Indoor Air Quality in Passivhaus Dwellings: A Literature Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Studies of IAQ in Passivhaus Dwellings
3.2. Main Findings
3.3. IAQ Performance in Passivhaus Dwellings
4. IAQ and Passivhaus Design Strategies
4.1. Airtightness
4.2. Ventilation Rates
4.3. MVHR Systems
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 3 May 2020).
- Schellnhuber, H.J.; Cramer, W.; Nakicenovic, N.; Wigley, T.; Yohe, G. Avoiding Dangerous Climate Change; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Hopfe, C.J.; McLeod, R.S. The Passivhaus designer’s manual: A technical guide to low and zero energy buildings, 1st ed.; Routledge: London, UK, 2015. [Google Scholar]
- Anderson, J.E.; Wulfhorst, G.; Lang, W. Energy analysis of the built environment—A review and outlook. Renew. Sustain. Energy Rev. 2015, 44, 149–158. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, F.Y.; Tang, G.F. Active low-grade energy recovery potential for building energy conservation. Renew. Sustain. Energy Rev. 2010, 14, 2736–2747. [Google Scholar] [CrossRef]
- Asimakopoulos, D.; Assimakopoulos, V.; Chrisomallidou, N.; Klitsikas, N.; Mangold, D.; Michel, P.; Santamouris, M.; Tsangrassoulis, A. Energy and Climate in the Urban Built Environment; James & James (Science Publishers) Ltd: New York, NY, USA, 2011. [Google Scholar]
- The Green Construction Board. Low Carbon Routemap for the UK Built Environment; Construction Leadership Council: London, UK, 2013; pp. 1–117.
- Desai, M.; Harvey, R.P. Inventory of US greenhouse gas emissions and sinks: 1990-2015. Fed. Register 2017, 82, 10767. [Google Scholar]
- SEMARNAT; INECC. Primer Informe de Actualización Bienal de Panamá Ante La Cmnucc. 2017. Available online: https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/3758041_Panama-BUR1-1-BUR%20Primer%20Informe%20de%20Actualizacio%CC%81n%20Bienal%20de%20Panama%CC%81%20ante%20la%20CMNUCC%2007112018.pdf (accessed on 3 May 2020).
- PHI. Passipedia. 2017. Available online: http://www.passipedia.org/ (accessed on 29 March 2018).
- Feist, W.; Bastian, Z.; Ebel, W.; Gollwitzer, E.; Grove-Smith, J.; Kah, O.; Kaufmann, B.; Krick, B.; Pfluger, R.; Schnieders, J.; et al. Passive House Planning Package Version 9, The Energy Balance and Design Tool for Efficent Buildings and Retrofits, 1st ed.; Passive House Institute: Darmstadt, Germany, 2015. [Google Scholar]
- Schnieders, J.; Hermelink, A. CEPHEUS results: Measurements and occupants’ satisfaction provide evidence for Passive Houses being an option for sustainable building. Energy Policy 2006, 34, 151–171. [Google Scholar] [CrossRef]
- Feist, W.; Schnieders, J.; Dorer, V.; Haas, A. Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept. Energy Build. 2005, 37, 1186–1203. [Google Scholar] [CrossRef]
- Fehrm, M.; Reiners, W.; Ungemach, M. Exhaust air heat recovery in buildings. Int. J. Refrig. 2002, 25, 439–449. [Google Scholar] [CrossRef]
- Seppänen, O. Ventilation strategies for good indoor air quality and energy efficiency. Int. J. Vent. 2008, 6, 297–306. [Google Scholar] [CrossRef]
- Hekmat, D.; Feustel, H.E.; Modera, M.P. Impacts of ventilation strategies on energy consumption and indoor air quality in single-family residences. Energy Build. 1986, 9, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Mardiana-Idayu, A.; Riffat, S.B. An experimental study on the performance of enthalpy recovery system for building applications. Energy Build. 2011, 43, 2533–2538. [Google Scholar] [CrossRef]
- Mardiana-Idayu, A.; Riffat, S.B. Review on heat recovery technologies for building applications. Renew. Sustain. Energy Rev. 2012, 16, 1241–1255. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Sathre, R. Primary energy implications of ventilation heat recovery in residential buildings. Energy Build. 2011, 43, 1566–1572. [Google Scholar] [CrossRef]
- Mardiana-Idayu, A.; Riffat, S.B. Review on physical and performance parameters of heat recovery systems for building applications. Renew. Sustain. Energy Rev. 2013, 28, 174–190. [Google Scholar] [CrossRef]
- Wang, Y.; Kuckelkorn, J.; Zhao, F.Y.; Spliethoff, H.; Lang, W. A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renew. Sustain. Energy Rev. 2017, 72, 1303–1319. [Google Scholar] [CrossRef]
- Wargocki, P. The Effects of Ventilation in Homes on Health. Int. J. Vent. 2013, 12, 101–118. [Google Scholar] [CrossRef]
- Spengler, J.; Sexton, K. Indoor air pollution: A public health perspective. Science 1987, 221, 9–17. [Google Scholar] [CrossRef]
- Steiger, S.; Hellwing, R.; Junker, E. Distribution of carbon dioxide in a naturally ventilated room with high internal heat load. In: Rode, C., editor. Symp. Build. Phys. Nord. Ctries 2008, 6, 377–384. [Google Scholar]
- Emmerich, S.J.; Persily, A.K. Indoor air quality in Sustainable, energy efficient buldings. HVAC&R Res. 2011, 18, 4–20. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Davies, I.; Harvey, V. Zero Carbon: What Does It mean to Homeowners and Housebuilders? IHS BRE Press: Amersham, UK, 2008. [Google Scholar]
- Seppänen, O.; Fisk, W.J. Summary of human responses to ventilation. Indoor Air 2004, 14, 102–118. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Crump, D. Indoor Environmental Quality—Standards for Protection of Occupants’ Safety, Health and Environment. Indoor Built. Environ. 2010, 19, 499–502. [Google Scholar] [CrossRef]
- Uhde, E.; Salthammer, T. Impact of reaction products from building materials and furnishings on indoor air quality-A review of recent advances in indoor chemistry. Atmos. Environ. 2007, 41, 3111–3128. [Google Scholar] [CrossRef]
- Bernstein, J.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; et al. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef]
- Crump, D.; Dengel, A.; Swainson, M. Indoor Air Quality in Highly Energy Efficient Homes—A Review; HIS BRE press: Amersham, UK, 2009. [Google Scholar]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.K.; Sim, M.R.; Abramson, M.J.; Gray, C.N. Concentrations of volatile organic compounds in indoor air–a review. Indoor Air 1994, 4, 123–134. [Google Scholar] [CrossRef]
- Fisk, W.J. The ventilation problem in schools: Literature review. Indoor Air 2017, 27, 1039–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berge, M.; Mathisen, H.M. The suitability of air-heating in residential passive house buildings from the occupants’ point of view-a review. Adv. Build. Energy Res. 2015, 9, 175–189. [Google Scholar] [CrossRef]
- Guerra-Santin, O.; Tweed, C.; Jenkins, H.; Jiang, S. Monitoring the performance of low energy dwellings: Two UK case studies. Energy Build. 2013, 64, 32–40. [Google Scholar] [CrossRef]
- CEPHEUS—Measurement Results from More than 100 Dwelling Units in Passive Houses. Available online: https://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2003/Panel_2/2047schnieders/ (accessed on 3 May 2020).
- Tabatabaei, S.M.; Gaterell, M.; Montazami, A.; Ahmed, A. Overheating investigation in UK social housing flats built to the Passivhaus standard. Build. Environ. 2015, 92, 222–2235. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. ASHRAE Standard 62.1-2007 Ventilation for Acceptable Indoor Air Quality; ASHRAE: Atlanta, GA, USA, 2007. [Google Scholar]
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Indoor Fine Particle (PM2.5) Pollution and Occupant Perception of the Indoor Environment During Summer of the First Passivhaus Certified Dwelling in Latin America. J. Nat. Resour. Dev. 2018, 8, 78–90. [Google Scholar] [CrossRef]
- Comfort and Indoor Air Quality in Passive Houses in the US. Available online: https://ases.conference-services.net/resources/252/2859/pdf/SOLAR2012_0256_full%20paper.pdf (accessed on 1 June 2020).
- Brunsgaar, C.; Heiselberg, P.; Knudstrup, M.-A.; Larsen, T.S. Evaluation of the Indoor Environment of Comfort Houses: Qualitative and Quantitative Approaches. Indoor Built. Environ. 2012, 21, 432–451. [Google Scholar] [CrossRef]
- Dan, D.; Tanasa, C.; Stoian, V.; Brata, S.; Stoian, D.; Nagy, G.T.; Florut, S.C. Passive house design-An efficient solution for residential buildings in Romania. Energy Sustain. Dev. 2016, 32, 99–109. [Google Scholar] [CrossRef]
- Derbez, M.; Berthineau, B.; Cochet, V.; Lethrosne, M.; Pignon, C.; Riberon, J.; Kirchner, S. Indoor air quality and comfort in seven newly built, energy-efficient houses in France. Build. Environ. 2014, 72, 173–187. [Google Scholar] [CrossRef]
- Figueiredo, A.; Figueira, J.; Romeu, V.; Maio, R. Thermal comfort and energy performance: Sensitivity analysis to apply the Passive House concept to the Portuguese climate. Build. Environ. 2016, 103, 276–288. [Google Scholar] [CrossRef]
- Firla̧g, S.; Zawada, B. Impacts of airflows, internal heat and moisture gains on accuracy of modeling energy consumption and indoor parameters in passive building. Energy Build. 2013, 64, 372–383. [Google Scholar] [CrossRef]
- Fischer, A.; Langer, S.; Ljungström, E. Chemistry and indoor air quality in a multi-storey wooden passive (low energy) building: Formation of peroxyacetyl nitrate. Indoor Built. Environ. 2014, 23, 485–496. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Christoforou, E.; Ilic, M.; Papadopoulos, A. Performance of a Passive House under subtropical climatic conditions. Energy Build. 2016, 133, 14–31. [Google Scholar] [CrossRef]
- Foster, J.; Sharpe, T.; Poston, A.; Morgan, C.; Musau, F. Scottish Passive House: Insights into environmental conditions in monitored Passive Houses. Sustainability 2016, 8, 412. [Google Scholar] [CrossRef]
- Georges, L.; Berner, M.; Mathisen, H.M. Air heating of passive houses in cold climates: Investigation using detailed dynamic simulations. Build. Environ. 2014, 74, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guillén-Lambea, S.; Rodríguez-Soria, B.; Marín, J.M. Review of European ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison with the USA. Renew. Sustain. Energy Rev. 2016, 62, 561–574. [Google Scholar] [CrossRef]
- Kaunelienė, V.; Prasauskas, T.; Krugly, E.; Stasiulaitienė, I.; Čiužas, D.; Šeduikytė, L.; Martuzevičius, D. Indoor air quality in low energy residential buildings in Lithuania. Build. Environ. 2016, 108, 63–72. [Google Scholar] [CrossRef]
- Langer, S.; Bekö, G.; Bloom, E.; Widheden, A.; Ekberg, L. Indoor air quality in passive and conventional new houses in Sweden. Build. Environ. 2015, 93, 92–100. [Google Scholar] [CrossRef]
- Langer, S.; Ramalho, O.; Derbez, M.; Ribéron, J.; Kirchner, S.; Mandin, C. Indoor environmental quality in French dwellings and building characteristics. Atmos. Environ. 2016, 128, 82–91. [Google Scholar] [CrossRef]
- Less, B.; Mullen, N.; Singer, B.; Walker, I. Indoor air quality in 24 California residences designed as high-performance homes. Sci. Technol. Built Environ. 2015, 21, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wang, Y.; Royapoor, M.; Wu, Q.; Roskilly, T. Comparison of building performance between Conventional House and Passive House in the UK. Energy Procedia. 2017, 14, 1823–1828. [Google Scholar] [CrossRef]
- Mahdavi, A.; Doppelbauer, E.M. A performance comparison of passive and low-energy buildings. Energy Build. 2010, 42, 1314–1319. [Google Scholar] [CrossRef]
- McGill, G.; Oyedele, L.O.; Keeffe, G. Indoor air-quality investigation in code for sustainable homes and Passivhaus dwellings. World J. Sci. Technol. Sustain. Dev. 2015, 12, 39–60. [Google Scholar] [CrossRef]
- McGill, G.; Qin, M.; Oyedele, L. A case study investigation of indoor air quality in UK Passivhaus dwellings. Energy Procedia. 2014, 62, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Mihai, M.; Tanasiev, V.; Dinca, C.; Badea, A.; Vidu, R. Passive house analysis in terms of energy performance. Energy Build. 2017, 144, 74–86. [Google Scholar] [CrossRef]
- Mlecnik, E.; Schütze, T.; Jansen, S.J.T.; De Vries, G.; Visscher, H.J.; Van Hal, A. End-user experiences in nearly zero-energy houses. Energy Build. 2012, 49, 471–478. [Google Scholar] [CrossRef]
- Paliouras, P.; Matzaflaras, N.; Peuhkuri, R.H.; Kolarik, J. Using Measured Indoor Environment Parameters for Calibration of Building Simulation Model- A Passive House Case Study. Energy Procedia. 2015, 78, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Ridley, I.; Clarke, A.; Bere, J.; Altamirano, H.; Lewis, S.; Durdev, M.; Farr, A. The monitored performance of the first new London dwelling certified to the Passive House standard. Energy Build. 2013, 63, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Ridley, I.; Bere, J.; Clarke, A.; Schwartz, Y.; Farr, A. The side by side in use monitored performance of two passive and low carbon Welsh houses. Energy Build. 2014, 82, 13–26. [Google Scholar] [CrossRef]
- Rojas, G.; Wagner, W.; Suschek-Berger, J.; Pfluger, R.; Feist, W. Applying the passive house concept to a social housing project in Austria—Evaluation of the indoor environment based on long-term measurements and user surveys. Adv. Build. Energy Res. 2016, 10, 125–148. [Google Scholar] [CrossRef]
- Schnieders, J.; Feist, W.; Rongen, L. Passive Houses for different climate zones. Energy Build. 2015, 105, 71–87. [Google Scholar] [CrossRef]
- Sharpe, T.R.; Porteous, C.D.A.A.; Foster, J.; Shearer, D. An assessment of environmental conditions in bedrooms of contemporary low energy houses in Scotland. Indoor Built Environ. 2014, 23, 393–416. [Google Scholar] [CrossRef]
- Truong, H.; Garvie, A.M. Chifley Passive House: A Case Study in Energy Efficiency and Comfort. Energy Procedia. 2017, 121, 214–221. [Google Scholar] [CrossRef]
- Lessons from Post Occupancy Evaluation and Monitoring of the 1st Certified Passive House in Scotland. Available online: https://strathprints.strath.ac.uk/42818/ (accessed on 30 May 2020).
- Wallner, P.; Munoz, U.; Tappler, P.; Wanka, A.; Kundi, M.; Shelton, J.F.; Hutter, H.P. Indoor environmental quality in mechanically ventilated, energy-efficient buildings vs. Conventional buildings. Int. J. Environ. Res. Public Health 2015, 12, 14132–14147. [Google Scholar] [CrossRef]
- Wallner, P.; Tappler, P.; Munoz, U.; Damberger, B.; Wanka, A.; Kundi, M.; Hutter, H.P. Health and wellbeing of occupants in highly energy efficient buildings: A field study. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xue, Q.; Ji, Y.; Yu, Z. Indoor environment quality in a low-energy residential building in winter in Harbin. Build. Environ. 2018, 135, 194–201. [Google Scholar] [CrossRef]
- McCarron, B.; Meng, X.; Colclough, S. “A pilot study of radon levels in certified passive house buildings”. Build. Serv. Eng. Res. Technol. 2019, 40, 296–304. [Google Scholar] [CrossRef]
- Feist, W.; Pfluger, R.; Hasper, W. “Durability of building fabric components and ventilation systems in passive houses”. Energy Effic. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Lolli, N.; Lien, A.G. “Comfort assessment of two nzebs in norway”. J. Sustain. Archit. Civ. Eng. 2019, 25, 5–15. [Google Scholar] [CrossRef]
- Meyer, W. “Impact of constructional energy-saving measures on radon levels indoors”. Indoor Air 2019, 29, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Kovesi, T.; Zaloum, C.; Stocco, C.; Fugler, D.; Dales, R.E.; Ni, A.; Barrowman, N.; Gilbert, N.L.; Miller, J.D. Heat recovery ventilators prevent respiratory disorders in Inuit children. Indoor Air 2009, 19, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Mallach, G.; Kulka, R.; Black, A.; Wheeler, A.; You, H.; St-Jean, M.; Kwiatkowski, R.; Sharp, D. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor Air 2013, 23, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.; Dixon, S.L.; Jacobs, D.E.; Breysse, J.; Akoto, J.; Tohn, E.; Isaacson, M.; Evens, A.; Hernandez, Y. Watts-to-Wellbeing: Does residential energy conservation improve health? Energy Effic. 2014, 7, 151–160. [Google Scholar] [CrossRef]
- Milner, J.; Shrubsole, C.; Das, P.; Jones, B.; Ridley, I.; Chalabi, Z.; Hamilton, I.; Armstrong, B.; Davies, M.; Wilkinson, P. Home energy efficiency and radon related risk of lung cancer: Modelling study. BMJ 2014, 348, 7493. [Google Scholar] [CrossRef] [Green Version]
- Emmerich, S.J.; Howard-reed, C.; Gupte, A. Modeling the IAQ Impact of HHI Interventions in Inner-city Housing; U.S. Department of Commerce, National Institute of Standards and Technology: Maryland, MD, USA, 2005. [Google Scholar]
- Sherman, M.H.; Chan, R. Building Airtightness: Research and Practice. Lawrence Berkeley Natl. Lab. 2004, 7, 1–46. [Google Scholar]
- Final Report Summary—ENVIE (Co-ordination Action on Indoor Air Quality and Health Effects). Available online: https://cordis.europa.eu/project/id/502671/reporting (accessed on 5 May 2020).
- Godish, T.; Spengler, D.; Godishi, T.; Spengler, J.D. Relationship Between Ventilation and Indoor Air Quality: A Review. Indoor Air 1996, 6, 135–145. [Google Scholar] [CrossRef]
- Seppänen, O.; Fisk, W.J. Association of ventilation system type with SBS symptoms in office workers. Indoor Air 2002, 12, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Seppänen, O.; Fisk, W.J.; Mendell, M.J. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef]
- Mendell, M.J. Non-specific Symptoms in Ofice Workers: A Review and Summary of the Epidemiologic Literature. Indoor Air 1993, 3, 227–236. [Google Scholar] [CrossRef]
- Szirtesi, K.; Angyal, A.; Szoboszlai, Z.; Furu, E.; Török, Z.; Igaz, T.; Kertész, Z. Airborne particulate matter investigation in buildings with passive house technology in Hungary. Aerosol Air Qual. Res. 2018, 18, 1282–1293. [Google Scholar] [CrossRef] [Green Version]
- Energy Saving Trust. Energy Efficient Ventilation in Dwellings—A Guide for Specifiers Contents; Energy Saving Trust: London, UK, 2006; p. 20. [Google Scholar]
- Bone, A.; Murray, V.; Myers, I.; Dengel, A.; Crump, D. Will drivers for home energy efficiency harm occupant health? Perspect Public Health 2010, 130, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Bornehag, C.G.; Sundell, J.; Hägerhed-Engman, L.; Sigsgaard, T. Association between ventilation rates in 390 Swedish homes and allergic symptoms in children. Indoor Air 2005, 15, 275–280. [Google Scholar] [CrossRef]
- Wolrd Health Oranization. Indoor air quality: Organic pollutants. Environ. Technol. Lett. 1989, 10, 855–858. [Google Scholar] [CrossRef]
- Brimblecombe, R.; Rosemeier, K. Positive Energy Homes Creating Passive Houses for Better Living, 1st ed.; CSIRO Publishing: Clayton South, Australia, 2017. [Google Scholar]
- Howieson, S.; Sharpe, T.; Farren, P. Building tight - ventilating right? How are new air tightness standards affecting indoor air quality in dwellings? Build. Serv. Eng. Res. Technol. 2013, 35, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Dimitroulopoulou, C. Ventilation in European dwellings: A review. Build. Environ. 2012, 47, 109–125. [Google Scholar] [CrossRef]
- Porteous, C.D. Sensing a Historic Low-CO 2 Future. In Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality; Mazzeo, D.N., Ed.; BoD–Books on Demand: Norderstedt, Germany, 2011. [Google Scholar]
- DIN 1946–6 Ventilation and Air Conditioning—Part 6: Ventilation for Residential Buildings—General Requirements, Requirements for Measuring, Performance and Labeling, Delivery/Acceptance (Certification) and Maintenance. Available online: https://global.ihs.com/doc_detail.cfm?&document_name=DIN%201946%2D6&item_s_key=00521689&item_key_date=900730& (accessed on 23 May 2020).
- Spengler, J.D. Climate change, indoor environments, and health. Indoor Air 2012, 22, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wargocki, P.; Sundell, J.; Bischof, W.; Brundrett, G.; Fanger, P.O.; Gyntelberg, F.; Hanssen, S.O.; Harrison, P.; Pickering, A.; Seppänen, O.; et al. Ventilation and health in non-industrial indoor environments: Report from a European multidisciplinary scientific consensus meeting (EUROVEN). Indoor Air 2002, 12, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Woolley, T. Building Materials, Health and Indoor Air Quality: No Breathing Space? 1st ed.; Routledge: London, UK, 2017. [Google Scholar]
- Bornehag, C.G.; Sundell, J.; Sigsgaard, T. Dampness in buildings and health (DBH): Report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden. Indoor Air 2004, 14, 59–66. [Google Scholar] [CrossRef]
- Ventilation for Non-residential Buildings—Performance requirements for ventilation and room conditioning systems. Available online: http://www.cres.gr/greenbuilding/PDF/prend/set4/WI_25_Pre-FV_version_prEN_13779_Ventilation_for_non-resitential_buildings.pdf (accessed on 23 May 2020).
- Sharpe, T.; McGill, G.; Gregg, M.; Mawditt, I. Characteristics and Performance of MVHR Systems A Meta Study of MVHR Systems Used in the Innovate UK Building Performance Evaluation; The Glashow School of Art: Glasgow, UK, 2016. [Google Scholar]
- Van der Pluijm, W.M.P.J. The robustness and effectiveness of mechanical ventilation in airtight dwellings: A study to the residential application of mechanical ventilation with heat recovery in the Netherlands. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2010. [Google Scholar]
- Balvers, J.; Bogers, R.; Jongeneel, R.; van Kamp, I.; Boerstra, A.; van Dijken, F. Mechanical ventilation in recently built Dutch homes: Technical shortcomings, possibilities for improvement, perceived indoor environment and health effects. Archit. Sci. Rev. 2012, 55, 151. [Google Scholar] [CrossRef]
- Hill, D. Field Survey of Heat Recovery Ventilation Systems Final Report; CMHC: Ottawa, ON, Canada, 1998. [Google Scholar]
- Morgan, C.; Foster, J.A.; Poston, A.; Sharpe, T.R. Overheating in Scotland: Contributing factors in occupied homes. Build. Res. Inf. 2017, 45, 143–156. [Google Scholar] [CrossRef]
- Mlakar, J.; Štrancar, J. Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy Build. 2011, 43, 1443–1451. [Google Scholar] [CrossRef]
- Tommerup, H.; Svendsen, S. Energy savings in Danish residential building stock. Energy Build. 2006, 38, 618–626. [Google Scholar] [CrossRef]
- Manz, H.; Huber, H.; Schälin, A.; Weber, A.; Ferrazzini, M.; Studer, M. Performance of single room ventilation units with recuperative or regenerative heat recovery. Energy Build. 2000, 31, 37–47. [Google Scholar] [CrossRef]
- Gupta, R.; Kapsali, M.; Howard, A. Evaluating the influence of building fabric, services and occupant related factors on the actual performance of low energy social housing dwellings in UK. Energy Build. 2018, 174, 548–562. [Google Scholar] [CrossRef] [Green Version]
Category | IAQ Standard | Ventilation Range (l/s per Person) | Default Value (l/s per Person) | CO2 Level above the Outdoor | |
---|---|---|---|---|---|
Typical Range (ppm) | Default Value (ppm) | ||||
IDA1 | High | >15 | 20 | ≤400 | 350 |
IDA2 | Medium | 10–15 | 12.5 | 400–600 | 500 |
IDA3 | Moderate | 6–10 | 8 | 600–1000 | 800 |
IDA4 | Low | <6 | 5 | >1000 | 1200 |
Geographic Location | Data Collection Method | No. Homes | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Climate | Surveys | Physical Measurements | Total | ||||||||||||||||||||||
Country | Cold | Temperate | Continental | Oceanic | Warm/humid | Mediterranean | Subtropical | Maritime | Humid | Well-being | Thermal comfort | IAQ | Other | Temperature | Relative humidity | Absolute humidity | CO2 | PM2.5 | tVOCs | Specific VOCs | Other | Outdoor data | Passivhaus | Other | ||
[12] | Several A ** | ● | ● | ● | ● | ● | ● | ● | ● | ● | 100 | 100 | ||||||||||||||
[13] | Several A ** | ● | ● | ● | ● | ● | ● | ● | 100 | 100 | ||||||||||||||||
[38] | Several A ** | ● | ● | ● | ● | ● | ● | ● | ● | ● | 100 | 100 | ||||||||||||||
[41] | Mexico | ● | ● | ● | ● | □ | □ | □ | □ | ● | 1 | 1 | 2 | |||||||||||||
[42] | USA | ● | ● | ● | ● | ● | ● | ● | ● | 6 | 6 | |||||||||||||||
[43] | Denmark | ● | ● | ● | ● | ● | ● | ● | ● | 3 | 3 | |||||||||||||||
[44] | Romania | ● | □ | □ | □ | ● | 1 | 1 | ||||||||||||||||||
[45] | France | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 1 | 6 | 7 | ||||||||||||
[46] | Portugal | ● | ● | ● | 1 | 1 | ||||||||||||||||||||
[47] | Poland | ● | ◊ | ◊ | 1 | 1 | ||||||||||||||||||||
[48] | Sweden | ● | ● | ● | ● | ● | 1 | 1 | ||||||||||||||||||
[49] | Cyprus | ● | ● | ● | 1 | 1 | ||||||||||||||||||||
[50] | Scotland | ● | ● | ● | ● | ● | ● | ● | ● | ● | 2 | 5 | ||||||||||||||
[51] | Norway | ● | ◊ | ◊ | 1 | 1 | ||||||||||||||||||||
[52] | Several B ** | ● | ● | ● | ● | ● | ◊ | 1 | 5 | 6 | ||||||||||||||||
[53] | Lithuania | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 11 * | ||||||||||||
[54] | Sweden | ● | ● | ● | ● | ● | ● | 20 | 21 | 41 | ||||||||||||||||
[55] | France | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 567 * | |||||||||
[56] | USA | ● | ● | ● | ● | ● | ● | □ | ● | ● | ● | ● | 24 * | |||||||||||||
[57] | England | ● | ● | ●◊ | ● | ● | ●◊ | 1 | 1 | 2 | ||||||||||||||||
[58] | Austria | ● | ● | ● | ● | ● | ● | ● | 2 | 2 | 4 | |||||||||||||||
[59] | England | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 2 | 5 | 7 | |||||||||||
[60] | England | ● | ● | ● | ● | ● | ● | ● | ● | 3 | 3 | |||||||||||||||
[61] | Romania | ● | ● | ●◊ | ● | ● | ●◊ | 1 | 1 | |||||||||||||||||
[62] | Netherlands | ● | ● | ● | ● | 7 | 83 | 90 | ||||||||||||||||||
[63] | Denmark | ● | ● | ●◊ | ●◊ | ●◊ | ●◊ | 1 | 1 | 2 | ||||||||||||||||
[64] | England | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 1 | 1 | |||||||||||||
[65] | Wales | ● | ● | ● | ● | ● | ● | ● | ● | ● | 2 | 2 | ||||||||||||||
[66] | Austria | ● | ● | ● | ● | ● | ● | ● | ● | ● | 18 | 6 | 24 | |||||||||||||
[67] | Several C ** | ● | ● | ● | ◊ | ◊ | 7 | 7 | ||||||||||||||||||
[68] | Scotland | ● | ● | ● | ● | ● | ● | ● | 5 | 21 | 26 | |||||||||||||||
[69] | Australia | ● | ● | ● | ● | 1 | 1 | |||||||||||||||||||
[70] | Scotland | ● | ● | ● | ● | ● | ● | ● | 1 | 2 | 3 | |||||||||||||||
[71] | Austria | ● | ● | ● | ● | ● | ● | ● | ● | ● | 123 * | |||||||||||||||
[72] | Austria | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 123 * | |||||||||||
[73] | China | ● | ● | ● | ● | ● | ● | ● | ● | 8 | 8 | 16 | ||||||||||||||
[74] | N. Ireland | ● | ● | 5 | 5 | |||||||||||||||||||||
[75] | Germany | ● | ● | ● | ● | ● | ● | ● | 4 | 4 | ||||||||||||||||
[76] | Norway | ● | ● | ● | ● | ● | ● | ● | ● | 1 | 1 | |||||||||||||||
[77] | Germany | ● | ● | 114 | 41 | 155 |
Temporality | Results | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Room | Season | Surveys * | Physical Measurements | ||||||||||||||
Bedroom | Kitchen | Living/open plan | Other | Time span | Winter | Spring | Summer | Autumn | Thermal perception | IAQ perception | Temperature (°C) | Relative humidity (%RH) | Absolute humidity | CO2 (ppm) | PM2.5 (µg/m3) | TVOCs (µg/m3) | |
[12] | Not described | 2.5y | ● | ● | ● | ● | V | V | 20 (17–27) | ||||||||
[13] | Not described | 2.5y | ● | ● | ● | ● | V | V | 20 (17–27) | ||||||||
[38] | Not described | 2.5y | ● | ● | ● | ● | V | V | 20 (17–27) | ||||||||
[41] | ● | ● | ● | 3m | ● | G | G | 23 (9–29) | 52 (35–74) | 436 (218–1431) | 17.87 (2.5–146.6) | ||||||
[42] | ● | 1w | ● | G | V | 19 (16–27) | ◊ | 820 (410–2378) | |||||||||
[43] | 3y | ● | ● | V | G | ◊ | ◊ | ◊ | |||||||||
[44] | ● | 2y | ● | ● | ● | ● | ◊ | ◊ | ◊ | ||||||||
[45] | ● | ● | ● | 2w | ● | ● | 21 (17–27) | 42 (24–59) | 887 (331–2030) | 16.6 | 184 | ||||||
[46] | Not described | 3m | ● | ● | ◊ | ||||||||||||
[47] | ● | ● | ● | ● | 1y | ● | 20 | ||||||||||
[48] | 1w | 150 | |||||||||||||||
[49] | ● | ● | ● | 11m | ● | ● | ● | ● | 24 (16–33) | 53 | |||||||
[50] | ● | ● | ● | 1y | ● | ● | ● | ● | ◊ (18–25) | ◊ | ◊ | ◊ | |||||
[51] | ● | ● | ● | ● | 1y | ● | ● | ● | ● | ◊ (19–34) | |||||||
[52] | 1y | ||||||||||||||||
[53] | ● | 7d | ● | ● | ● | 22 | 51 | 673 | 296 | ||||||||
[54] | ● | 2w | ● | ● | ● | ● | 22 | 30 | 540 | 272 | |||||||
[55] | ● | 7d | ● | ● | ● | ● | Not described by dwelling’s energy performance | ||||||||||
[56] | ● | ● | 6d | ● | Not described by dwelling’s energy performance | ||||||||||||
[57] | ● | 1y | ● | ● | ● | ● | 22 | 46 | ◊ | ||||||||
[58] | ● | ● | 5m | ● | ● | ● | G | G | ◊ | ◊ | ◊ | ||||||
[59] | ● | ● | 1d | ● | ● | G | V | 23 (20–25) | 41 (26–52) | 133 (436–976) | |||||||
[60] | ● | 1d | ● | ● | G | 22 (19–25) | 43 (32–53) | 731 (396–2598) | |||||||||
[61] | ● | ● | ● | ● | 6m | ● | ◊ | ◊ | ◊ | ||||||||
[62] | |||||||||||||||||
[63] | ● | ● | ● | 30d | ● | 23 | 35 | ◊ | |||||||||
[64] | ● | ● | 1y | ● | ● | ● | ● | 22 | 49 | 893 | |||||||
[65] | ● | ● | ● | ● | 2y | ● | ● | ● | ● | 22 | ◊ | ◊ | |||||
[66] | ● | ● | 2y | ● | ● | G | G | 23 | ◊ | ◊ | |||||||
[67] | ● | 1y | ● | ● | ● | ● | ◊ | ◊ | |||||||||
[68] | ● | 7m | ● | ● | ● | ◊ | ◊ | ◊ | ◊ | ||||||||
[69] | ● | ● | ● | 1y | ● | ● | ● | ● | ◊ | ◊ | |||||||
[70] | ● | 1y | ● | ● | ◊ | ◊ | 594 (401–1384) | ||||||||||
[71] | 2y | ● | ● | ● | Not described by dwelling’s energy performance | ||||||||||||
[72] | 2y | ● | ● | ● | Not described by dwelling’s energy performance | ||||||||||||
[73] | ● | 5m | ● | ● | OK | 26 (23–28) | 31 (18–46) | 732 (622–841) | 92 (47–127) | ||||||||
[74] | ● | ● | 3m | ● | ● | ||||||||||||
[75] | 25y | ● | ● | ● | ● | ◊ | ◊ | 850 | |||||||||
[76] | ● | ● | ● | V | V | 22 (21–24) | 37 (17–61) | 383 | |||||||||
[77] | 1y | ● | ● | ● | ● |
Factor | Practice Observed | Suggestion/Further Work |
---|---|---|
IAQ monitoring | Lack of homogeneous methods to report IAQ, due to apparent differences in parameters, timeframe, and reporting findings. | Uniformity of IAQ monitoring. |
IAQ parameters | More than 50% of the studies that measured IAQ only use CO2 as an IAQ indicator. | Further work should include monitoring of specific IAQ pollutants, such as VOCs, PM2.5, CO, formaldehyde. |
Timeframe IAQ monitoring | Differences from pollutant measurements vary from one spot measurement, less than 12 hours, a day, a week, a month and a year. | Establish a minimum time frame to measure and report whether the measured time is longer than the minimum report both. |
Relation to other monitoring in the same study | More than 90% of the studies did not collect pollution data in homes (excluding CO2) simultaneously. | Use of simultaneous measurements. |
IAQ reporting | Some studies report absolute values and other relative values. Some studies do not report differences between dwelling types. | Standardise reporting method. Always describe absolute values and, if needed for trends or other analysis, relative values. |
Instrumentation | More than 90% used highly accurate monitors. Less than 10% use low-cost solutions. | The use of low-cost monitors could help to overcome the initial costs facilitating simultaneous monitoring, as well as wider timespans and collection samples. |
Geographical location | More than 90% of the studies focused on European countries | Conduct IAQ analysis in non-European countries. |
Climates | European climates are well represented, but studies in other climates are lacking, such as warm or humid locations. | Conduct IAQ analysis in climates not represented in European locations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Rangel, A.; Sharpe, T.; McGill, G.; Musau, F. Indoor Air Quality in Passivhaus Dwellings: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 4749. https://doi.org/10.3390/ijerph17134749
Moreno-Rangel A, Sharpe T, McGill G, Musau F. Indoor Air Quality in Passivhaus Dwellings: A Literature Review. International Journal of Environmental Research and Public Health. 2020; 17(13):4749. https://doi.org/10.3390/ijerph17134749
Chicago/Turabian StyleMoreno-Rangel, Alejandro, Tim Sharpe, Gráinne McGill, and Filbert Musau. 2020. "Indoor Air Quality in Passivhaus Dwellings: A Literature Review" International Journal of Environmental Research and Public Health 17, no. 13: 4749. https://doi.org/10.3390/ijerph17134749
APA StyleMoreno-Rangel, A., Sharpe, T., McGill, G., & Musau, F. (2020). Indoor Air Quality in Passivhaus Dwellings: A Literature Review. International Journal of Environmental Research and Public Health, 17(13), 4749. https://doi.org/10.3390/ijerph17134749