Pelvic Symmetry Is Influenced by Asymmetrical Tonic Neck Reflex during Young Children’s Gait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement of Asymmetrical Tonic Neck Reflex
2.3. Pelvis Symmetry Gait Parameters Measurement
2.4. Statistics
3. Results
3.1. Profile of Asymmetrical Tonic Neck Reflex in Examined Group
3.2. Pelvic Motion during Gait
3.3. Correlation Between Asymmetrical Tonic Neck Reflex and Gait Parameters
3.4. Correlation between Age and Gait Parameters
3.5. Differences between Girls and Boys in Pelvis Symmetry Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valentín-Gudiol, M.; Mattern-Baxter, K.; Girabent-Farrés, M.; Bagur-Calafat, C.; Hadders-Algra, M.; Angulo-Barroso, R.M. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst. Rev. 2017, 7, CD009242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, R.; Nichols, C.; Ornburn, C.; Rudd, A.; Williams, L. The Effects of Persistent Asymmetrical Tonic Neck Reflex (ATNR) on Reading Scores in First and Second Grade Children. Available online: http://soar.wichita.edu/handle/10057/11429 (accessed on 16 April 2017).
- Zemke, R. Application of an ATNR rating scale to normal preschool children. Am. J. Occup. Ther. Off. 1985, 39, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Gieysztor, E.Z.; Choińska, A.M.; Paprocka-Borowicz, M. Persistence of primitive reflexes and associated motor problems in healthy preschool children. Arch. Med. Sci. 2018, 14, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Madejewska, M.; Choińska, A.M.; Gieysztor, E.Z.; Trafalska, A. Neuromotorical Assessment of Children Aged 4–7 from the Kamienna Góra District Based on Sally Goddard Tests. Pielęgniarstwo Zdr. Publiczne Nurs. Publ. Health 2016, 6, 179–186. [Google Scholar] [CrossRef]
- Goddard-Blythe, S. The role of primitive survival reflexes in the development of the visual system. J. Behav. Optom. 1995, 6, 31–36. [Google Scholar]
- Andrich, P.; Shihada, M.; Vinci, M.; Wrenhaven, S.; Goodman, G. Statistical Relationships Between Visual Skill Deficits and Retained Primitive Reflexes in Children. Optom. Vis. Perf. 2018, 3, 106–111. [Google Scholar]
- Goddard-Blythe, S. Attention, Balance and Coordination: The A.B.C. of Learning Success; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bruijn, S.M.; Massaad, F.; Maclellan, M.J.; Van Gestel, L.; Ivanenko, Y.P.; Duysens, J. Are effects of the symmetric and asymmetric tonic neck reflexes still visible in healthy adults? Neurosci. Lett. 2013, 556, 89–92. [Google Scholar] [CrossRef]
- Jacobs, L.; Gossman, M.D. Three primitive reflexes in normal adults. Neurology 1980, 30, 184. [Google Scholar] [CrossRef]
- Blythe, S.G. Neuromotor Immaturity in Children and Adults: The INPP Screening Test for Clinicians and Health Practitioners; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Blythe, S.G. INPP Screening Test for Signs of Neuromotor Immaturity in Adults. In Neuromotor Immaturity in Children and Adults; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 83–110. [Google Scholar]
- Sankarpandi, S.K.; Baldwin, A.J.; Ray, J.; Mazzà, C. Reliability of inertial sensors in the assessment of patients with vestibular disorders: A feasibility study. BMC Ear Nose Throat Disord. 2017, 17, 1. [Google Scholar] [CrossRef] [Green Version]
- Del Din, S.; Godfrey, A.; Rochester, L. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use. IEEE J. Biomed. Health Inform. 2016, 20, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Gieysztor, E.; Sadowska, L.; Choińska, A.; Paprocka-Borowicz, M. Trunk rotation due to persistence of primitive reflexes in early school-age children. Adv. Clin. Exp. Med. 2018, 27, 363–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goddard-Blythe, S. Movement a child’s first A, B, C. In Early Childhood Education Redefined; Routledge: Abingdon, UK, 2018; pp. 44–63. [Google Scholar]
- Goddard-Blythe, S. The Well Balanced Child: Movement and Early Learning, 2nd ed.; Hawthorn Press: Stroud, UK, 2005. [Google Scholar]
- Zemke, R. Incidence of ATNR Response in Normal Preschool Children. Phys. Occup. Ther. Pediatr. 1981, 1, 31–38. [Google Scholar] [CrossRef]
- Gieysztor, E.Z.; Sadowska, L.; Choińska, A.M. The degree of primitive reflexes integration as a diagnostic tool to assess the neurological maturity of healthy preschool and early school age children. Pielęgniarstwo Zdr. Publiczne Nurs. Publ. Health 2017, 7, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshi, H.; Salmani, M.; Ahmadizadeh, Z.; Siminghalam, M. Relationship between primitive reflexes and fine motor skills in children with specific learning disorders. Koomesh 2018, 20, 478–483. [Google Scholar]
- Thelen, E.; Fisher, D.M.; Ridley-Johnson, R. The relationship between physical growth and a newborn reflex. Infant Behav. Dev. 1984, 7, 479–493. [Google Scholar] [CrossRef]
- McPhillips, M.; Sheehy, N. Prevalence of persistent primary reflexes and motor problems in children with reading difficulties. Dyslexia Chichester Engl. 2004, 10, 316–338. [Google Scholar] [CrossRef]
- Mok, M.M.C.; Chin, M.-K.; Korcz, A.; Popeska, B.; Edginton, C.R.; Uzunoz, F.S.; Podnar, H.; Coetzee, D.; Georgescu, L.; Emeljanovas, A.; et al. Brain Breaks® Physical Activity Solutions in the Classroom and on Attitudes toward Physical Activity: A Randomized Controlled Trial among Primary Students from Eight Countries. Int. J. Environ. Res. Public. Health 2020, 17. [Google Scholar] [CrossRef] [Green Version]
- Domagalska-Szopa, M.; Szopa, A. Gait Pattern Differences between Children with Mild Scoliosis and Children with Unilateral Cerebral Palsy. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Grivas, T.B.; Angouris, K.; Chandrinos, M.; Kechagias, V. Truncal changes in children with mild limb length inequality: A surface topography study. Scoliosis Spinal Disord. 2018, 13, 27. [Google Scholar] [CrossRef]
- Pulido-Valdeolivas, I.; Gómez-Andrés, D.; Martín-Gonzalo, J.A.; Rodríguez-Andonaegui, I.; López-López, J.; Pascual-Pascual, S.I.; Rausell, E. Gait phenotypes in paediatric hereditary spastic paraplegia revealed by dynamic time warping analysis and random forests. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-H.; Chu, H.; Park, C.; Kang, G.-H.; Seo, J.; Sung, K.-K.; Lee, S. Comparison of recovery patterns of gait patterns according to the paralyzed side in Korean stroke patients. Medicine 2018, 97. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, S.; Rutkowska-Kucharska, A.; Pozowski, A.; Aleksandrowicz, K. A New Method of Evaluating the Symmetry of Movement Used to Assess the Gait of Patients after Unilateral Total Hip Replacement. Appl. Bionics Biomech. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Assaiante, C.; Mallau, S.; Viel, S.; Jover, M.; Schmitz, C. Development of Postural Control in Healthy Children: A Functional Approach. Neural Plast. 2005, 12, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Keci, A.; Tani, K.; Xhema, J. Role of Rehabilitation in Neural Plasticity. Open Access Maced. J. Med. Sci. 2019, 7, 1540–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, K.; Rosenbaum, D. Gait symmetry improves in childhood-A 4-year follow-up of foot loading data. Gait Posture 2010, 32, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Domagalska-Szopa, M.; Szopa, A. Body Posture Asymmetry Differences between Children with Mild Scoliosis and Children with Unilateral Cerebral Palsy. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manicolo, O.; Grob, A.; Lemola, S.; Hagmann-von Arx, P. Age-related decline of gait variability in children with attention-deficit/hyperactivity disorder: Support for the maturational delay hypothesis in gait. Gait Posture 2016, 44, 245–249. [Google Scholar] [CrossRef]
- Papadopoulos, N.; McGinley, J.L.; Bradshaw, J.L.; Rinehart, N.J. An investigation of gait in children with Attention Deficit Hyperactivity Disorder: A case controlled study. Psychiatry Res. 2014, 218, 319–323. [Google Scholar] [CrossRef]
- Eggleston, J.D.; Harry, J.R.; Hickman, R.A.; Dufek, J.S. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder. Gait Posture 2017, 55, 162–166. [Google Scholar] [CrossRef]
- Axeti, G.; Gissis, I.; Vrabas, I.; Grouios, G.; Komsis, G.; Komsis, S. Assessment of kinematic characteristics of preschoolers’ gait during the implementation of an intervention training program. J. Hum. Sport Exerc. 2017, 12, 1298–1309. [Google Scholar] [CrossRef] [Green Version]
- Lythgo, N.; Wilson, C.; Galea, M. Basic gait and symmetry measures for primary school-aged children and young adults whilst walking barefoot and with shoes. Gait Posture 2009, 30, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.; Louw, Q.; Brink, Y. The three-dimensional kinematics and spatiotemporal parameters of gait in 6–10 year old typically developed children in the Cape Metropole of South Africa–a pilot study. BMC Pediatr. 2016, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, F.A.; Simões, D.; Silva, P.; Alegrete, N.; Lucas, R. Sagittal standing posture and relationships with anthropometrics and body composition during childhood. Gait Posture 2019, 73, 45–51. [Google Scholar] [CrossRef] [PubMed]
- McPhillips, M.; Hepper, P.G.; Mulhern, G. Effects of replicating primary-reflex movements on specific reading difficulties in children: A randomised, double-blind, controlled trial. Lancet 2000, 355, 537. [Google Scholar] [CrossRef]
- Grigg, T.M.; Fox-Turnbull, W.; Culpan, I. Retained primitive reflexes: Perceptions of parents who have used Rhythmic Movement Training with their children. J. Child. Health Care 2018, 406–418. [Google Scholar] [CrossRef]
- Grzywniak, C. Integration exercise programme for children with learning difficulties who have preserved vestigial primitive reflexes. Acta Neuropsychol. 2017, 15, 241–256. [Google Scholar] [CrossRef]
- Bowden, A. Primitive Reflex Integration in Intensive Physical Therapy and Gross Motor Function in Children with Cerebral Palsy: A Case Report; University of Iowa: Iowa City, IA, USA, 2019; p. 9. [Google Scholar]
Pelvic Tilt (S) | |||||||
---|---|---|---|---|---|---|---|
L Side | R Side | ||||||
Back Tilt | Front Tilt | Range | Back Tilt | Front Tilt | Range | Symmetry Index | |
MEAN | 1.8 | 0.9 | 2.8 | 1.9 | 0.9 | 2.8 | 55.2 |
MAX | 3.3 | 3.3 | 5.1 | 3.3 | 3.8 | 6.5 | 99.3 |
MIN | 0.6 | 0.1 | 1.1 | 0.4 | 0 | 0.7 | 5.2 |
SD | 0.7 | 0.7 | 1.1 | 0.7 | 0.7 | 1.2 | 25.3 |
Pelvic Obliquity (F) | |||||||
L Side | R Side | ||||||
Low | Up | Range | Low | Up | Range | Symmetry Index | |
MEAN | 2.9 | 2.9 | 5.8 | 2.8 | 2.9 | 5.8 | 95.1 |
MAX | 9 | 8.3 | 17.3 | 7.8 | 9.2 | 17 | 99.5 |
MIN | 0.7 | 0.6 | 1.6 | 0.7 | 0.4 | 1.7 | 55.4 |
SD | 1.6 | 1.5 | 3.0 | 1.4 | 1.7 | 3.0 | 8.4 |
Pelvic Rotation (T) | |||||||
L Side | R Side | ||||||
External | Internal | Range | External | Internal | Range | Symmetry Index | |
MEAN | 7.7 | 7.7 | 15.4 | 7.1 | 8.0 | 14.8 | 93.2 |
MAX | 14.7 | 16.7 | 31.4 | 14.8 | 14.1 | 26.1 | 99.5 |
MIN | 1.9 | 2.6 | 5.6 | 1.5 | 1.8 | 3.4 | 40.3 |
SD | 2.7 | 3.0 | 5.3 | 3.2 | 2.9 | 6.1 | 10.5 |
Gait Parameters | Gait Symmetry Index | ||
---|---|---|---|
Pelvic Tilt (S) | Pelvic Obliquity (F) | Pelvic Rotation (T) | |
ATNR R | 0.048 | −0.407 ** | −0.307 * |
ATNR L | 0.056 | −0.430 ** | −0.249 |
ATNR in standing R | 0.053 | −0.387 ** | −0.384 ** |
ATNR in standing L | 0.041 | −0.341 * | −0.260 |
Symmetry | Under 5 Years Old | Above 5 Years Old | U | p | η2 | ||||
---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | ||||
Pelvic tilt (S) | 56.75 | 56.80 | 22.72 | 51.53 | 59.20 | 27.25 | 267.50 | 0.528 | 0.01 |
Pelvic obliquity (F) | 97.82 | 98.70 | 2.16 | 94.18 | 97.60 | 9.24 | 178.00 | 0.015 * | 0.12 |
Pelvic rotation (T) | 94.60 | 97.80 | 8.03 | 92.83 | 97.30 | 12.17 | 272.50 | 0.595 | 0.01 |
Gait Parameters | Girls (n = 30) | Boys (n = 20) | U | p | η2 | ||||
---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | ||||
Pelvic tilt (S) | 47.15 | 37.70 | 27.49 | 63.89 | 69.30 | 17.42 | 181.50 | 0.027 * | 0.10 |
Pelvic obliquity (F) | 97.17 | 98.50 | 3.53 | 94.03 | 97.60 | 10.09 | 201.50 | 0.072 | 0.06 |
Pelvic rotation (T) | 92.13 | 97.30 | 12.88 | 95.87 | 97.60 | 4.29 | 286.00 | 0.935 | 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gieysztor, E.; Pecuch, A.; Kowal, M.; Borowicz, W.; Paprocka-Borowicz, M. Pelvic Symmetry Is Influenced by Asymmetrical Tonic Neck Reflex during Young Children’s Gait. Int. J. Environ. Res. Public Health 2020, 17, 4759. https://doi.org/10.3390/ijerph17134759
Gieysztor E, Pecuch A, Kowal M, Borowicz W, Paprocka-Borowicz M. Pelvic Symmetry Is Influenced by Asymmetrical Tonic Neck Reflex during Young Children’s Gait. International Journal of Environmental Research and Public Health. 2020; 17(13):4759. https://doi.org/10.3390/ijerph17134759
Chicago/Turabian StyleGieysztor, Ewa, Anna Pecuch, Mateusz Kowal, Wojciech Borowicz, and Małgorzata Paprocka-Borowicz. 2020. "Pelvic Symmetry Is Influenced by Asymmetrical Tonic Neck Reflex during Young Children’s Gait" International Journal of Environmental Research and Public Health 17, no. 13: 4759. https://doi.org/10.3390/ijerph17134759
APA StyleGieysztor, E., Pecuch, A., Kowal, M., Borowicz, W., & Paprocka-Borowicz, M. (2020). Pelvic Symmetry Is Influenced by Asymmetrical Tonic Neck Reflex during Young Children’s Gait. International Journal of Environmental Research and Public Health, 17(13), 4759. https://doi.org/10.3390/ijerph17134759