The Effect of Different Cadence on Paddling Gross Efficiency and Economy in Stand-Up Paddle Boarding
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Experimental Trials
2.3. Procedure
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Practical Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruess, C.; Kristen, K.; Eckelt, M.; Mally, F.; Litzenberger, S.; Sabó, A. Stand up paddle surfing-an aerobic workout and balance training. Procedia Eng. 2013, 60, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Hammer, S. Catch the wave of stand up paddling. Provid. J. 2011, 5, 3. [Google Scholar]
- Schram, B.; Hing, W.; Climstein, M. A survey of injuries and medical conditions affecting stand-Up paddle surfboarding participants. Clin. J. Sport Med. 2010, 20, 144. [Google Scholar]
- Schram, B.; Hing, W.; Climstein, M. Profiling the sport of stand-up paddle boarding. J. Sports Sci. 2015, 34, 937–944. [Google Scholar] [CrossRef] [Green Version]
- SUPA Competition Rules-SUP Surfing. Available online: http://www.sup-australia.com/events/rules-sup-surfing (accessed on 18 June 2020).
- Mendez-Villanueva, A.; Bishop, D.J. Physiological aspects of surfboard riding performance. Sports Med. 2005, 35, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Schram, B. Stand up Paddle Boarding: An Analysis of a New Sport and Recreational Activity. Ph.D. Thesis, Bond University, Gold Coast, QLD, Australia, August 2015. [Google Scholar]
- Schram, B.; Hing, W.; Climstein, M. Laboratory- and field-based assessment of maximal aerobic power of elite stand-up paddle-board athletes. Int. J. Sports Physiol. Perform. 2016, 11, 28–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, A.; Hoyos, J.; Chicharro, J.L. Preferred pedalling cadence in professional cycling. Med. Sci. Sports Exerc. 2001, 33, 1361–1366. [Google Scholar] [CrossRef] [Green Version]
- Lucia, A.; Hoyos, J.; Pérez, M.; Santalla, A.; Chicharro, J.L. Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med. Sci. Sports Exerc. 2002, 34, 2079–2084. [Google Scholar]
- Santalla, A.; Naranjo, J.; Terrados, N. Muscle efficiency improves over time in world-class cyclists. Med. Sci. Sports Exerc. 2009, 41, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Bransford, D.R.; Howley, E.T. Oxygen cost of running in trained and untrained men and women. Med. Sci. Sports 1977, 9, 41–44. [Google Scholar] [CrossRef]
- Conley, D.L.; Krahenbuhl, G.S.; Burkett, L.N.; Millar, A.L. Physiological correlates of female road racing performance. Res. Q. Exerc. Sport 1981, 52, 441–448. [Google Scholar] [CrossRef]
- Krahenbuhl, G.S.; Pangrazi, R.P. Characteristics associated with running performance in young boys. Med. Sci. Sports Exerc. 1983, 15, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.T. A physiologist’s view of running economy. Med. Sci. Sport Exerc. 1985, 17, 332–338. [Google Scholar]
- Green, J.M.; McLester, J.R.; Crews, T.R.; Wickwire, P.J.; Pritchett, R.C.; Lomax, R. RPE association with lactate and heart rate during high-intensity interval cycling. Med. Sci. Sports Exerc. 2006, 38, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Hausswirth, C.; Lehénaff, D. Physiologycal demands of running during long distance runs and triathlons. Sport Med. 2001, 31, 679–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooses, M.; Mooses, K.; Haile, D.W.; Durussel, J.; Kaasik, P.; Pitsiladis, Y.P. Dissociation between running economy and running performance in elite Kenyan distance runners. J. Sport Sci. 2015, 33, 136–144. [Google Scholar] [CrossRef]
- Bassett, D.R. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70. [Google Scholar] [CrossRef]
- Jacobs, R.D.; Berg, K.E.; Slivka, D.R.; Noble, J.M. The effect of cadence on cycling efficiency and local tissue oxygenation. J. Strength Cond. Res. 2013, 27, 637–642. [Google Scholar] [CrossRef]
- Lucia, A.; Juan, A.F.S.; Montilla, M.; CaNete, S.; Santalla, A.; Earnest, C.P.; Perez, M. In professional road cyclists, low pedaling cadences are less efficient. Med. Sci. Sports Exerc. 2004, 36, 1048–1054. [Google Scholar] [CrossRef]
- Vincent, H.K.; Massengill, C.; Harris, A.; Chen, C.; Wasser, J.G.; Bruner, M.; Vincent, K.R. Cadence impact on cardiopulmonary, metabolic and biomechanical loading during downhill running. Gait Posture 2019, 71, 186–191. [Google Scholar] [CrossRef]
- Hafer, J.F.; Brown, A.M.; DeMille, P.; Hillstrom, H.J.; Garber, C.E. The effect of a cadence retraining protocol on running biomechanics and efficiency: A pilot study. J. Sports Sci. 2014, 33, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Aramendi, J. Olympic rowing and traditional rowing: Biomechanical, physiological and nutritional aspects. Arch. Med. Deport. 2014, 31, 51–59. [Google Scholar]
- Kraaijenbrink, C.; Vegter, R.; Hensen, A.H.R.; Wagner, H.; Van Der Woude, L.H.V. Different cadences and resistances in sub-maximal synchronous handcycling in able-bodied men: Effects on efficiency and force application. PLoS ONE 2017, 12, e0183502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goosey-Tolfrey, V.L.; Alfano, H.; Fowler, N. The influence of crank length and cadence on mechanical efficiency in hand cycling. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 102, 189–194. [Google Scholar] [CrossRef]
- Schram, B.; Hing, W.; Climstein, M.; Furness, J. A performance analysis of a stand-up paddle board marathon race. J. Strength Cond. Res. 2017, 31, 1552–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-López, J.R.; Cámara, J.; Maldonado, S.; Rosique-Gracia, J.; Maldonado-Martín, S. The effect of morphological and functional variables on ranking position of professional junior Basque surfers. Eur. J. Sport Sci. 2013, 13, 461–467. [Google Scholar] [CrossRef]
- Machado, F.A.; Kravchychyn, A.C.P.; Peserico, C.S.; Da Silva, D.F.; Mezzaroba, P.V. Incremental test design, peak ‘aerobic’ running speed and endurance performance in runners. J. Sci. Med. Sport 2013, 16, 577–582. [Google Scholar] [CrossRef]
- Moseley, L.; Jeukendrup, A.E. The reliability of cycling efficiency. Med. Sci. Sports Exerc. 2001, 33, 621–627. [Google Scholar] [CrossRef]
- Weir, J.B.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Péronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998; pp. 27–38. [Google Scholar]
- Carnes, A.J.; Barkley, J.E.; Williamson, M.; Sanders, G. The presence of a familiar peer does not affect intensity or enjoyment during treadmill exercise in male distance runners or non-runners. J. Athl. Enhanc. 2013, 2, 4–9. [Google Scholar] [CrossRef]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pr. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Hagberg, J.M.; Moore, G.E.; Ferrell, R.E. Specific genetic markers of endurance performance and VO2max. Exerc. Sport Sci. Rev. 2001, 29, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, M.; Bagger, M.; Pedersen, P.K.; Fernstrom, M.; Sahlin, K. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J. Physiol. 2006, 571, 669–681. [Google Scholar] [CrossRef]
- Horowitz, J.F.; Sidossis, L.S.; Coyle, E.F. High efficiency of type I muscle fibers improves performance. Int. J. Sports Med. 1994, 15, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Koppo, K.; Bouckaert, J.; Jones, A.M. Oxygen uptake kinetics during high-intensity arm and leg exercise. Respir. Physiol. Neurobiol. 2002, 133, 241–250. [Google Scholar] [CrossRef]
- Sanchis-Moysi, J.; Idoate, F.; Olmedillas, H.; Guadalupe-Grau, A.; Alayón, S.; Carreras, A.; Dorado, C.; Calbet, J.A.L. The upper extremity of the professional tennis player: Muscle volumes, fiber-type distribution and muscle strength. Scand. J. Med. Sci. Sports 2009, 20, 524–534. [Google Scholar] [CrossRef]
- Umberger, B.R.; Gerritsen, K.G.; Martin, P.E. Muscle fiber type effects on energetically optimal cadences in cycling. J. Biomech. 2006, 39, 1472–1479. [Google Scholar] [CrossRef]
- Woledge, R.C. The energetics of tortoise muscle. J. Physiol. 1968, 197, 685–707. [Google Scholar] [CrossRef]
- Gibbs, C.L.; Gibson, W.R. Isoprenaline, propranolol, and the energy output of rabbit cardiac muscle. Cardiovasc. Res. 1972, 6, 508–515. [Google Scholar] [CrossRef]
- Wendt, I.; Gibbs, C. Energy production of rat extensor digitorum longus muscle. Am. J. Physiol. Content 1973, 224, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finatto, P.; Silva, E.S.D.; Okamura, A.B.; Almada, B.P.; Oliveira, H.B.; Peyré-Tartaruga, L.A. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners. PLoS ONE 2018, 13, e0194057. [Google Scholar]
- Nielsen, J.; Hansen, E.A. Pedalling rate affects endurance performance during high-intensity cycling. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004, 92, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Mora-Rodriguez, R.; Aguado-Jimenez, R. Performance at high pedaling cadences in well-trained cyclists. Med. Sci. Sports Exerc. 2006, 38, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Leirdal, S.; Ettema, G. The relationship between cadence, pedalling technique and gross efficiency in cycling. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 111, 2885–2893. [Google Scholar] [CrossRef] [Green Version]
- Ettema, G.J.C.; Lorås, H.W. Efficiency in cycling: A review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 106, 1–14. [Google Scholar] [CrossRef]
- Ettema, G.J.C.; Lorås, H.; Leirdal, S. The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness. J. Electromyogr. Kinesiol. 2009, 19, e94–e101. [Google Scholar] [CrossRef]
- Nagle, F.J.; Richie, J.P.; Giese, M.D. VO2max responses in separate and combined arm and leg air-braked ergometer exercise. Med. Sci. Sports Exerc. 1984, 16, 563–566. [Google Scholar] [CrossRef]
- Sawka, M.N. 6 Physiology of upper body exercise. Exerc. Sport Sci. Rev. 1986, 14, 175–212. [Google Scholar] [CrossRef]
- Calbet, J.A.L.; De Paz, J.A.; Garatachea, N.; De Vaca, S.C.; Chavarren, J.; Vallejo, N.G. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J. Appl. Physiol. 2003, 94, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Shiojiri, T.; Shibasaki, M.; Fukuba, Y.; Kondo, N.; Fukuoka, Y. Kinetics of oxygen uptake and cardiac output at onset of arm exercise. Respir. Physiol. 1996, 103, 195–202. [Google Scholar] [CrossRef]
- Lundsgaard, A.-M.; Fritzen, A.M.; Kiens, B. Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise. Trends Endocrinol. Metab. 2018, 29, 18–30. [Google Scholar] [CrossRef]
- Hearris, M.A.; Hammond, K.M.; Fell, J.M.; Morton, J.P. Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations. Nutrients 2018, 10, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritzen, A.M.; Lundsgaard, A.-M.; Kiens, B. Dietary fuels in athletic performance. Annu. Rev. Nutr. 2019, 39, 45–73. [Google Scholar] [CrossRef]
- Moore, L.J.; Vine, S.J.; Wilson, M.R.; Freeman, P. The effect of challenge and threat states on performance: An examination of potential mechanisms. Psychophysiology 2012, 49, 1417–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, I.S. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sport. Med. 2016, 46, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Bernard, T.; Vercruyssen, F.; Grego, F.; Hausswirth, C.; Lepers, R.; Vallier, J.-M.; Brisswalter, J.; Vleck, V. Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes. Br. J. Sports Med. 2003, 37, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Marsh, A.P.; Martin, P.; Foley, K.O. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Med. Sci. Sports Exerc. 2000, 32, 1630–1634. [Google Scholar] [CrossRef]
Variable | Mean ± SD | Range (Min–Max) |
---|---|---|
Age (y) | 28.8 ± 11.0 | 18.0–46.0 |
Height (cm) | 175.4 ± 5.1 | 167.0–186.5 |
Body mass (kg) | 74.2 ± 9.4 | 61.3–92.9 |
Muscular mass (kg) | 36.7 ± 3.9 | 30.5–44.0 |
Muscular mass (%) | 49.6 ± 2.4 | 45.9–55.1 |
Body fat (%) | 12.7 ± 3.9 | 6.7–17.9 |
PPO in 10 s (W) | 336.7 ± 88.7 | 210.0–528.0 |
VO2 max (mL·kg−1·min−1) | 49.9 ± 3.7 | 45.2–57.8 |
HR max (beats·min−1) | 183.2 ± 14.1 | 164–207 |
PPO at VO2 max (W) | 160.0 ± 19.5 | 120–190 |
Relative PPO (W·kg−1) | 2.2 ± 0.3 | 1.7–2.8 |
Muscle relative PPO (W·kg−1) | 4.4 ± 0.6 | 3.5–5.6 |
45 spm | 55 spm | 65 spm | p | η2p | |
---|---|---|---|---|---|
Economy (KJ·l−1) | |||||
4-min | 42.8 ± 6.0 | 40.5 ± 9.4 | 40.4 ± 6.7 | 0.238 | 0.150 |
8-min | 45.3 ± 5.7 | 39.9 ± 7.7 | 38.1 ± 5.3 a | 0.010 | 0.436 |
Gross Efficiency (%) | |||||
4-min | 12.7 ± 2.2 | 11.9 ± 2.9 | 11.9 ± 2.2 | 0.166 | 0.192 |
8-min | 13.4 ± 2.3 | 11.6 ± 2.4 | 11.0 ± 1.6 a | 0.012 | 0.430 |
RER | |||||
4-min | 0.918 ± 0.05 | 0.950 ± 0.065 * | 0.951 ± 0.030 * | 0.206 | 0.187 |
8-min | 0.934 ± 0.04 | 0.964 ± 0.053 | 0.992 ± 0.047 | 0.081 | 0.280 |
45 spm | 55 spm | 65 spm | p | η2p | |
---|---|---|---|---|---|
VO2 (mL·kg−1·min−1) | |||||
4-min | 35.0 ± 5.1 | 37.3 ± 6.5 | 37.3 ± 5.9 | 0.224 | 0.158 |
8-min | 34.4 ± 6.0 | 38.6 ± 5.2a | 38.7 ± 5.9a | 0.020 | 0.415 |
HR (beats·min−1) | |||||
4-min | 157.4 ± 16.6 * | 159.8 ± 19.7 * | 164.2 ± 13.4 * | 0.074 | 0.252 |
8-min | 161.2 ± 16.4 | 168.1 ± 15.1 a | 170.7 ± 13.0 a | 0.007 | 0.463 |
Lactate (mmol L−1) | |||||
4-min | 3.4 ± 1.0 | 3.9 ± 1.5 | 4.1 ± 1.0 * | 0.171 | 0.192 |
8-min | 3.5 ± 1.0 | 4.2 ± 1.2 a | 5.3 ± 1.8 a,b | 0.006 | 0.506 |
RPE | |||||
4-min | 6.0 ± 2.1 | 6.2 ± 1.5 * | 6.4 ± 1.8 * | 0.461 | 0.077 |
8-min | 6.0 ± 1.7 | 6.9 ± 1.4 | 7.6 ± 1.4 a,b | <0.001 | 0.618 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Babarro, A.; Santos-Concejero, J.; Viribay, A.; Gutiérrez-Santamaría, B.; Mielgo-Ayuso, J. The Effect of Different Cadence on Paddling Gross Efficiency and Economy in Stand-Up Paddle Boarding. Int. J. Environ. Res. Public Health 2020, 17, 4893. https://doi.org/10.3390/ijerph17134893
Castañeda-Babarro A, Santos-Concejero J, Viribay A, Gutiérrez-Santamaría B, Mielgo-Ayuso J. The Effect of Different Cadence on Paddling Gross Efficiency and Economy in Stand-Up Paddle Boarding. International Journal of Environmental Research and Public Health. 2020; 17(13):4893. https://doi.org/10.3390/ijerph17134893
Chicago/Turabian StyleCastañeda-Babarro, Arkaitz, Jordan Santos-Concejero, Aitor Viribay, Borja Gutiérrez-Santamaría, and Juan Mielgo-Ayuso. 2020. "The Effect of Different Cadence on Paddling Gross Efficiency and Economy in Stand-Up Paddle Boarding" International Journal of Environmental Research and Public Health 17, no. 13: 4893. https://doi.org/10.3390/ijerph17134893
APA StyleCastañeda-Babarro, A., Santos-Concejero, J., Viribay, A., Gutiérrez-Santamaría, B., & Mielgo-Ayuso, J. (2020). The Effect of Different Cadence on Paddling Gross Efficiency and Economy in Stand-Up Paddle Boarding. International Journal of Environmental Research and Public Health, 17(13), 4893. https://doi.org/10.3390/ijerph17134893