The Potential Impacts of Urban and Transit Planning Scenarios for 2031 on Car Use and Active Transportation in a Metropolitan Area
Abstract
:1. Introduction
2. Methods
2.1. Development of 2031 Scenarios
2.2. Description of Scenarios
2.3. Estimation of Population, Modal Share and Distances Travelled for 2031 Scenarios
- i = individual of the stratum k
- k = one of the 216 strata
- n = number of individuals in the stratum k
- NTrips2008i = number of trips in 2008 of individual i, all modes included.
- NTrips2031k = number of trips in 2031 for the population in stratum k
- Weight2031i = O-D survey individual weight adjusted for 2031, as described above (OD2008WEIGHT × POP2031 × CAR2031 × ACTIVITY2031 (described in text above).
3. Results
3.1. Impacts of Scenarios: Population Distribution
3.2. Impacts of Scenarios: Transportation Modes and Distances Travelled
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Population Growth in Peripheral Transit Oriented Development (TOD) (“Clones”)
Appendix B. Mode Choice Models
Car | Public Transit | Walk | Bicycle | Bimodal ** | Other | ||
---|---|---|---|---|---|---|---|
All Greater Montreal Area | BAU | 66.6% | 14.3% | 10.8% | 1.2% | 1.7% | 5.5% |
PMAD | 66.1% | 14.6% | 10.9% | 1.3% | 1.7% | 5.4% | |
TOD100% | 66.5% | 14.2% | 10.7% | 1.2% | 1.7% | 5.6% | |
Central | 67.4% | 13.6% | 10.6% | 1.2% | 1.6% | 5.5% | |
Central zone | BAU | 52.3% | 25.2% | 16.9% | 1.5% | 1.5% | 2.7% |
PMAD | 52.7% | 24.6% | 16.8% | 1.5% | 1.5% | 2.9% | |
TOD100% | 53.1% | 24.4% | 16.8% | 1.4% | 1.4% | 2.9% | |
Central | 52.3% | 25.1% | 16.8% | 1.5% | 1.5% | 2.8% | |
Periphery | BAU | 74.6% | 8.1% | 7.3% | 1.1% | 1.8% | 7.1% |
PMAD | 73.9% | 8.7% | 7.5% | 1.1% | 1.8% | 6.9% | |
TOD100% | 75.2% | 7.8% | 7.2% | 1.1% | 1.8% | 6.9% | |
Central | 74.6% | 8.1% | 7.3% | 1.1% | 1.8% | 7.2% |
Car | Public Transit | Walk | Bicycle | Bimodal ** | Other *** | ||
---|---|---|---|---|---|---|---|
Mode choice analyses | BAU | 62.5% | 17.4% | 12.5% | 1.3% | 1.6% | 4.7% |
PMAD | 66.8% | 14.2% | 10.6% | 1.3% | 1.6% | 5.4% | |
TOD100% | 67.1% | 14.1% | 10.8% | 1.2% | 1.6% | 5.2% | |
Central | 67.2% | 14.0% | 10.6% | 1.2% | 1.6% | 5.4% | |
Simpler method based on 2008 mode shares | BAU | 66.3% | 14.5% | 11.0% | 1.3% | 1.8% | 5.1% |
PMAD | 64.6% | 15.5% | 11.9% | 1.5% | 1.7% | 4.9% | |
TOD100% | 63.4% | 16.5% | 12.4% | 1.5% | 1.7% | 4.5% | |
Central | 59.9% | 18.9% | 14.0% | 1.7% | 1.5% | 4.0% |
References
- Giles-Corti, B.; Vernez-Moudon, A.; Reis, R.; Turrell, G.; Dannenberg, A.L.; Badland, H.; Foster, S.; Lowe, M.; Sallis, J.F.; Stevenson, M.; et al. City planning and population health: A global challenge. Lancet 2016, 388, 2912–2924. [Google Scholar] [CrossRef]
- Cakmak, S.; Hebbern, C.; Vanos, J.; Crouse, D.L.; Tjepkema, M. Exposure to traffic and mortality risk in the 1991–2011 Canadian Census Health and Environment Cohort (CanCHEC). Environ. Int. 2019, 124, 16–24. [Google Scholar] [CrossRef]
- Frank, L.; Andresen, M.A.; Schmid, T.L. Obesity relationships with community design, physical activity, and time spent in cars. Am. J. Prev. Med. 2004, 27, 87–96. [Google Scholar] [CrossRef]
- Besser, L.; Dannenberg, A. Walking to Public TransitSteps to Help Meet Physical Activity Recommendations. Am. J. Prev. Med. 2005, 29, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasfi, R.; Ross, N.A.; El-Geneidy, A. Achieving recommended daily physical activity levels through commuting by public transportation: Unpacking individual and contextual influences. Health Place 2013, 23, 18–25. [Google Scholar] [CrossRef]
- Mageau-Béland, J.; Morency, C. Assessing Physical Activity Achievement by Using Transit. In Transportation Research Board 99th Annual Meeting Compendium of Papers; Transportation Research Board: Washington, DC, USA, 2020. [Google Scholar]
- McLeod, S.; Scheurer, J.; Curtis, C. Urban Public Transport. J. Plan. Lit. 2017, 32, 223–239. [Google Scholar] [CrossRef]
- Communauté métropolitaine de Montréal (CMM). Portrait of Greater Montreal; Metropolitan Reports; Communauté métropolitaine de Montréal: Montréal, QC, Canada, 2010; p. 56. [Google Scholar]
- Government of Canada, Statistics Canada. Census in Brief: Municipalities in Canada with the Largest and Fastest-Growing Populations between 2011 and 2016. Available online: https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016001/98-200-x2016001-eng.cfm (accessed on 24 February 2020).
- Agence métropolitaine du transport. Enquête Origine-Destination 2013: La Mobilité Des Personnes Dans La Région de Montréal; Secrétariat à l’Enquête Origine-Destination (OD): Montréal, QC, Canada, 2013; p. 194. [Google Scholar]
- Ewing, R.; Hamidi, S. Compactness versus Sprawl. J. Plan. Lit. 2015, 30, 413–432. [Google Scholar] [CrossRef]
- Hamidi, S.; Ewing, R.; Preuss, I.; Dodds, A. Measuring Sprawl and Its Impacts. J. Plan. Educ. Res. 2015, 35, 35–50. [Google Scholar] [CrossRef]
- Ewing, R.; Hamidi, S.; Tian, G.; Proffitt, D.; Tonin, S.; Fregolent, L. Testing Newman and Kenworthy’s Theory of Density and Automobile Dependence. J. Plan. Educ. Res. 2017, 38, 167–182. [Google Scholar] [CrossRef]
- Stevenson, M.; Thompson, J.; De Sa, T.H.; Ewing, R.; Mohan, D.; McClure, R.J.; Roberts, I.; Tiwari, G.; Giles-Corti, B.; Sun, X.; et al. Land use, transport, and population health: Estimating the health benefits of compact cities. Lancet 2016, 388, 2925–2935. [Google Scholar] [CrossRef] [Green Version]
- Jamme, H.-T.; Rodriguez, J.; Bahl, D.; Banerjee, T. A Twenty-Five-Year Biography of the TOD Concept: From Design to Policy, Planning, and Implementation. J. Plan. Educ. Res. 2019, 39, 409–428. [Google Scholar] [CrossRef]
- Sohoni, A.V.; Thomas, M.; Rao, K.K. Application of the concept of transit oriented development to a suburban neighborhood. Transp. Res. Procedia 2017, 25, 3220–3232. [Google Scholar] [CrossRef]
- Renne, J.L. From transit-adjacent to transit-oriented development. Local Environ. 2008, 14, 1–15. [Google Scholar] [CrossRef]
- Scherrer, F.P. Assessing Transit-Oriented Development Implementation in Canadian Cities: An Urban Project Approach. J. Plan. Educ. Res. 2019, 39, 469–481. [Google Scholar] [CrossRef]
- Bartholomew, K. Land use-transportation scenario planning: Promise and reality. Transportation 2006, 34, 397–412. [Google Scholar] [CrossRef]
- Rodier, C. Review of International Modeling Literature. Transp. Res. Rec. J. Transp. Res. Board 2009, 2132, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Perveen, S.; Yigitcanlar, T.; Kamruzzaman, M.; Hayes, J. Evaluating transport externalities of urban growth: A critical review of scenario-based planning methods. Int. J. Environ. Sci. Technol. 2016, 14, 663–678. [Google Scholar] [CrossRef] [Green Version]
- Antoni, J.-P.; Bonin, O.; Frankhauser, P.; Houot, H.; Nicolas, J.-P.; Tomasoni, L.; Toilier, F.; Vuidel, G. VILMODes, Ville et mobilité durables, évaluation par la simulation. HAL 2014, 135. (In French) [Google Scholar]
- Bonin, O.; Tomasoni, L. Evaluation of a transit-oriented development scenario in a medium-sized French city by simulation models. Int. J. Transp. 2015, 3, 91–112. [Google Scholar] [CrossRef]
- Plata-Rocha, W.; Gómez-Delgado, M.; Bosque-Sendra, J. Simulating urban growth scenarios using GIS and multicriteria analysis techniques: A case study of the Madrid region, Spain. Environ. Plan. B Plan. Des. 2011, 38, 1012–1031. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Y.; He, H.; Xi, F.; Bu, R. Study on forecast scenarios for simulation of future urban growth in Shenyang City based on SLEUTH model. Geo-Spat. Inf. Sci. 2010, 13, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Shaw, C.; Hales, S.; Chapman, R.; Edwards, R. Health co-benefits of climate change mitigation policies in the transport sector. Nat. Clim. Chang. 2014, 4, 427–433. [Google Scholar] [CrossRef]
- Ma, J.; Mitchell, G.; Heppenstall, A. Exploring transport carbon futures using population microsimulation and travel diaries: Beijing to 2030. Transp. Res. Part D Transp. Environ. 2015, 37, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, J.; Edwards, P.; Tonne, C.; Armstrong, B.G.; Ashiru, O.; Banister, D.; Beevers, S.; Chalabi, Z.; Chowdhury, Z.; Cohen, A.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Urban land transport. Lancet 2009, 374, 1930–1943. [Google Scholar] [CrossRef]
- Maizlish, N.; Woodcock, J.; Co, S.; Ostro, B.; Fanai, A.; Fairley, D. Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay area. Am. J. Public Health 2013, 103, 703–709. [Google Scholar] [CrossRef]
- Rojas-Rueda, D.; De Nazelle, A.; Tainio, M.; Nieuwenhuijsen, M.J. The health risks and benefits of cycling in urban environments compared with car use: Health impact assessment study. BMJ 2011, 343, d4521. [Google Scholar] [CrossRef] [Green Version]
- Avin, U.; Goodspeed, R. Using Exploratory Scenarios in Planning Practice: A Spectrum of Approaches. J. Am. Plan. Assoc. 2020. [Google Scholar] [CrossRef]
- Agence métropolitaine du transport. Enquête Origine-Destination 2008: La Mobilité Des Personnes Dans La Région de Montréal; Secrétariat à l’Enquête Origine-Destination (OD): Montréal, QC, Canada, 2008; p. 210. [Google Scholar]
- Desgagnés, P. ES-3: Projections de La Population et Des Ménages 1996-2021—Le Modèle, Sa Mise En Oeuvre et Les Résultats; Ministère des transports: Québec, QC, Canada, 1999; p. 141.
- Communauté métropolitaine de Montréal. Metropolitan Land Use and Development Plan (PMAD): An Attractive, Competitive and Sustainable Greater Montreal; Communauté métropolitaine de Montréal: Montréal, QC, Canada, 2012; p. 220. [Google Scholar]
- Smargiassi, A.; Plante, C.; Morency, P.; Hatzopoulou, M.; Morency, C.; Eluru, N.; Tétreault, L.-F.; Goudreau, S.; Bourbonnais, P.-L.; Bhowmik, T.; et al. Environmental and health impacts of transportation and land use scenarios in 2061. Environ. Res. 2020, 187, 109622. [Google Scholar] [CrossRef]
- Tétreault, L.-F.; Eluru, N.; Hatzopoulou, M.; Morency, P.; Plante, C.; Morency, C.; Reynaud, F.; Shekarrizfard, M.; Shamsunnahar, Y.; Imani, A.F.; et al. Estimating the health benefits of planned public transit investments in Montreal. Environ. Res. 2018, 160, 412–419. [Google Scholar] [CrossRef]
- Eluru, N.; Chakour, V.; El-Geneidy, A. Travel mode choice and transit route choice behavior in Montreal: Insights from McGill University members commute patterns. Public Transp. 2012, 4, 129–149. [Google Scholar] [CrossRef]
- Bartholomew, K.; Ewing, R. Land Use–Transportation Scenarios and Future Vehicle Travel and Land Consumption: A Meta-Analysis. J. Am. Plan. Assoc. 2008, 75, 13–27. [Google Scholar] [CrossRef]
- Wang, Y.; Welch, T.F.; Wu, B.; Ye, X.; Ducca, F.W. Impact of transit-oriented development policy scenarios on travel demand measures of mode share, trip distance and highway usage in Maryland. KSCE J. Civ. Eng. 2016, 20, 1006–1016. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Melia, S.; Parkhurst, G.; Barton, H. The Paradox of Intensification. Transp. Policy 2011, 18, 46–52. [Google Scholar] [CrossRef]
REFERENCE (BAU) | PLANNED (PMAD) | TOD 100% | CENTRAL | ||
---|---|---|---|---|---|
Objective | Projection of recent trends | Implementation of current planning (PMAD) 1,2 | Concentration of new households in TOD areas 2 | Concentration of new household in central neighborhoods | |
Allocation of New Population (2006–2031) | Targeted development area | All Greater Montreal Area | All Greater Montreal Area, including 143 TOD areas | Limited to 143 TOD areas | Limited to central zone 4 |
Estimation of household capacity at the local level | Unlimited | Based on land area available for residential development and on minimal household density thresholds (PMAD) 3 | Unlimited | ||
Allocation across Greater Montreal Area subregions | Based on past trends (1996–2006) | According to PMAD (39% on the island of Montreal, 21% in suburbs, 40% in outskirts) | 100% in central zone | ||
Allocation across planning zones | Proportional to household capacity | Based on recent trends (2007–2015) | |||
Allocation within and outside TOD areas | N/A | 36.8% located in TOD areas 5 | 100% located in TOD areas | N/A |
Households in the Central Zone | Households in the Periphery | GMA | |||||
---|---|---|---|---|---|---|---|
In TOD 4 | Not TOD | In TOD 4 | Not TOD | ||||
Context | Population (2006) | 810,145 | 651,555 | 210,530 | 2,274,979 | 3,947,210 | |
Gross population density (2006) | 7415 | 5173 | 1856 | 285 | 474 | ||
Daily trips per capita 2 | Car 3 | 0.90 | 1.11 | 1.45 | 1.54 | 1.33 | |
Public transit | 0.64 | 0.50 | 0.27 | 0.15 | 0.32 | ||
Walk | 0.45 | 0.31 | 0.20 | 0.13 | 0.23 | ||
Bicycle | 0.06 | 0.03 | 0.03 | 0.02 | 0.03 | ||
Distance per trip (km) 2 | Car 3 | 9.38 | 9.23 | 12.47 | 15.34 | 13.53 | |
Public transit | 6.82 | 8.21 | 15.81 | 16.39 | 10.07 | ||
Walk (alone) | 0.90 | 0.84 | 0.96 | 0.93 | 0.89 | ||
Walk (to/from PT) | 0.84 | 0.82 | 1.09 | 0.97 | 0.90 | ||
Bicycle | 3.62 | 4.15 | 3.73 | 3.39 | 3.66 | ||
Scenarios (2031) | Population | BAU | 921,817 | 680,483 | 296,086 | 2,912,499 | 4,810,886 |
Planned | 1,331,995 | 296,732 | 684,303 | 2,497,855 | 4,810,886 | ||
TOD100% | 1,290,833 | 370,093 | 1,460,292 | 1,689,669 | 4,810,886 | ||
Central | 1,932,016 | 504,382 | 330,089 | 2,044,399 | 4,810,886 | ||
Gross population density (/km2) | BAU | 7912 | 5732 | 2169 | 366 | 578 | |
Planned | 10,348 | 2786 | 3866 | 316 | 578 | ||
TOD100% | 10,028 | 3475 | 8250 | 213 | 578 | ||
Central | 11,737 | 7143 | 1788 | 259 | 578 |
2031 Scenarios | |||||
---|---|---|---|---|---|
BAU | Planned | TOD100% | Central | ||
Trip/capita | All Modes | 1.97 | 1.97 | 1.98 | 1.98 |
Car (drivers) | 1.04 | 1.01 | 0.99 | 0.93 | |
Car (pass.) | 0.27 | 0.26 | 0.26 | 0.26 | |
Public transit | 0.29 | 0.31 | 0.33 | 0.37 | |
Walk | 0.22 | 0.23 | 0.24 | 0.28 | |
Bicycle | 0.03 | 0.03 | 0.03 | 0.03 | |
Other | 0.13 | 0.13 | 0.12 | 0.11 | |
Average Km/trip | All Modes | 10.57 | 10.31 | 9.96 | 9.43 |
Car (drivers) | 13.95 | 13.73 | 13.16 | 13.02 | |
Car (pass.) | 10.77 | 10.64 | 10.13 | 10.19 | |
Public transit | 10.23 | 10.03 | 10.29 | 8.71 | |
Walk (alone) | 0.90 | 0.90 | 0.91 | 0.89 | |
Walk to/from PT | 0.88 | 0.89 | 0.91 | 0.86 | |
Bicycle | 3.65 | 3.62 | 3.65 | 3.63 | |
Total km travelled in the GMA | All Modes | 100,096,247 | 97,614,291 | 94,688,314 | 89,684,927 |
Car (drivers) | 69,507,918 | 66,457,283 | 62,606,951 | 58,144,535 | |
Car (pass.) | 13,953,653 | 13,557,560 | 12,887,231 | 12,516,719 | |
Public transit | 14,031,262 | 14,771,132 | 16,162,827 | 15,686,491 | |
Walk (alone) | 938,496 | 1,017,331 | 1,067,909 | 1,191,138 | |
Walk to/from PT | 1,210,422 | 1,313,245 | 1,428,951 | 1,555,687 | |
Bicycle | 454,496 | 497,739 | 534,444 | 590,357 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morency, P.; Plante, C.; Dubé, A.-S.; Goudreau, S.; Morency, C.; Bourbonnais, P.-L.; Eluru, N.; Tétreault, L.-F.; Hatzopoulou, M.; Iraganaboina, N.C.; et al. The Potential Impacts of Urban and Transit Planning Scenarios for 2031 on Car Use and Active Transportation in a Metropolitan Area. Int. J. Environ. Res. Public Health 2020, 17, 5061. https://doi.org/10.3390/ijerph17145061
Morency P, Plante C, Dubé A-S, Goudreau S, Morency C, Bourbonnais P-L, Eluru N, Tétreault L-F, Hatzopoulou M, Iraganaboina NC, et al. The Potential Impacts of Urban and Transit Planning Scenarios for 2031 on Car Use and Active Transportation in a Metropolitan Area. International Journal of Environmental Research and Public Health. 2020; 17(14):5061. https://doi.org/10.3390/ijerph17145061
Chicago/Turabian StyleMorency, Patrick, Céline Plante, Anne-Sophie Dubé, Sophie Goudreau, Catherine Morency, Pierre-Léo Bourbonnais, Naveen Eluru, Louis-François Tétreault, Marianne Hatzopoulou, Naveen Chandra Iraganaboina, and et al. 2020. "The Potential Impacts of Urban and Transit Planning Scenarios for 2031 on Car Use and Active Transportation in a Metropolitan Area" International Journal of Environmental Research and Public Health 17, no. 14: 5061. https://doi.org/10.3390/ijerph17145061
APA StyleMorency, P., Plante, C., Dubé, A.-S., Goudreau, S., Morency, C., Bourbonnais, P.-L., Eluru, N., Tétreault, L.-F., Hatzopoulou, M., Iraganaboina, N. C., Bhowmik, T., & Smargiassi, A. (2020). The Potential Impacts of Urban and Transit Planning Scenarios for 2031 on Car Use and Active Transportation in a Metropolitan Area. International Journal of Environmental Research and Public Health, 17(14), 5061. https://doi.org/10.3390/ijerph17145061