Experimental Investigation of Air Quality in a Subway Station with Fully Enclosed Platform Screen Doors
Abstract
:1. Introduction
2. Method
2.1. Field Study
2.2. Data Analysis
3. Results
3.1. Passenger Flow and Train Frequency
3.2. Air Pollutant Concentrations
3.3. AQI
4. Discussion
4.1. Variations of Indoor Air Pollutants
4.2. Comparison with Previous Studies
4.3. I/O Ratios
4.4. Influencing Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, S.; Zhang, X.; Sun, W.; Wang, J. The effect of a new subway line on local air quality: A case study in Changsha. Transp. Res. Part 2019, 68, 26–38. [Google Scholar] [CrossRef]
- Da Silva, C.B.P.; Saldiva, P.H.N.; Amato-Lourenço, L.F.; Rodrigues-Silva, F.; Miraglia, S.G.E.K. Evaluation of the air quality benefits of the subway system in Sao Paulo, Brazil. J. Environ. Manag. 2012, 101, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X. STESS: Subway thermal environment simulation software. Sustain. Cities Soc. 2018, 38, 98–108. [Google Scholar] [CrossRef]
- Kim, G.S.; Son, Y.S.; Lee, J.H.; Kim, I.W.; Kim, J.C.; Oh, J.T.; Kim, H. Air pollution monitoring and control system for subway stations using environmental sensors. J. Sens. 2016, 2016. [Google Scholar] [CrossRef]
- Xu, B.; Hao, J. Air quality inside subway subway indoor environment worldwide: A review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Mauderly, J.L.; Costa, D.L.; Wyzga, R.E.; Vedal, S.; Hidy, G.M.; Altshuler, S.L.; Marrack, D.; Heuss, J.M.; et al. Health effects of fine particulate air pollution: Lines that connect. Air Repair 2006, 56, 1368–1380. [Google Scholar]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health Part 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Wang, C.C.; Cao, D.C.; Wong, C.M.; Kan, H.D. Short-term effect of ambient air pollution on COPD mortality in four Chinese cities. Atmos. Environ. 2013, 77, 149–154. [Google Scholar] [CrossRef]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older us adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef]
- Casset, A.; Marchand, C.; le Calvé, S.; Mirabel, P.; de Blay, F. Human exposure chamber for known formaldehyde levels: Generation and validation. Indoor Built Environ. 2005, 14, 173–182. [Google Scholar] [CrossRef]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, France. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. Iarc. Monogr. Eval. Carcinog. Risks Hum. 2006, 88, 1–478. [Google Scholar]
- Zhou, Y.; Zhang, S.; Li, Z.; Zhu, J.; Bi, Y.; Bai, Y.; Wang, H. Maternal benzene exposure during pregnancy and risk of childhood acute lymphoblastic leukemia: A meta-analysis of epidemiologic studies. PLoS ONE 2014, 9, e110466. [Google Scholar] [CrossRef] [PubMed]
- Golhosseini, M.J.; Kakooei, H.; Shahtaheri, J.; Azam, K. Trend of exposure to carbon monoxide in Tehran taxi drivers during one year. J. Sch. Public Health Inst. Public Health Res. 2015, 13, 57–68. [Google Scholar]
- Naghizadeh, A.; Sharifzadeh, G.; Khavari, M. Measurement of CO concentrations in indoor and atmospheric ambient air of Birjand (September 2012 to March 2013). J. Birjand Univ. Med. Sci. 2015, 22, 266–273. [Google Scholar]
- Duan, Y.; Wu, X.; Liang, S.; Jin, F. Elevated blood ammonia level is a potential biological risk factor of behavioral disorders in prisoners. Behav. Neurol. 2015, 2015, 797862. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.H.; Park, W.M. Radon and PM10 concentrations in underground parking lots and subway stations with health risks in South Korea. Environ. Sci. Res. 2018, 25, 35242–35248. [Google Scholar] [CrossRef]
- Hwang, S.H.; Park, J.B.; Park, W.M. Radon and NO2 levels and related environmental factors in 100 underground subway platforms over two-year period. J. Environ. Radioact. 2018, 181, 102–108. [Google Scholar] [CrossRef]
- Kwon, S.B.; Cho, Y.; Park, D.; Park, E.Y. Study on the indoor air quality of Seoul metropolitan subway during the rush hour. Indoor Built Environ. 2008, 17, 361–369. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, J.S.; Bae, S.J.; Kim, S.D. Research study on indoor air quality (iaq) inside of the subway cabin in Seoul metropolitan city. J. Korean Soc. Atmos. Environ. 2014, 30, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Park, W.M.; Park, J.B.; Roh, J.; Hwang, S.H. Levels of formaldehyde and TVOCs and influential factors of 100 underground station environments from 2013 to 2015. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1030–1042. [Google Scholar] [CrossRef]
- Pan, S.; Du, S.; Wang, X.; Zhang, X.; Xia, L.; Liu, J.; Pei, F.; Wei, Y. Analysis and interpretation of the particulate matter (PM10 and PM2.5) concentrations at the subway stations in Beijing, China. Sustain. Cities Soc. 2019, 45, 366–377. [Google Scholar] [CrossRef]
- Guan, B.; Zhang, T.; Liu, X. Performance investigation of outdoor air supply and indoor environment related to energy consumption in two subway stations. Sustain. Cities Soc. 2018, 41, 513–524. [Google Scholar] [CrossRef]
- Van Drooge, B.L.; Prats, R.M.; Reche, C.; Minguillón, M.; Querol, X.; Grimalt, J.O.; Moreno, T. Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. Sci. Total Environ. 2018, 642, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Querol, X.; Moreno, T.; Karanasiou, A.; Reche, C.; Alastuey, A.; Viana, M.; Font, O.; Gil, J.; de Miguel, E.; Capdevila, M. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 2012, 12, 5055–5076. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.; Moreno, T.; Minguilln, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Moreno, T.; Perez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillon, M.C.; Amato, F.; Alastuey, A.; et al. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 2014, 92, 461–468. [Google Scholar] [CrossRef]
- Mammi-Galani, E.; Eleftheriadis, K.; Mendes, L.; Lazaridis, M. Exposure and dose to particulate matter inside the subway system of Athens, Greece. Air Qual. Atmos. Health. 2017, 10, 1015–1028. [Google Scholar] [CrossRef]
- Assimakopoulos, M.N.; Dounis, A.; Spanou, A.; Santamouris, M. Indoor air quality in a metropolitan area metro using fuzzy logic assessment system. Sci. Total Environ. 2013, 449, 461–469. [Google Scholar] [CrossRef]
- Grass, D.S.; Ross, J.M.; Family, F.; Barbour, J.; James, S.H.; Coulibaly, D.; Hernandez, J.; Chen, Y.; Slavkovich, V.; Li, Y.; et al. Airborne particulate metals in the New York city subway: A pilot study to assess the potential for health impacts. Environ. Res. 2010, 110, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhao, L.J.; Zhu, D.L.; Gao, H.O.; Xie, Y.J.; Li, H.Y.; Xu, X.; Wang, H.B. Characteristics of particulate matter (PM) concentrations influenced by piston wind and train door opening in the Shanghai subway system. Transp. Res. Part D Transp. Environ. 2016, 47, 77–88. [Google Scholar] [CrossRef]
- Tokarek, S.; Bernis, A. An example of particle concentration reduction in Parisian subway stations by electrostatic precipitation. Environ. Technol. 2006, 27, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Colombi, C.; Angius, S.; Gianelle, V.; Lazzarini, M. Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 2013, 70, 166–178. [Google Scholar] [CrossRef]
- Tan, S.H.; Roth, M.; Velasco, E. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 2017, 170, 245–258. [Google Scholar] [CrossRef]
- Smith, J.D.; Barratt, B.M.; Fuller, G.W.; Kelly, F.J.; Loxham, M.; Nicolosi, E.; Priest man, M.; Temper, A.H.; Green, D.C. PM2.5 on the London underground. Environ. Int. 2020, 134, 105118. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Liu, X.; Zhang, T.; Xia, J. Energy consumption of subway stations in China: Data and influencing factors. Sustain. Cities Soc. 2018, 43, 451–461. [Google Scholar] [CrossRef]
- Cao, R.-G.; You, S.-J.; Dong, S.-Y. Energy consumption analysis and reconstruction of subway platform screen doors in northern cities for energy-saving. J. Chongqing Univ. 2009, 32, 218–222. [Google Scholar]
- Roh, J.S.; Ryou, H.S.; Park, W.H.; Jang, Y.J. CFD simulation and assessment of life safety in a subway train fire. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2008, 24, 447–453. [Google Scholar] [CrossRef]
- Roh, J.S.; Ryou, H.S.; Yoon, S.W. The effect of PSD on life safety in subway station fire. J. Mech. Sci. Technol. 2010, 24, 937–942. [Google Scholar] [CrossRef]
- Kim, K.; Ho, D.X.; Jeon, J.; Kim, J. A noticeable shift in particulate matter levels after platform screen door installation in a Korean subway station. Atmos. Environ. 2012, 49, 219–223. [Google Scholar] [CrossRef]
- Han, H.; Lee, J.Y.; Jang, K.J. Effect of platform screen doors on the indoor air environment of an underground subway station. Indoor Built Environ. 2015, 24, 672–681. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, Y.S.; Ataei, A.; Kim, J.T.; Lim, J.J. Statistical evaluation of indoor air quality changes after installation of the PSD system in Seoul’s subway. Indoor Built Environ. 2011, 20, 361–369. [Google Scholar]
- Son, Y.S.; Salama, A.; Jeong, H.S.; Kim, S.; Jeong, J.H.; Lee, J.; Sunwoo, Y.; Kim, J.-C. The effect of platform screen doors on PM10 levels in a subway station and a trial to reduce PM10 in tunnels. Asian J. Atmos. Environ. 2013, 7, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.J.; Jeon, J.S.; Kim, S.D.; Kim, D.S. A comparative study on PM10 source contributions in a Seoul subwaypolitan subway station before/after installing platform screen doors. J. Korean Soc. Atmos. Environ. 2010, 26, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, J. SPSS as a means for scientific analysis in social science research. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2043–2045. [Google Scholar]
- Xin, L.; Jianping, S.; Xiwe, W.; Zhongqi, W. Study on the index mode of indoor air quality evaluation. Environ. Prot. Sci. 2007, 06, 6–7. [Google Scholar]
- State Bureau of Technical Supervision. Hygienic Standard for Waiting Room of Public Transit Means, GB9672-1996. Available online: http://g.wanfangdata.com.cn/details/detail.do?_type=standards&id=GB9672-1996 (accessed on 17 July 2020).
- Railway Passenger Train Hygiene and Testing Technique Provision, TB/T 1932-2014. Available online: http://g.wanfangdata.com.cn/details/detail.do?_type=standards&id=TB/T1932-2014 (accessed on 17 July 2020).
- Ministry of health; State Environmental Protection Administration. Indoor Air Quality Standard, GBT18883-2002. Available online: http://g.wanfangdata.com.cn/details/detail.do?_type=standards&id=GB/T18883-2002 (accessed on 17 July 2020).
- Ambient Air Quality Standards, GB3095-2012. Available online: http://g.wanfangdata.com.cn/details/detail.do?_type=standards&id=GB3095-2012 (accessed on 17 July 2020).
- Salthammer, T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Build. Environ. 2019, 150, 219–232. [Google Scholar] [CrossRef]
- Liu, L.; Yu, X.; Dong, X.; Wang, Q.; Wang, Y.; Huang, J. The Research on Formaldehyde Concentration Distribution in New Decorated Residential Buildings. In Proceedings of the 10th International Symposium on Heating, Ventilation and Air Conditioning, Jinan, China, 19–22 October 2017; pp. 1535–1541. [Google Scholar]
- Mo, W.; Zhang, X.; Wang, P.; Gu, A. Evaluation of pollution level of volatile organic compounds in subway station by VEF value. Environ. Occup. Med. 2004, 4, 284–287. [Google Scholar]
- Heydarizadeh, A.; Kahforoushan, D. Estimation of real-world traffic emissions for CO, SO2, and NO2 through measurements in urban tunnels in Tehran, Iran. Environ. Sci. Pollut. Res. Int. 2019, 26, 26577–26592. [Google Scholar] [CrossRef]
- Deepak, S.; Jaya, D. Seasonal variations in mass concentrations of PM10 and PM2.5 at traffic intersection and residential sites in Raipur city. Res. J. Chem. Environ. 2018, 22, 25–31. [Google Scholar]
- Kalaiarasan, G.; Balakrishnan, R.M.; Sethunath, N.A.; Manoharan, S. Source apportionment studies on particulate matter (PM10 and PM2.5) in ambient air of urban Mangalore, India. J. Environ. Manag. 2018, 217, 815–824. [Google Scholar] [CrossRef]
- Park, D.; Ha, K. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea. Environ. Int. 2008, 34, 629–634. [Google Scholar] [CrossRef]
- Han, X.; Chen, Y.; Deng, H.; Shi, J.; Lu, X.; Du, G. Detection and analysis of ambient air quality of Kunming Metro. J. Yunnan Univ. 2017, 39, 1023–1029. [Google Scholar]
- Chen, Y.; Sung, F.; Chen, M.; Mao, I.; Lu, C. Indoor air quality in the metro system in north Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sili, J. Investigation and analysis of SO2 and NO2 at stations before and after operation of the first section of Guangzhou metro line 2. J. Guangdong Pharm. Univ. 2004, 20, 165–166. [Google Scholar]
- Mao, P.; Li, J.; Xiong, L.; Wang, R.; Wang, X.; Tan, Y.; Li, H. Characterization of urban subway microenvironment exposure—A case of Nanjing in China. Int. J. Environ. Res. Public Health 2019, 16, 625. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.H.; Park, W.M.; Park, J.B.; Nam, T. Characteristics of PM10, and CO2, concentrations on 100 underground subway station platforms in 2014 and 2015. Atmos. Environ. 2007, 167, 143–149. [Google Scholar] [CrossRef]
- Son, Y.-S.; Jeon, J.-S.; Lee, H.J.; Ryu, I.-C.; Kim, J.-C. Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains. J. Air Waste Manag. Ass. 2014, 64, 1054–1061. [Google Scholar] [CrossRef]
- Ielpo, P.; Mangia, C.; Marra, G.P.; Comite, V.; Rizza, U.; Uricchio, V.F.; Fermo, P. Outdoor spatial distribution and indoor levels of NO2 and SO2 in a high environmental risk site of the south Italy. Sci. Total Environ. 2019, 648, 787–797. [Google Scholar] [CrossRef]
- Sanger-Katz, M.; Schwartz, J. Assessing the possible health effects from volkswagen’s diesel deception. N. Y. Times 2015, 165, B1–B2. [Google Scholar]
Indoor Air Pollutants | Measurement Range | Precision |
---|---|---|
NH3 | 0–30 ppm | 1 ppb |
TVOC | 0–10 ppm | 1 ppb |
CO | 0–50 ppm | 1 ppb |
CH2O | 0–10 ppm | 1 ppb |
NO2 | 0–2 ppm | 0.1 ppb |
SO2 | 0–2 ppm | 0.1 ppb |
PM10 | 0–0.5 mg/m3 | 0.001 mg/m3 |
PM2.5 | 0–0.5 mg/m3 | 0.001 mg/m3 |
Integrated AQI | Air Level | Implication |
---|---|---|
0–0.5 | Good | Air quality is satisfactory. |
0.5–1.0 | Acceptable | Air quality is acceptable. There may be some risks for unusually sensitive groups. |
1.0–1.5 | Slight | One air pollutant exceeds its limit value. There are potential health risks for the susceptive groups. |
1.5–2.0 | Moderate | Two or three air pollutants exceed their limit values. There are health risks. |
>2.0 | Heavy | More than three air pollutants exceed their limit values. There are serious health risks. |
Air Pollutants | Concentration Limit | References | Time-Average |
---|---|---|---|
CO | 10 mg/m3 | [48,49,50] | 1 h average |
CH2O | 0.12 mg/m3 | [48] | n/a |
TVOC | 0.6 mg/m3 | [50] | 8 h average |
SO2 | 0.5 mg/m3 | [50] | 1 h average |
NH3 | 0.2 mg/m3 | [50] | 1 h average |
NO2 | 0.24 mg/m3 | [50] | 1 h average |
PM10 | 0.25 mg/m3 | [48,49] | n/a |
PM2.5 | 75 μg/m3 | [51] | 24 h average |
Pollutants | Min (Mg/M3) | Max (Mg/M3) | Mean ± SD (Mg/M3) | Maximum Permissible Concentration (Mg/M3) |
---|---|---|---|---|
NH3 | 0.012 | 0.014 | 0.012 ± 0.0004 | 0.200 |
CH2O | 0.008 | 0.079 | 0.035 ± 0.0161 | 0.120 |
TVOC | 0.374 | 0.423 | 0.405 ± 0.0092 | 0.600 |
NO2 | 0.006 | 0.127 | 0.034 ± 0.026 | 0.240 |
SO2 | 0.001 | 0.007 | 0.003 ± 0.0012 | 0.500 |
CO | 0.046 | 0.111 | 0.059 ± 0.0144 | 10.000 |
PM10 | 0.008 | 0.237 | 0.061 ± 0.044 | 0.250 |
PM2.5 | 0.006 | 0.196 | 0.048 ± 0.036 | 0.075 |
Pollutant | Average Concentration | City | Reference | Platform Type | Season | Average Passenger Per Hour |
---|---|---|---|---|---|---|
NH3 | 119.63 ± 3.06 µg/m3 | Kunming | [59] | Fully enclosed platform | n/a | n/a |
CH2O | 15.4 ± 7.2 µg/m3 | Seoul | [21] | Fully enclosed platform | Summer | 45,115 |
CH2O | 0.017 ± 0.016 mg/m3 | Taipei | [60] | Both fully and semi enclosed platforms | Summer | n/a |
TVOC | 0.064 ± 0.035 ppm | Taipei | [60] | Both fully and semi enclosed platforms | Summer | n/a |
TVOC | 156.5 ± 78.2 µg/m3 | Seoul | [21] | Fully enclosed platform | Summer | 45,115 |
NO2 | 0.053 ± 0.008 mg/m3 | Seoul | [18] | Fully enclosed platform | Summer | 37,908 |
SO2 | 0.13 ± 0.01 mg/m3 | Guangzhou | [61] | Fully enclosed platform | Summer | n/a |
CO | 2.825 ± 0.69 mg/m3 | Taipei | [60] | Both fully and semi enclosed platforms | Summer | n/a |
CO | 0.3 ± 0.2 mg/m3 | Nanjing | [62] | Fully enclosed platform | Transitional season | n/a |
PM10 | 0.185 ± 0.128 mg/m3 | Nanjing | [62] | Fully enclosed platform | Transitional season | n/a |
PM10 | 90.7 ± 9.9 µg/m3 | Seoul | [63] | Fully enclosed platform | Summer | 57,251 |
PM10 | 80.9 ± 34.9 µg/m3 | Taipei | [60] | Both fully and semi enclosed platforms | Summer | n/a |
PM2.5 | 105.4 ± 14.4 µg/m3 | Seoul | [58] | n/a | Winter | n/a |
PM2.5 | 56.2 ± 33.1 µg/m3 | Taipei | [60] | Both fully and semi enclosed platforms | Summer | n/a |
Factors | Indoor Air Pollutants and AQI | ||||||||
---|---|---|---|---|---|---|---|---|---|
PM2.5 | PM10 | SO2 | NO2 | CO | NH3 | TVOC | CH2O | AQI | |
Corresponding outdoor values | 0.951 ** | 0.858 ** | 0.732 ** | 0.868 ** | 0.915 ** | n/a | n/a | n/a | 0.649 ** |
Passenger flows | 0.190 | 0.201 * | –0.129 | 0.125 | 0.149 | 0.128 | −0.012 | 0.184 | 0.164 |
Train frequency | 0.198 | 0.209 * | −0.136 | 0.143 | 0.170 | 0.098 | −0.068 | 0.199 | 0.164 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, L.; Yang, C.; Cao, X.; Tian, Q.; Li, B. Experimental Investigation of Air Quality in a Subway Station with Fully Enclosed Platform Screen Doors. Int. J. Environ. Res. Public Health 2020, 17, 5213. https://doi.org/10.3390/ijerph17145213
Pang L, Yang C, Cao X, Tian Q, Li B. Experimental Investigation of Air Quality in a Subway Station with Fully Enclosed Platform Screen Doors. International Journal of Environmental Research and Public Health. 2020; 17(14):5213. https://doi.org/10.3390/ijerph17145213
Chicago/Turabian StylePang, Liping, Chenyuan Yang, Xiaodong Cao, Qing Tian, and Bo Li. 2020. "Experimental Investigation of Air Quality in a Subway Station with Fully Enclosed Platform Screen Doors" International Journal of Environmental Research and Public Health 17, no. 14: 5213. https://doi.org/10.3390/ijerph17145213
APA StylePang, L., Yang, C., Cao, X., Tian, Q., & Li, B. (2020). Experimental Investigation of Air Quality in a Subway Station with Fully Enclosed Platform Screen Doors. International Journal of Environmental Research and Public Health, 17(14), 5213. https://doi.org/10.3390/ijerph17145213