Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Extraction
2.2. Statistical Analysis
3. Results
3.1. Summary of Previously Published Meta-Analyses
3.2. Study Selection and General Characteristics
3.3. Clinical Characteristics
3.4. Laboratory Findings and Chest Imaging
3.5. Treatments
3.6. Correlation of Clinical Characteristics with Demographics and Laboratory Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Yaqian, M.; Lin, W.; Wen, J.; Chen, G. Clinical and pathological characteristics of 2019 novel coronavirus disease (COVID-19): A systematic review. medRxiv. 2020. [Google Scholar] [CrossRef]
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19 - 11 March 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 28 February 2020).
- Hui, D.S.; Ng, S.S. Recommended hospital preparations for future cases and outbreaks of novel influenza viruses. Expert Rev. Respir. Med. 2020, 14, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.T.; Nguyen, T.V.; Luong, Q.C.; Nguyen, T.V.; Nguyen, H.T.; Le, H.Q.; Nguyen, T.T.; Cao, T.M.; Pham, Q.D. Importation and human-to-human transmission of a novel coronavirus in vietnam. N. Engl. J. Med. 2020, 382, 872–874. [Google Scholar] [CrossRef] [Green Version]
- Hilgenfeld, R.; Peiris, M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antivir. Res. 2013, 100, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.T.; Leitmeyer, K.C.; Le, D.H.; Miller, M.J.; Nguyen, Q.H.; Uyeki, T.M.; Reynolds, M.G.; Aagesen, J.; Nicholson, K.G.; Vu, H.Q.; et al. Clinical description of a completed outbreak of SARS in Vietnam, February-May 2003. Emerg. Infect. Dis. 2004, 10, 334–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, C.A.; Malik, M.R.; Elkholy, A.; Cauchemez, S.; Van Kerkhove, M.D. Worldwide reduction in MERS cases and deaths since 2016. Emerg Infect Dis. 2019, 25, 1758–1760. [Google Scholar] [CrossRef]
- WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available online: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19) (accessed on 28 February 2020).
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2013. Available online: http://www.R-project.org/ (accessed on 28 February 2020).
- Rodríguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel. Med. Infect. Dis. 2020, 34, 101623. [Google Scholar] [CrossRef]
- Li, L.-Q.; Huang, T.; Wang, Y.-Q.; Wang, Z.-P.; Liang, Y.; Huang, T.-B.; Zhang, H.-Y.; Sun, W.-M.; Wang, Y.-P. COVID-19 Patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J. Med. Virol. 2020, 92, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-L.; Hou, Y.-L.; Li, D.-T.; Li, F.-Z. Laboratory findings of COVID-19: A systematic review and meta-analysis. Scand. J. Clin. Lab. Investig. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis. 2020, 96, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, Q.; Wang, C.; Shi, Q.; Lu, S.; Ma, Y.; Luo, X.; Xun, Y.; Li, W.; Baskota, M.; et al. Clinical characteristics of children with COVID-19: A rapid review and meta-analysis. Ann. Transl. Med. 2020, 8, 620. [Google Scholar] [CrossRef] [PubMed]
- Lovato, A.; Filippis, C. Clinical presentation of COVID-19: A systematic review focusing on upper airway symptoms. Ear Nose Throat J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Wang, B.; Yuan, T.; Chen, X.; Ao, Y.; Fitzpatrick, T.; Li, P.; Zhou, Y.; Lin, Y.; Duan, Q.; et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J. Infect. 2020, 80, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, X.; Zhang, W.; Li, X.; Zhang, Y.; Li, S.; Guan, C.; Gao, Z.; Dong, G. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pneumonia. Am. J. Infect. Control 2020. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Gorbalenya, A.E. Severe acute respiratory syndrome-related coronavirus—The species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. Washington state 2019-nCoV case investigation team. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Chang, D.; Lin, M.; Wei, L.; Xie, L.; Zhu, G.; Cruz, C.S.D.; Sharma, L. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA 2020, 323, 1092–1093. [Google Scholar] [CrossRef]
- Carlos, W.G.; Dela Cruz, C.S.; Cao, B.; Pasnick, S.; Jamil, S. Novel Wuhan (2019-nCoV) coronavirus. Am. J. Respir. Crit. Care Med. 2020, 201, 7–8. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020, 92, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Munster, V.J.; Koopmans, M.; van Doremalen, N.; van Riel, D.; de Wit, E. A novel coronavirus emerging in China—Key questions for impact assessment. N. Engl. J. Med. 2020, 382, 692–694. [Google Scholar] [CrossRef]
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Cascella, M.R.M.; Cuomo, A.; Dulebohn, S.C.; Napoli, R.D. Features, evaluation and treatment coronavirus (COVID-19); StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Cheung, K.S.; Hung, I.F.; Chan, P.P.; Lung, K.; Tso, E.; Liu, R.; Ng, Y.; Chu, M.Y.; Chung, T.W.; Tam, A.R.; et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology 2020. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.-Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal. Transduct. Target Ther. 2020, 5, 33. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and functional exhaustion of T Cells in patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.C.; Liang, W.G.; Chen, F.W.; Hsu, J.H.; Yang, J.J.; Chang, M.S. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J. Immunol. 2002, 169, 4288–4297. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020, 9, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. C-reactive protein levels in the early stage of COVID-19. Med. Mal. Infect. 2020, 50, 332–334. [Google Scholar] [CrossRef]
- Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis. 2020, 20, 425–434. [Google Scholar] [CrossRef]
- Bangash, M.N.; Patel, J.; Parekh, D. COVID-19 and the liver: Little cause for concern. Lancet Gastroenterol. Hepatol. 2020, 5, 529–530. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Shi, L.; Wang, F.S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol. 2020, 5, 428–430. [Google Scholar] [CrossRef]
- Koskinas, J.; Gomatos, I.P.; Tiniakos, D.G.; Memos, N.; Boutsikou, M.; Garatzioti, A.; Archimandritis, A.; Betrosian, A. Liver histology in ICU patients dying from sepsis: A clinico-pathological study. World J. Gastroenterol. 2008, 14, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.H.; Hubscher, S.G. Systemic viral infections and collateral damage in the liver. Am. J. Pathol. 2006, 168, 1057–1059. [Google Scholar] [CrossRef] [Green Version]
- Chai, X.; Hu, L.; Zhang, Y.; Han, W.; Lu, Z.; Ke, A.; Zhou, J.; Shi, G.; Fang, N.; Fan, J.; et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xu, M.; Yi, J.Q.; Jia, W.D. Clinical characteristics and mechanism of liver damage in patients with severe acute respiratory syndrome. Hepatobiliary Pancreat. Dis. Int. 2005, 4, 60–63. [Google Scholar] [PubMed]
- Zhou, S.; Wang, Y.; Zhu, T.; Xia, L.C.T. Features of Coronavirus Disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am. J. Roentgenol. 2020, 214, 1287–1294. [Google Scholar] [CrossRef]
- WHO. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection is Suspected. Available online: https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf?sfvrsn=bc7da517_2 (accessed on 13 March 2020).
- Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 2020, 14, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Mitjà, O.; Clotet, B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob. Health 2020, 8, e639–e640. [Google Scholar] [CrossRef] [Green Version]
- Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.-X.; et al. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 2020, 382, 2327–2336. [Google Scholar] [CrossRef]
Authors | Included Studies, n | Sample Size | Study Period | Findings | Comment |
---|---|---|---|---|---|
Rodriguez-Morales AJ et al. (2020) [13] | 19 | 656 | Until 23 February 2020 | For 656 patients, fever (88.7%, 95% CI 84.5–92.9%), cough (57.6%, 95% CI 40.8–74.4%) and dyspnea (45.6%, 95%CI 10.9–80.4%) were the most prevalent manifestations. Among the patients, 20.3% (95% CI 10.0–30.6%) required ICU, 32.8% presented with ARDS (95% CI 13.7–51.8), 6.2% (95% CI 3.1–9.3) with shock. | Clinical characteristics, laboratory findings, imaging findings and fatal outcome of patients with COVID-19 are summarized in this article—there is no correlations between clinical characteristics, laboratory findings. |
Li et al. (2020) [14] | 10 | 1994 | December 2019 to February 2020 | The main clinical symptoms of COVID-19 patients were fever (88.5%), cough (68.6%), myalgia or fatigue (35.8%), expectoration (28.2%), and dyspnea (21.9%). The results of the laboratory showed that the lymphocytopenia (64.5%), increase in CRP (44.3%), increase in LDH (28.3%), and leukocytopenia (29.4%) were more common. | Clinical characteristics, laboratory findings and fatal outcome or discharge rate of patients with COVID-19 are summarized in this article—there is no correlations between clinical characteristics and laboratory findings |
Zhang et al. (2020) [15] | 7 | 4663 | Not mentioned (the paper received 13 April 2020) | Patients with elevated CRP levels, lymphopenia, or LDH require proper management and, if necessary, transfer to the ICU. | Laboratory findings are summarized in this article—not mentioning clinical characteristics. |
Zeng et al. (2020) [16] | 16 | 3962 | Until 20 March 2020 | Patients with COVID-19 in the non-severe group had lower levels for CRP, PCT, IL-6, ESR, SAA and serum ferritin compared with those in the severe group. | The paper highlights the association of inflammatory markers with the severity of COVID-19—not mentioning clinical characteristics. |
Wang et al. (2020) [17] | 49 | 1667 | Until 31 March 2020 | The main symptoms of children were fever [48%, 95% CI: 39%, 56%] and cough (39%, 95% CI: 30%, 48%). The lymphocyte count was below normal level in only 15% (95% CI: 8%, 22%) of children which is different from adult patients. | Clinical characteristics and laboratory findings in children were summarized (not for adults)—there is no correlations between clinical characteristics and laboratory findings |
Lovato et al. (2020) [18] | 5 | 1556 | Until 24 February 2020 | Common symptoms were fever (85.6%), cough (68.7%), and fatigue (39.4%). Lymphopenia (77.2%) and leucopenia (30.1%) were common. Critical cases with complications were 9%, ICU admission was required in 7.3%, invasive ventilation in 3.4%, and mortality was 2.4%. | Clinical characteristics, laboratory findings and fatal outcome of patients with COVID-19 are summarized in this article—there is no correlations between clinical characteristics and laboratory findings. |
Fu et al. (2020) [19] | 43 | 3600 | 24 January 2020 to 28 February 2020 | Among COVID-19 patients, fever (83.3% [95% CI 78.4–87.7]), cough (60.3% [54.2–66.3]), and fatigue (38.0% [29.8–46.5]) were the most common clinical symptoms. The most common laboratory abnormalities were elevated CRP (68.6% [58.2–78.2]), decreased lymphocyte count (57.4% [44.8–69.5]) and increased LDH (51.6% [31.4–71.6]). The overall estimated proportion of severe cases and CFR was 25.6% (17.4–34.9) and 3.6% (1.1–7.2), respectively. | The paper summarized the symptoms and laboratory findings associated with CFR—there is no correlations between clinical characteristics and laboratory findings. |
Li et al. 2020 [20] | 12 | 2445 | 1 January 2020 to 14 April 2020 | Significant differences between the ICU and non-ICU groups for fever, dyspnea, decreased lymphocyte and platelet counts, and increased leukocyte count, CRP, PCT, LDH, aspartate, aminotransferase, alanine aminotransferase, CK, and creatinine levels (p < 0.05). | Investigation of clinical characteristics and outcomes of severe cases of COVID-19—there is no correlations between clinical characteristics and laboratory findings. |
Variable | Number of Studies | Mean/Prevalence (%) | 95% CI | Number of Patients | p Value | |
---|---|---|---|---|---|---|
Clinical Symptoms | ||||||
Fever | 30 | 77 | 0.69–0.85 | 2628 | 98.2 | <0.0001 |
Cough | 32 | 60 | 0.48–0.71 | 2110 | 98.6 | 0 |
Fatigue/Myalgia | 24 | 31 | 0.23–0.40 | 1005 | 98.1 | <0.0001 |
Dyspnea | 19 | 25 | 0.20–0.31 | 533 | 97.8 | <0.0001 |
Sputum production | 16 | 23 | 0.15–0.32 | 624 | 97.9 | <0.0001 |
Chest tightness | 14 | 17 | 0.11–0.23 | 175 | 95.8 | <0.0001 |
Pharyngalgia | 16 | 13 | 0.09–0.16 | 285 | 78.4 | <0.0001 |
Chill | 4 | 10 | 0.04–0.16 | 85 | 96.7 | <0.0001 |
Headache | 15 | 10 | 0.06–0.14 | 276 | 91.5 | <0.0001 |
Diarrhea | 22 | 6 | 0.05–0.08 | 158 | 56.0 | 0.0008 |
Rhinorrhea | 12 | 6 | 0.04–0.08 | 120 | 75.4 | <0.0001 |
Dizziness | 4 | 6 | 0.02–0.10 | 19 | 50.5 | 0.1086 |
Nausea/Vomiting | 15 | 5 | 0.03–0.06 | 154 | 83.9 | <0.0001 |
Hemoptysis | 4 | 3 | 0.004–0.05 | 22 | 59.6 | 0.0593 |
Laboratory findings | ||||||
Increased WBC | 12 | 12 | 0.08–0.16 | 192 | 90.3 | <0.0001 |
Decreased WBC | 12 | 25 | 0.18–0.32 | 536 | 91.4 | <0.0001 |
Decreased lymphocyte | 9 | 63 | 0.47–0.78 | 486 | 96.6 | <0.0001 |
Increased neutrophil | 5 | 31 | 0.08–0.55 | 132 | 98.1 | <0.0001 |
Decreased neutrophil | 4 | 9 | 0.02–0.17 | 46 | 88.7 | <0.0001 |
Increased platelet | 3 | 6 | 0.02–0.11 | 22 | 56.5 | 0.1003 |
Decreased platelet | 6 | 16 | 0.03–0.29 | 370 | 96.9 | <0.0001 |
Increased ALT | 5 | 21 | 0.14–0.27 | 229 | 78.4 | 0.001 |
Increased AST | 5 | 29 | 0.17–0.41 | 277 | 92.9 | <0.0001 |
Increased D-dimer | 5 | 48 | 0.15–0.80 | 418 | 99.4 | <0.0001 |
Increased creatinine | 4 | 11 | 0.03–0.20 | 69 | 95.2 | <0.0001 |
Increased CRP | 9 | 66 | 0.51–0.81 | 573 | 98.0 | <0.0001 |
Increased creatine kinase | 5 | 32 | 0.10–0.54 | 186 | 98.8 | <0.0001 |
Increased total bilirubin | 4 | 14 | 0.06–0.22 | 120 | 93.3 | <0.0001 |
Increased procalcitonin | 6 | 36 | 0.16–0.57 | 214 | 98.7 | <0.0001 |
Decreased LDH | 5 | 57 | 0.32–0.83 | 477 | 98.6 | <0.0001 |
Decreased albumin | 3 | 61 | 0.00–1.00 | 162 | 99.9 | <0.0001 |
Increased glucose | 2 | 45 | 0.34–0.57 | 110 | 70.9 | 0.0636 |
Chest Imaging | ||||||
Bilateral infiltration | 16 | 76 | 0.67–0.85 | 2157 | 98.7 | <0.0001 |
Unilateral infiltration | 5 | 20 | 0.12–0.28 | 443 | 80.3 | 0.0004 |
Variable | Number of Studies | Mean/Prevalence (%) | 95% CI | Number of Patients | p Value | |
---|---|---|---|---|---|---|
Antiviral agent | 10 | 0.79 | 0.64–0.95 | 653 | 99.5 | 0 |
Antibiotic agent | 9 | 0.78 | 0.62–0.94 | 1072 | 99.3 | <0.0001 |
Antifungal agent | 2 | 0.01 | 0.01–0.04 | 31 | 94.1 | <0.0001 |
Corticosteroid | 10 | 0.25 | 0.16–0.34 | 407 | 95.4 | <0.0001 |
Gamma globulin | 6 | 0.25 | 0.16–0.34 | 267 | 91.5 | <0.0001 |
Oxygen inhalation/nasal cannula | 8 | 0.75 | 0.53–0.97 | 930 | 99.4 | <0.0001 |
Non-invasive ventilation | 8 | 0.23 | 0.16–0.30 | 211 | 96.4 | <0.0001 |
RRT | 2 | 0.08 | 0.00–0.24 | 18 | 89.8 | 0.0017 |
ECMO | 4 | 0.03 | 0.00–0.06 | 17 | 72.0 | 0.0133 |
Age | Fever | Cough | Fatigue and Myalgia | Dyspnea | Sputum Production | Chest Tightness | Pharyngalgia | Chill | Headache | Lung Abnormality | WBC | Neutrophil | Lymphocyte | Platelet | D-Dimer | CRP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | . | −0.267 | 0.199 | 0.112 | 0.764 ** | −0.461 | 0.503 | −0.241 | −0.963 | −0.518 | 0.413 | 0.596 * | 0.744 ** | −0.651 ** | 0.006 | 0.796 * | 0.165 |
0.179 | 0.320 | 0.618 | 0.000 | 0.097 | 0.080 | 0.407 | 0.173 | 0.070 | 0.143 | 0.015 | 0.009 | 0.005 | 0.986 | 0.010 | 0.628 | ||
Fever | −0.267 | . | −0.427 * | −0.154 | −0.261 | 0.071 | 0.331 | 0.245 | 0.695 | 0.148 | −0.399 | −0.121 | −0.406 | 0.419 | −0.120 | −0.036 | −0.508 |
0.179 | 0.021 | 0.483 | 0.296 | 0.801 | 0.248 | 0.361 | 0.305 | 0.614 | 0.141 | 0.643 | 0.191 | 0.094 | 0.711 | 0.915 | 0.092 | ||
Cough | 0.199 | −0.427* | . | 0.373 | 0.291 | 0.674 ** | −0.309 | 0.155 | 0.689 | 0.342 | 0.023 | −0.247 | 0.106 | −0.191 | −0.155 | −0.218 | 0.389 |
0.320 | 0.021 | 0.073 | 0.242 | 0.004 | 0.283 | 0.568 | 0.311 | 0.213 | 0.935 | 0.324 | 0.732 | 0.447 | 0.612 | 0.544 | 0.189 | ||
Fatigueand myalgia | 0.112 | −0.154 | 0.373 | . | 0.336 | 0.557 * | 0.358 | 0.327 | 0.821 | 0.476 | 0.298 | −0.402 | −0.296 | −0.272 | −0.457 | 0.065 | 0.109 |
0.618 | 0.483 | 0.073 | 0.220 | 0.031 | 0.253 | 0.276 | 0.179 | 0.073 | 0.300 | 0.137 | 0.377 | 0.327 | 0.158 | 0.858 | 0.750 | ||
Dyspnea | 0.764 ** | −0.261 | 0.291 | 0.336 | . | 0.413 | 0.135 | −0.272 | 0.865 | 0.016 | −0.007 | 0.728 ** | 0.797 * | −0.700 * | 0.301 | 0.649 | 0.164 |
0.000 | 0.296 | 0.242 | 0.220 | 0.270 | 0.729 | 0.392 | 0.335 | 0.964 | 0.987 | 0.007 | 0.010 | 0.011 | 0.431 | 0.163 | 0.698 | ||
Sputum production | −0.461 | 0.071 | 0.674 ** | 0.557 * | 0.413 | . | 0.707 | 0.268 | 0.806 | 0.759 ** | 0.303 | −0.539 | −0.261 | −0.234 | −0.560 | −0.502 | 0.193 |
0.097 | 0.801 | 0.004 | 0.031 | 0.270 | 0.181 | 0.521 | 0.194 | 0.007 | 0.365 | 0.087 | 0.533 | 0.489 | 0.149 | 0.310 | 0.678 | ||
Chest tightness | 0.503 | 0.331 | −0.309 | 0.358 | 0.135 | 0.707 | . | 0.295 | 1.000 ** | 0.236 | 0.701 | 0.002 | 0.606 | −0.208 | −0.414 | 0.357 | −0.170 |
0.080 | 0.248 | 0.283 | 0.253 | 0.729 | 0.181 | 0.408 | . | 0.764 | 0.299 | 0.997 | 0.202 | 0.591 | 0.586 | 0.432 | 0.661 | ||
Pharyngalgia | −0.241 | 0.245 | 0.155 | 0.327 | −0.272 | 0.268 | 0.295 | . | 0.981 | 0.046 | −0.104 | −0.441 | −0.501 | 0.395 | −0.260 | −0.598 | −0.079 |
0.407 | 0.361 | 0.568 | 0.276 | 0.392 | 0.521 | 0.408 | 0.126 | 0.931 | 0.824 | 0.175 | 0.169 | 0.229 | 0.574 | 0.210 | 0.840 | ||
Chill | −0.963 | 0.695 | 0.689 | 0.821 | 0.865 | 0.806 | 1.000 ** | 0.981 | . | 0.900 | 1.000 ** | 0.419 | 1.000 ** | 1.000 ** | 1.000 ** | −1.000 ** | 1.000 ** |
0.173 | 0.305 | 0.311 | 0.179 | 0.335 | 0.194 | . | 0.126 | 0.287 | . | 0.725 | . | . | . | . | . | ||
Headache | −0.518 | 0.148 | 0.342 | 0.476 | 0.016 | 0.759 ** | 0.236 | 0.046 | 0.900 | . | 0.007 | −0.522 | −0.588 | 0.440 | −0.160 | −0.755 | −0.669 |
0.070 | 0.614 | 0.213 | 0.073 | 0.964 | 0.007 | 0.764 | 0.931 | 0.287 | 0.985 | 0.184 | 0.220 | 0.275 | 0.704 | 0.140 | 0.331 | ||
Lung abnormality | 0.413 | −0.399 | 0.023 | 0.298 | −0.007 | 0.303 | 0.701 | −0.104 | 1.000 ** | 0.007 | . | 0.164 | −0.214 | 0.082 | −0.138 | −0.445 | 0.725 |
0.143 | 0.141 | 0.935 | 0.300 | 0.987 | 0.365 | 0.299 | 0.824 | . | 0.985 | 0.630 | 0.611 | 0.811 | 0.705 | 0.270 | 0.065 | ||
WBC | 0.596 * | −0.121 | −0.247 | −0.402 | 0.728 ** | −0.539 | 0.002 | −0.441 | 0.419 | −0.522 | 0.164 | . | 0.696 ** | −0.098 | 0.668 ** | 0.344 | 0.597* |
0.015 | 0.643 | 0.324 | 0.137 | 0.007 | 0.087 | 0.997 | 0.175 | 0.725 | 0.184 | 0.630 | 0.006 | 0.700 | 0.009 | 0.300 | 0.024 | ||
Neutrophil | 0.744 ** | −0.406 | 0.106 | −0.296 | 0.797* | −0.261 | 0.606 | −0.501 | 1.000 ** | −0.588 | −0.214 | 0.696 ** | . | −0.639 * | 0.024 | 0.686 | 0.141 |
0.009 | 0.191 | 0.732 | 0.377 | 0.010 | 0.533 | 0.202 | 0.169 | . | 0.220 | 0.611 | 0.006 | 0.019 | 0.945 | 0.061 | 0.679 | ||
Lymphocyte | −0.651 ** | 0.419 | −0.191 | −0.272 | −0.700 * | −0.234 | −0.208 | 0.395 | 1.000 ** | 0.440 | 0.082 | −0.098 | −0.639 * | . | 0.469 | −0.546 | −0.039 |
0.005 | 0.094 | 0.447 | 0.327 | 0.011 | 0.489 | 0.591 | 0.229 | . | 0.275 | 0.811 | 0.700 | 0.019 | 0.106 | 0.103 | 0.899 | ||
Platelet | 0.006 | −0.120 | −0.155 | −0.457 | 0.301 | −0.560 | −0.414 | −0.260 | 1.000 ** | −0.160 | −0.138 | 0.668 ** | 0.024 | 0.469 | . | −0.434 | 0.703 * |
0.986 | 0.711 | 0.612 | 0.158 | 0.431 | 0.149 | 0.586 | 0.574 | . | 0.704 | 0.705 | 0.009 | 0.945 | 0.106 | 0.283 | 0.035 | ||
D-dimer | 0.796 * | −0.036 | −0.218 | 0.065 | 0.649 | −0.502 | 0.357 | −0.598 | −1.000 ** | −0.755 | −0.445 | 0.344 | 0.686 | −0.546 | −0.434 | . | −0.259 |
0.010 | 0.915 | 0.544 | 0.858 | 0.163 | 0.310 | 0.432 | 0.210 | . | 0.140 | 0.270 | 0.300 | 0.061 | 0.103 | 0.283 | 0.501 | ||
CRP | 0.165 | −0.508 | 0.389 | 0.109 | 0.164 | 0.193 | −0.170 | −0.079 | 1.000 ** | −0.669 | 0.725 | 0.597 * | 0.141 | −0.039 | 0.703 * | −0.259 | . |
0.628 | 0.092 | 0.189 | 0.750 | 0.698 | 0.678 | 0.661 | 0.840 | . | 0.331 | 0.065 | 0.024 | 0.679 | 0.899 | 0.035 | 0.501 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghayda, R.A.; Lee, J.; Lee, J.Y.; Kim, D.K.; Lee, K.H.; Hong, S.H.; Han, Y.J.; Kim, J.S.; Yang, J.W.; Kronbichler, A.; et al. Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 5026. https://doi.org/10.3390/ijerph17145026
Ghayda RA, Lee J, Lee JY, Kim DK, Lee KH, Hong SH, Han YJ, Kim JS, Yang JW, Kronbichler A, et al. Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2020; 17(14):5026. https://doi.org/10.3390/ijerph17145026
Chicago/Turabian StyleGhayda, Ramy Abou, Jinhee Lee, Jun Young Lee, Da Kyung Kim, Keum Hwa Lee, Sung Hwi Hong, Young Joo Han, Jae Seok Kim, Jae Won Yang, Andreas Kronbichler, and et al. 2020. "Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 17, no. 14: 5026. https://doi.org/10.3390/ijerph17145026
APA StyleGhayda, R. A., Lee, J., Lee, J. Y., Kim, D. K., Lee, K. H., Hong, S. H., Han, Y. J., Kim, J. S., Yang, J. W., Kronbichler, A., Smith, L., Koyanagi, A., Jacob, L., & Shin, J. I. (2020). Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 17(14), 5026. https://doi.org/10.3390/ijerph17145026