S. Effects of temperature and pH on the biokinetic properties of thiocyanate biodegradation under autotrophic conditions. Water Res. 2013, 47, 251–258. [Google Scholar] [CrossRef] [PubMed]
Parameters | Cattle Manure | Food Waste | Pig Manure |
---|---|---|---|
Total solids (g/kg) | 310.0 (5.3) a | 126.4 (4.5) | 70.6 (3.8) |
Volatile solids (g/kg) | 235.3 (5.8) | 120.6 (3.7) | 56.5 (1.9) |
Volatile-to-total solids ratio (%) | 75.9 | 95.4 | 80.0 |
Total suspended solids (g/kg) | 280.0 (26.5) | 79.5 (2.3) | 58.5 (3.5) |
Volatile suspended solids (g/kg) | 230.0 (31.2) | 78.2 (2.0) | 46.8 (3.0) |
Total COD (g/kg) b | 290.8 (25.5) | 159.0 (13.6) | 134.5 (1.9) |
Soluble COD (g/kg) | 22.5 (2.2) | 52.3 (1.3) | 39.4 (0.1) |
Soluble-to-total COD ratio (%) | 7.7 | 32.9 | 29.3 |
Carbohydrate (%, volatile solids basis) | 49.8 (8.1) | 59.3 (4.3) | 28.3 (4.7) |
Protein (%, volatile solids basis) | 30.0 (2.4) | 20.3 (1.8) | 28.3 (6.6) |
Lipid (%, volatile solids basis) | 0.9 (0.2) | 24.2 (1.1) | 21.7 (2.1) |
Crude fiber (%, volatile solids basis) | 32.8 (2.6) | 14.7 (2.0) | 17.6 (1.2) |
Total volatile fatty acids (g COD/kg) | 1.5 (0.1) | 4.0 (0.6) | 22.3 (0.6) |
Total nitrogen (g/kg) | 9.1 (0.1) | 4.4 (0.3) | 6.1 (0.3) |
Total Kjeldahl nitrogen (g/kg) | 12.7 (0.9) | 4.3 (0.3) | 7.1 (0.6) |
Free ammonia nitrogen (g/kg) | 1.5 (0.0) | 0.4 (0.0) | 4.5 (0.1) |
Total phosphate (g/kg) | 1.0 (0.0) | 1.1 (0.4) | 1.8 (0.1) |
Alkalinity (as g CaCO3/kg) | 32.7 (0.8) | 15.4 (3.4) | 13.8 (0.1) |
pH | 8.0 (0.0) | 4.5 (0.0) | 7.6 (0.0) |
C (%, volatile solids basis) | 38.8 (1.1) | 53.6 (0.5) | 46.4 (0.5) |
H (%, volatile solids basis) | 4.9 (0.0) | 7.9 (0.1) | 5.9 (0.1) |
O (%, volatile solids basis) | 29.3 (0.1) | 32.9 (0.2) | 34.5 (1.0) |
N (%, volatile solids basis) | 1.6 (0.0) | 3.0 (0.4) | 2.1 (0.4) |
S (%, volatile solids basis) | <0.01 | <0.01 | <0.01 |
C/N ratio | 24.3 | 17.9 | 22.1 |
Run | Mixing Ratio (Total Solids Basis) | C/N Ratio a | Volatile-to-Total Solids Ratio (%) a | Soluble-to-Total COD Ratio (%) a,b | ||
---|---|---|---|---|---|---|
Cattle Manure | Food Waste | Pig Manure | ||||
1 | 1.00 | 0.00 | 0.00 | 24.3 | 75.9 | 7.7 |
2 | 0.00 | 1.00 | 0.00 | 17.9 | 95.4 | 32.9 |
3 | 0.00 | 0.00 | 1.00 | 22.1 | 80.0 | 29.3 |
4 | 0.67 | 0.33 | 0.00 | 20.8 | 79.2 | 13.1 |
5 | 0.33 | 0.67 | 0.00 | 19.0 | 84.7 | 20.9 |
6 | 0.00 | 0.67 | 0.33 | 18.8 | 92.0 | 31.8 |
7 | 0.00 | 0.33 | 0.67 | 20.1 | 87.3 | 30.6 |
8 | 0.67 | 0.00 | 0.33 | 23.4 | 76.3 | 11.8 |
9 | 0.33 | 0.00 | 0.67 | 22.7 | 77.2 | 18.1 |
10 | 0.67 | 0.17 | 0.17 | 21.9 | 77.8 | 12.5 |
11 | 0.17 | 0.67 | 0.17 | 18.9 | 87.4 | 25.5 |
12 | 0.17 | 0.17 | 0.67 | 21.2 | 80.9 | 23.5 |
13 | 0.33 | 0.33 | 0.33 | 20.4 | 81.3 | 19.5 |
Response | Standard Deviation | Coefficient of Variation (%) | R2 | p-Value | Adequacy of Precision |
---|---|---|---|---|---|
Methane Yield | 21.11 | 6.15 | 0.9789 | <0.0001 | 27.844 |
Synergy Index | 0.042 | 3.93 | 0.9307 | 0.012 | 8.162 |
Methane Yield Model | Synergy Index Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Terms a | Coefficient | Standard Error | F-Value | p-Value | Terms | Coefficient | Standard Error | F-Value | p-Value |
Linear Mixture | 157.00 | <0.0001 | Linear mixture | 12.96 | 0.0105 | ||||
XCXP | 185.16 | 85.32 | 4.71 | 0.0666 | XCXF | 0.03 | 0.17 | 0.04 | 0.8547 |
XFXP | 96.62 | 85.00 | 1.29 | 0.2931 | XCXP | 0.84 | 0.17 | 24.17 | 0.0044 |
XFXP(XF − XP) | −460.79 | 177.34 | 6.75 | 0.0355 | XFXP | 0.18 | 0.17 | 1.10 | 0.3433 |
XCXF(XC − XF) | 1.19 | 0.35 | 11.25 | 0.0202 | |||||
XFXP(XF − XP) | −0.95 | 0.35 | 7.15 | 0.0442 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, G.; Kim, D.; Kim, J.; Kim, H.; Lee, C. Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect. Int. J. Environ. Res. Public Health 2020, 17, 4737. https://doi.org/10.3390/ijerph17134737
Baek G, Kim D, Kim J, Kim H, Lee C. Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect. International Journal of Environmental Research and Public Health. 2020; 17(13):4737. https://doi.org/10.3390/ijerph17134737
Chicago/Turabian StyleBaek, Gahyun, Danbee Kim, Jinsu Kim, Hanwoong Kim, and Changsoo Lee. 2020. "Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect" International Journal of Environmental Research and Public Health 17, no. 13: 4737. https://doi.org/10.3390/ijerph17134737
APA StyleBaek, G., Kim, D., Kim, J., Kim, H., & Lee, C. (2020). Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect. International Journal of Environmental Research and Public Health, 17(13), 4737. https://doi.org/10.3390/ijerph17134737