Statistical Forecast of Pollution Episodes in Macao during National Holiday and COVID-19
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Air Quality Forecast Models
3.2. Air Quality During the High Pollution Episode
3.3. Air Quality During the Low Pollution Episode
3.4. Air Quality Pollution Episodes Discussion
3.5. Air Quality Pollution Episodes Forecast
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Ghazali, N.A.; Ramli, N.A.; Yahaya, A.S.; Yusof, N.F.F.M.; Sansuddin, N.; Al Madhoun, W.A. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environ. Monit. Assess. 2009, 165, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.; Ismail, M.; Yuen, F.S.; Abdullah, S.; Elhadi, R. The relationship between daily maximum temperature and daily maximum ground level ozone concentration. Pol. J. Environ. Stud. 2017, 26, 517–523. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.G.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef] [PubMed]
- Wendt, E.A.; Quinn, C.W.; Miller-Lionberg, D.D.; Tryner, J.; Christian L’orange; Ford, B.; Yalin, A.P.; Pierce, J.R.; Jathar, S.H.; Volckens, J.; et al. A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth-part 1: Specifications and testing. Atmos. Meas. Tech. 2019, 12, 5431–5441. [Google Scholar] [CrossRef] [Green Version]
- Brauer, M.; Freedman, G.; Frostad, J.; Van Donkelaar, A.; Martin, R.V.; Dentener, F.; Van Dingenen, R.; Estep, K.; Amini, H.; Apte, J.; et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 2015, 50, 79–88. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, A.Z.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- EEA. Air quality in Europe-2019 report-EEA Report No 10/2019; European Environment Agency: Copenhagen, Denmark, 2019; ISBN 978-92-9480-088-6. [Google Scholar]
- RCP. Report of a working party February 2016; Royal College of Physicians: London, UK, 2016; ISBN 9781860165672. [Google Scholar]
- Song, J.; Liu, Y.; Lu, M.; An, Z.; Lu, J.; Chao, L.; Zheng, L.; Li, J.; Yao, S.; Wu, W.; et al. Short-term exposure to nitrogen dioxide pollution and the risk of eye and adnexa diseases in Xinxiang, China. Atmos. Environ. 2019, 218, 117001. [Google Scholar] [CrossRef]
- Jevtic, M.; Dragić, N.; Bijelović, S.; Popović, M. Cardiovascular diseases and air pollution in Novi Sad, Serbia. Int. J. Occup. Med. Environ. Health 2014, 27, 153–164. [Google Scholar] [CrossRef]
- Qi, J.; Ruan, Z.; Qian, Z.M.; Yin, P.; Yang, Y.; Acharya, B.K.; Wang, L.; Lin, H. Potential gains in life expectancy by attaining daily ambient fine particulate matter pollution standards in mainland China: A modeling study based on nationwide data. PLoS Med. 2020, 17, e1003027. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, A.; Zhang, F. Roadside atmospheric pollution: Still a serious environmental problem in Beijing, China. Air Qual. Atmos. Health 2018, 11, 1203–1216. [Google Scholar] [CrossRef]
- Ai, Z.; Mak, C.M.; Lee, H. Roadside air quality and implications for control measures: A case study of Hong Kong. Atmos. Environ. 2016, 137, 6–16. [Google Scholar] [CrossRef]
- Zheng, Y.; Che, H.; Zhao, T.; Zhao, H.; Gui, K.; Sun, T.; An, L.; Yu, J.; Liu, C.; Jiang, Y.; et al. Aerosol optical properties observation and its relationship to meteorological conditions and emission during the Chinese National Day and Spring Festival holiday in Beijing. Atmos. Res. 2017, 197, 188–200. [Google Scholar] [CrossRef]
- Fu, S.; Gu, Y. Highway toll and air pollution: Evidence from Chinese cities. J. Environ. Econ. Manag. 2017, 83, 32–49. [Google Scholar] [CrossRef] [Green Version]
- Ralph, R.; Lew, J.; Zeng, T.; Francis, M.; Xue, B.; Roux, M.; Ostadgavahi, A.T.; Rubino, S.; Dawe, N.J.; Al-Ahdal, M.N.; et al. 2019-nCoV (Wuhan virus), a novel Coronavirus: Human-to-human transmission, travel-related cases, and vaccine readiness. J. Infect. Dev. Ctries. 2020, 14, 3–17. [Google Scholar] [CrossRef]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef]
- Shi, X.; Brasseur, G.P. The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVID-19 Outbreak. Geophys. Res. Lett. 2020, 47, 1–8. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C.; Lin, C.; Tan, Y.; Zhang, J. Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmos. Environ. 2019, 214, 116885. [Google Scholar] [CrossRef]
- Masih, A. Machine learning algorithms in air quality modeling. J. Environ Sci. Manag. 2019, 5, 515–534. [Google Scholar] [CrossRef]
- Lin, H.; Jin, J.; Herik, J.V.D. Air quality forecast through integrated data assimilation and machine learning. In Proceedings of the 11th International Conference on Agents and Artificial Intelligence, Prague, Czech Republic, 19–21 February 2019; Volume 2, pp. 787–793. [Google Scholar] [CrossRef]
- Pagowski, M.; Grell, G.; Devenyi, D.; Peckham, S.; McKeen, S.; Gong, W.; Monache, L.D.; McHenry, J.; McQueen, J.; Lee, P. Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts. Atmos. Environ. 2006, 40, 3240–3250. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.T.; Monjardino, J.; Mendes, L.; Gonçalves, D.; Ferreira, F. Macao air quality forecast using statistical methods. Air Qual. Atmos. Health 2019, 12, 1049–1057. [Google Scholar] [CrossRef]
- Kocijan, J.; Gradišar, D.; Stepančič, M.; Božnar, M.Z.; Grašič, B.; Mlakar, P. Selection of the data time interval for the prediction of maximum ozone concentrations. Stoch. Environ. Res. Risk Assess. 2017, 32, 1759–1770. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, 632–655. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ. 2012, 60, 656–676. [Google Scholar] [CrossRef]
- Lopes, D.; Hoi, K.I.; Mok, K.M.; Miranda, A.I.; Yuen, K.V.; Borrego, C. Air quality in the main cities of the pearl river delta region. Glob. Nest J. 2016, 18, 794–802. [Google Scholar]
- Chen, J.; Wang, J. Prediction of PM2.5 concentration based on multiple linear regression. In Proceedings of the 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), Xiangtan, China, 10–11 August 2019; pp. 457–460. [Google Scholar] [CrossRef]
- Sahanavin, N.; Prueksasit, T.; Tantrakarnapa, K. Relationship between PM 10 and PM 2.5 levels in high-traffic area determined using path analysis and linear regression. J. Environ. Sci. 2018, 69, 105–114. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, X.; Xue, B.; Zhang, J.; Ren, W. Short period PM2.5 prediction based on multivariate linear regression model. PLoS ONE 2018, 13, e0201011. [Google Scholar] [CrossRef]
- Samadianfard, S.; Delirhasannia, R.; Kişi, Ö.; Agirre-Basurko, E. Comparative analysis of ozone level prediction models using gene expression programming and multiple linear regression. Geofizika 2013, 30, 43–74. [Google Scholar]
- Ahmad, M.; Alam, K.; Tariq, S.; Anwar, S.; Nasir, J.; Mansha, M. Estimating fine particulate concentration using a combined approach of linear regression and artificial neural network. Atmos. Environ. 2019, 219, 117050. [Google Scholar] [CrossRef]
- Neto, J.; Torres, P.M.; Ferreira, F.; Boavida, F. Lisbon air quality forecast using statistical methods. Int. J. Environ. Pollut. 2009, 39, 333. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Description (Units)/ Observations | |
---|---|---|---|
Air quality variables | NO2, PM10, PM2.5 | Average hourly concentration values (µg/m3) | |
O3 MAX | Maximum hourly concentration values (µg/m3) | ||
16D#, 23D# | 23D#: 24-h concentration averaging period between 00h and 23h 16D#: 24-h concentration averaging period between 16h of D1 and 15h of D0 eg: PM10_16D1, O3_MAX_23D1. | ||
D0, D1, D2, D3 | D0: Forecast Day; D1: Previous Day (Forecast Day-1); D2: Forecast Day-2; and D3: Forecast Day-3. | ||
Meteorological variables | Upper-air obs. * | H1000, H850, H700, H500 | Geopotential Height at 1000 hPa, 850 hPa, 700 hPa, and 500 hPa (m)/Indicator of synoptic-scale weather pattern. |
TAR925, TAR850, TAR700 | Air Temperature at 925 hPa, 850 hPa, and 700 hPa (°C)/Measure of strength and height of the subsidence inversion. | ||
HR925, HR850, HR700 | Relative Humidity at 925 hPa, 850 hPa, and 700 hPa (%). | ||
TD925, TD850, TD700 | Dew Point Temperature at 925 hPa, 850 hPa, and 700 hPa (°C). | ||
THI850, THI700, THI500 | Thickness at 850 hPa, 700 hPa, and 500 hPa (m)/Related to the mean temperature in the layer. | ||
STB925, STB850, STB700 | Stability at 925 hPa, 850 hPa, and 700 hPa (°C)/Indicator of atmospheric stability. | ||
Surface observations | T_AIR_MX, T_AIR_MD, T_AIR_MN | Maximum, Average, and Minimum Air Temperature (°C) | |
HRMX, HRMD, HRMN | Maximum, Average, and Minimum Relative Humidity (%) | ||
TD_MD | Average dew point temperature (ground level) (°C) | ||
RRTT | Precipitation (mm)/Associated with atmospheric washout | ||
VMED | Average wind speed (m/s)/Related to dispersion | ||
Other variables | DD | Duration of the day: number of hours of sun per day (h) | |
FF | Week-day indicator (flag): weekday = 0, weekend = 1 |
Station | Pollutant | Model Performance Indicator | Model Built Using Only MLR or CART and MLR | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | BIAS | MLR | CART | ||
Macao Roadside | PM10 | 0.88 | 8.6 | 5.8 | 1.8 | ✓ | |
PM2.5 | 0.86 | 5.4 | 3.7 | 1.5 | ✓ | ||
NO2 | 0.89 | 8.0 | 5.9 | 0.4 | ✓ | ||
Macao Residential | PM10 | 0.89 | 8.8 | 5.9 | −0.3 | ✓ | |
PM2.5 | 0.87 | 5.2 | 3.3 | 0.7 | ✓ | ||
NO2 | 0.86 | 7.7 | 5.5 | −0.4 | ✓ | ||
O3 MAX | 0.85 | 23.2 | 14.0 | 0.0 | ✓ | ||
Taipa Ambient | PM10 | 0.88 | 7.9 | 5.4 | 1.7 | ✓ | |
PM2.5 | 0.86 | 5.1 | 3.6 | 1.6 | ✓ | ||
NO2 | 0.87 | 6.1 | 4.2 | 0.9 | ✓ | ||
O3 MAX | 0.86 | 24.4 | 14.8 | −2.1 | ✓ | ✓ | |
Taipa Residential | PM10 | 0.87 | 8.0 | 5.2 | 0.1 | ✓ | |
PM2.5 | 0.88 | 5.7 | 3.5 | −0.1 | ✓ | ||
NO2 | 0.87 | 5.6 | 4.2 | 0.8 | ✓ | ||
O3 MAX | 0.78 | 20.9 | 12.7 | 1.3 | ✓ | ✓ | |
Coloane Ambient | PM10 | 0.88 | 8.7 | 6.2 | 2.4 | ✓ | |
PM25 | 0.86 | 5.4 | 3.7 | 1.3 | ✓ | ||
NO2 | 0.81 | 7.8 | 5.5 | −0.2 | ✓ | ||
O3 MAX | 0.79 | 24.7 | 15.9 | −3.6 | ✓ | ✓ |
Station | Pollutant | Model Performance Indicator | Model Built Using Only MLR or CART and MLR | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | BIAS | MLR | CART | ||
Macao Roadside | PM10 | 0.88 | 8.4 | 5.6 | 1.5 | ✓ | |
PM2.5 | 0.87 | 5.2 | 3.3 | 0.2 | ✓ | ||
NO2 | 0.89 | 7.9 | 5.8 | −0.1 | ✓ | ||
Macao Residential | PM10 | 0.89 | 8.8 | 5.9 | −0.1 | ✓ | |
PM2.5 | 0.87 | 5.2 | 3.3 | 0.8 | ✓ | ||
NO2 | 0.86 | 7.7 | 5.5 | 0.0 | ✓ | ||
O3 MAX | 0.85 | 23.2 | 14.0 | 0.0 | ✓ | ||
Taipa Ambient | PM10 | 0.88 | 7.8 | 5.1 | 0.8 | ✓ | |
PM2.5 | 0.86 | 4.8 | 3.1 | 0.2 | ✓ | ||
NO2 | 0.87 | 6.1 | 4.2 | 1.0 | ✓ | ||
O3 MAX | 0.86 | 23.7 | 14.7 | −1.6 | ✓ | ✓ | |
Taipa Residential | PM10 | 0.88 | 7.9 | 5.1 | 0.2 | ✓ | |
PM2.5 | 0.88 | 5.6 | 3.5 | −0.1 | ✓ | ||
NO2 | 0.87 | 5.6 | 4.1 | 0.6 | ✓ | ||
O3 MAX | 0.78 | 20.9 | 12.7 | 1.3 | ✓ | ✓ | |
Coloane Ambient | PM10 | 0.89 | 8.3 | 5.7 | 1.2 | ✓ | |
PM25 | 0.86 | 5.3 | 3.6 | 1.0 | ✓ | ||
NO2 | 0.81 | 7.8 | 5.5 | −0.1 | ✓ | ||
O3 MAX | 0.79 | 24.3 | 15.3 | –3.0 | ✓ | ✓ |
Station | Pollutant | Model Equations |
---|---|---|
Macao Roadside | NO2 | NO2 = 0.897 × NO2_16D1 + 0.011 × H850 − 0.151 × HRMN |
PM10 | PM10 = 0.913 × PM10_16D1 + 0.015 × H850 − 0.208 × HRMD | |
PM2.5 | PM2.5 = 0.943 × PM25_16D1 + 0.006 × H850 − 0.091 × HRMD | |
Macao Residential | NO2 | NO2 = 0.913 × NO2_16D1 + 0.007 × H850 − 0.087 × HRMN |
PM10 | PM10 = 0.896 × PM10_16D1 + 0.016 × H850 − 0.224 × HRMD | |
PM2.5 | PM2.5 = 0.926 × PM25_16D1 + 0.004 × H850 − 0.176 × TD_MD | |
O3 MAX | O3 MAX = 1.089 × O3_MAX_16D1 − 0.344 × O3_MAX_23D1 − 1.303 × TD_MD + 1.437 × T_AIR_MX | |
Taipa Ambient | NO2 | NO2 = 0.914 × NO2_16D1 + 0.004 × H850 + 0.734 × STB925 |
PM10 | PM10 = 0.905 × PM10_16D1 + 0.014 × H850 − 0.205 × HRMD | |
PM2.5 | PM2.5 = 0.928 × PM25_16D1 + 0.006 × H850 − 0.093 × HRMD | |
O3 MAX | If [O3 MAX_16D1] ≤ 105.50 O3 MAX = 1.034 × O3_max_16D1 − 0.214 × O3_max_23D1 + 0.019 × H850 − 0.236 × HRMN If [O3 MAX_16D1] = ]105.50; 181.87] O3 MAX = 0.994 × O3_max_16D1 − 0.433 × O3_max_23D1 + 0.051 × H850 − 0.529 × HRMN If [O3 MAX_16D1] > 181.87 O3 MAX = 1.006 × O3_max_16D1 − 0.472 × O3_max_23D1 + 0.12 × H850 − 2.025 × HRMN | |
Taipa Residential | NO2 | NO2 = 0.859 × NO2_16D1 + 0.007 × H850 − 0.271 × TD_MD |
PM10 | PM10 = 0.902 × PM10_16D1 + 0.015 × H850 − 0.204 × HRMD | |
PM2.5 | PM2.5 = 0.938 × PM25_16D1 − 0.607 × TD_MD + 0.703 × TAR925 | |
O3 MAX | If [O3 MAX_16D1] ≤ 129.12 O3 MAX = 1.028 × O3_max_16D1 − 0.238 × O3_max_23D1 + 0.019 × H850 − 0.216 × HRMN If [O3 MAX_16D1] = [129.12; 207.10] O3 MAX = 0.958 × O3_max_16D1 − 0.381 × O3_max_23D1 + 0.061 × H850 − 0.751 × HRMN If [O3 MAX_16D1] > 207.10 O3 MAX = 1.12 × O3_max_16D1 − 0.5 × O3_max_23D1 + 0.14 × H850 − 2.818 × HRMN | |
Coloane Ambient | NO2 | NO2 = 0.931 × NO2_16D1 − 0.503 × TD_MD + 0.628 × TAR925 |
PM10 | PM10 = 0.904 × PM10_16D1 + 0.015 × H850 − 0.214 × HRMD | |
PM2.5 | PM2.5 = 0.927 × PM25_16D1 + 0.005 × H850 − 0.069 × HRMN | |
O3 MAX | If [O3 MAX_16D1] ≤ 116.20 O3 MAX = 1.021 × O3_max_16D1 − 0.233 × O3_max_23D1 + 1.650 × T_AIR_MX − 1.392 × TD_MD If [O3 MAX_16D1] = ]116.20; 186.92] O3 MAX = 0.831 × O3_max_16D1 − 0.397 × O3_max_23D1 + 4.929 × T_AIR_MX − 3.384 × TD_MD If [O3 MAX_16D1] > 186.92 O3 MAX = 0.921 × O3_max_16D1 − 0.482 × O3_max_23D1 + 8.868 × T_AIR_MX − 8.582 × TD_MD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, M.T.; Monjardino, J.; Mendes, L.; Gonçalves, D.; Ferreira, F. Statistical Forecast of Pollution Episodes in Macao during National Holiday and COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 5124. https://doi.org/10.3390/ijerph17145124
Lei MT, Monjardino J, Mendes L, Gonçalves D, Ferreira F. Statistical Forecast of Pollution Episodes in Macao during National Holiday and COVID-19. International Journal of Environmental Research and Public Health. 2020; 17(14):5124. https://doi.org/10.3390/ijerph17145124
Chicago/Turabian StyleLei, Man Tat, Joana Monjardino, Luisa Mendes, David Gonçalves, and Francisco Ferreira. 2020. "Statistical Forecast of Pollution Episodes in Macao during National Holiday and COVID-19" International Journal of Environmental Research and Public Health 17, no. 14: 5124. https://doi.org/10.3390/ijerph17145124
APA StyleLei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2020). Statistical Forecast of Pollution Episodes in Macao during National Holiday and COVID-19. International Journal of Environmental Research and Public Health, 17(14), 5124. https://doi.org/10.3390/ijerph17145124