Evolution of External Health Costs of Electricity Generation in the Baltic States
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
4. Results of Case Study in the Baltic States
4.1. External Health Costs of Atmospheric Emissions
4.2. External Health Costs of Electricity Generation Technologies in Baltic States
4.3. Dynamics of Health Indicators in Baltic States
4.4. Relationship between External Health Costs of Electricity Generation and Health Indicators
4.5. Internalization of External Costs Baltic States
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Streimikiene, D.; Alisauskaite-Seskiene, I. Comparative Assessment of External Costs and Pollution Taxes in Baltic States, Czech Republic and Slovakia. Ekon. A Manag. 2016, XIX, 4–18. [Google Scholar]
- Redondo, A.J.G.; Collado, R.R. An economic valuation of renewable electricity promoted by feed-in system in Spain. Renew. Energy 2014, 68, 51–57. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy Sustain. Dev. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Bento, N.; Borello, M.; Gianfrate, G. Market-pull policies to promote renewable energy: A quantitative assessment of tendering implementation. J. Clean. Prod. 2020, 248, 119209. [Google Scholar] [CrossRef]
- Jorli, M.; van Passel, S.; Sadeghi, H.; Nasseri, A.; Agheli, L. Estimating human health impacts and costs due to Iranian fossil fuel power plant emissions through the impact pathway approach. Energies 2017, 10, 2136. [Google Scholar] [CrossRef] [Green Version]
- Karimzadegan, H.; Rahmatian, M.; Farhood, D.; Yunesian, M. Economic Valuation of Premature Mortality and Morbidity. Int. J. Environ. Res. 2007, 1, 128–135. [Google Scholar]
- Rowe, R.D.; Lang, C.M.; Chestnut, L.G.; Latimer, D.A.; Rae, D.A.; Bernow, S.M.; White, D.E. New York State Environmental Externalities Cost Study; Oceana: New York, NY, USA, 1995. [Google Scholar]
- Burtraw, D.; Krupnick, A. The True Costs of Electric Power: Summary for Policy Makers. Available online: http://www.ren21.net/Portals/0/documents/Resources/RFF-Rpt-BurtrawKrupnick.TrueCosts_Summary_web.pdf (accessed on 12 December 2019).
- Abadie, L.M.; Chamorro, J.M. Levelized Cost of Electricity: Key Drivers and Valuation Methods. Dyna 2019, 94, 656. [Google Scholar]
- European Commission. ExternE Externalities of Energy. Vol.1: Summary; Vol.2: Methodology; Vol.3: Coal and Lignite; Vol.4: Oil and Gas; Vol.5: Nuclear; Vol.6: Wind and Hydro. Available online: https://portals.iucn.org/library/node/22494 (accessed on 15 January 2020).
- Bickel, P.; Friedrich, R. ExternE Externalities of Energy Methodology 2005 Update. Available online: http://www.externe.info/externe_2006/brussels/methup05a.pdf (accessed on 25 November 2019).
- European Commission. ExternE Volume 10 National Implementation. Available online: http://www.externe.info/externe_d7/sites/default/files/vol10.pdf (accessed on 23 December 2019).
- CASES. D.06.1 Database of Full Costs for EU, with External and Private Costs. Available online: http://www.feem-project.net/cases/downloads_deliverables.php (accessed on 2 January 2020).
- NEED. External Costs from Emerging Electricity Generation Technologies. Deliverable n° 6.1-RSla, Sustainable Energy Systems. Available online: http://www.needs-project.org/docs/RS1a%20D6_1%20External%20costs%20of%20reference%20technologies%2024032009.pdf (accessed on 24 March 2020).
- Sundqvist, T.; Soderholm, P. Valuing the environmental impacts of electricity generation: A critical survey. J. Energy Lit. 2002, 8, 3–41. [Google Scholar]
- Samadi, S. The social costs of electricity generation-categorising different types of costs and evaluating their respective relevance. Energies 2017, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Gauderman, W.J.; Avol, E.; Gilliland, F.; Vora, H.; Thomas, D.; Berhane, K.; McConnell, R.; Kuenzli, N.; Lurmann, F.; Rappaport, E.; et al. The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 2004, 351, 1057–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, S.I.V.; Alvim-Ferraz, M.C.M.; Martins, F.G. Health effects of ozone focusing on childhood asthma: What is now known-A review from an epidemiological point of view. Chemosphere 2013, 90, 2051–2058. [Google Scholar] [CrossRef]
- Torfs, R.; Hurley, F.; Miller, B.; Rabl, A. A Set of Concentration-Response Functions. Available online: http://www.needs-project.org/2009/Deliverables/Rs1b%20D3.7.pdf (accessed on 10 April 2020).
- National Research Council. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Epstein, P.R.; Buonocore, J.J.; Eckerle, K.; Hendryx, M.; Stout, B.M., III; Heinberg, R.; Clapp, R.W.; May, B.; Reinhart, N.L.; Ahem, M.M.; et al. Full cost accounting for the life cycle of coal. Ann. N. Y. Acad. Sci. 2011, 1219, 73–98. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and longterm exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, J.; Coull, B.; Laden, R.; Ryan, L. The effect of dose and timing of dose on the association between airborne particles and survival. Environ. Health Perspect. 2008, 116, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Machol, B.; Rizk, S. Economic value of U.S. fossil fuel electricity health impacts. Environ. Int. 2013, 52, 75–80. [Google Scholar] [CrossRef]
- Vrhovcak, M.B.; Tomsic, Z.; Debrecin, N. External costs of electricity production: Case study Croatia. Energy Policy 2005, 33, 1385–1395. [Google Scholar] [CrossRef]
- Dimitrijevic, Z.; Tatic, K.; Knezevic, A.; Salihbegovic, I. External costs from coal-fired thermal plants and sulphur dioxide emission limit values for new plants in Bosnia and Herzegovina. Energy Policy 2011, 39, 3036–3041. [Google Scholar] [CrossRef]
- Bosnjakovic, M.; Tadijanovic, V. Environment Impact of a Concentrated Solar Power Plant. Teh. Glas. 2019, 31, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Abadie, L.M.; Goicoechea, N. Review and analysis of energy storage systems by hydro-pumping to support a mix of electricity generation with a high percentage of renewables. Dyna 2019, 94, 669–675. [Google Scholar]
- Georgakellos, D.A. Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector. Energy Econ. 2010, 32, 202–209. [Google Scholar] [CrossRef]
- Karimzadegan, H.; Rahmatian, M.; Farsiabi, M.M.; Meiboudi, H. Social cost of fossil-based electricity generation plants in Iran. Environ. Eng. Manag. J. 2015, 14, 2373–2382. [Google Scholar]
- Mahapatra, D.; Shukla, P.; Dhar, S. External cost of coal based electricity generation: A tale of Ahmedabad city. Energy Policy 2012, 49, 253–265. [Google Scholar] [CrossRef]
- Turtos Carbonell, L.; Meneses Ruiz, E.; Sanchez Gacita, M.; Rivero Oliva, J.; Díaz Rivero, N. Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estim. Extern. Costs Atmos. Environ. 2007, 41, 2202–2213. [Google Scholar] [CrossRef]
- Spalding-Fecher, R.; Matibe, D.K. Electricity and externalities in South Africa. Energy Policy 2003, 31, 721–734. [Google Scholar] [CrossRef]
- Macías, P.; Islas, J. Damage costs produced by electric power plants: An externality valuation in the Mexico City metropolitan area. Sci. Total Environ. 2010, 408, 4511–4523. [Google Scholar] [CrossRef]
- Hainoun, A.; Almoustafa, A.; Seif Aldin, M. Estimating the health damage costs of Syrian electricity generation system using impact pathway approach. Energy 2010, 35, 628–638. [Google Scholar] [CrossRef]
- Buke, T.; Kone, A.C. Estimation of the health benefits of controlling air pollution from the Yatagan coal-fired power plant. Environ. Sci. Policy 2011, 14, 1113–1120. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Zhou, P.; Chang, Y.; Zhou, D.; Pang, M.; Yin, H. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective. J. Environ. Manag. 2019, 246, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, Á.; Bazzo, E.; Miyake, R. A life cycle assessment of the Brazilian coal used for electric power generation. J. Clean. Prod. 2015, 92, 179–186. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Benson, C.H. Case history of environmental impacts of an Indonesian coal supply chain. J. Clean. Prod. 2017, 157, 47–56. [Google Scholar] [CrossRef]
- Rimos, S.; Hoadley, A.F.; Brennan, D.J. Resource depletion impact assessment: Impacts of a natural gas scarcity in Australia. Sustain. Prod. Consum. 2015, 3, 45–58. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, S.; Zhao, Y.; Li, H.; He, G.; Li, L. Life-cycle-based water footprint assessment of coal-fired power generation in China. J. Clean. Prod. 2020, 254, 120098. [Google Scholar] [CrossRef]
- Chary, K.; Aubin, J.; Guindé, L.; Sierra, J.; Blazy, J. Cultivating biomass locally or importing it? LCA of biomass provision scenarios for cleaner electricity production in a small tropical island. Biomass Bioenergy 2018, 110, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rafaj, P.; Kypreos, S. Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model. Energy Policy 2007, 35, 828–843. [Google Scholar] [CrossRef]
- Klaasen, G.; Riahi, K. Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO. Energy Policy 2007, 35, 815–827. [Google Scholar] [CrossRef]
- Karkour, S.; Ichisugi, Y.; Abeynayaka, A.; Itsubo, N. External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method. Sustainability 2020, 12, 2002. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Itsubo, N.; Kuriyama, K.; Yoshida, K.; Tokimatsu, K. Development of weighting factors for G20 countries. Part 2: Estimation of willingness to pay and annual global damage cost. Int. J. Life Cycle Assess. 2018, 23, 2349–2364. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Rabl, A.; Spadaro, J.V. External costs of energy: How much is clean energy worth? J. Sol. Energy Eng. 2016, 138, 1–8. [Google Scholar] [CrossRef]
- Hausman, J. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. Available online: https://www.jstor.org/stable/1913827 (accessed on 21 July 2020). [CrossRef] [Green Version]
- Eurostat. Energy Database. Available online: https://ec.europa.eu/eurostat/web/energy/data/database (accessed on 10 April 2020).
- European Observatory on Health Systems and Policies. Country Health Profiles. Available online: http://www.euro.who.int/en/about-us/partners/observatory/publications/country-health-profiles (accessed on 10 April 2020).
- European Commission. 2030 Energy Strategy. Available online: https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy (accessed on 5 April 2020).
- Lu, J.; Ren, L.; Yao, S.; Rong, D.; Skare, M.; Streimikis, J. Renewable energy barriers and coping strategies: Evidence from the Baltic States. Sustain. Dev. 2019, 28, 352–367. [Google Scholar] [CrossRef]
- Sres, S. Legal Sources on Renewables Energy. Available online: http://www.res-legal.eu/home/ (accessed on 10 April 2020).
- CEER. Status Review of Renewable and Energy Efficiency Support Schemes in Europe in 2016 and 2017. Available online: https://www.ceer.eu/documents/104400/-/-/80ff3127-8328-52c3-4d01-0acbdb2d3bed (accessed on 11 January 2020).
- Ortega-lzquierdo, M.; del Rio, P. Benefits and costs of renewable electricity in Europe. Renew. Sustain. Energy Rev. 2016, 61, 372–383. [Google Scholar] [CrossRef]
- Ortega, M.; del Rio, P.; Montero, E.A. Assessing the benefits and costs of renewable electricity. The Spanish case. Renew. Sustain. Energy Rev. 2013, 27, 294–304. [Google Scholar] [CrossRef]
Airborne Pollutants | Physical Impact | Monetization of Physical Impacts, EUR |
---|---|---|
PM diameter < 2.5 microns | ||
Reduction of Life Expectancy (Years) | 6.51 × 10−4 | 40,000 |
Restricted Activity Days | 3.69 × 10−2 | 38 |
Days of Work Lost | 1.39 × 10−2 | 295 |
Restricted Activity Days | 9.59 × 10−3 | 130 |
PM diameter < 10 microns | ||
Infant’s increased Risk of Mortality | 6.84 × 10−8 | 3,000,000 |
Chronic Bronchitis (new cases) | 1.86 × 10−3 | 200,000 |
Respiratory Hospital Admissions | 7.03 × l0−6 | 2000 |
Cardiological Hospital Admissions | 4.36 × 10−6 | 2000 |
Adult’s Lower Respiratory Symptoms | 3.24 × 10−2 | 38 |
Children’s Lower Respiratory Symptoms | 2.08 × 10−2 | 38 |
Primary Pollutants | Secondary Pollutants | Impacts |
---|---|---|
Particulate matter (PM10, PM2.5) | Mortality and Morbidity (congestive heart failure, chronic bronchitis, chronic cough of children, lower respiratory symptoms, asthma etc.) | |
SO2 | Mortality and Morbidity (hospitalization, asthma, sick leave, restricted activity days) | |
SO2 | Sulfates | The same like for Particulate Matters |
NO2 | Morbidity | |
NO2 | Nitrates | The same like for Particulate Matters |
NO2 + VOC | Ozone | Mortality and Morbidity (respiratory hospital admissions, restricted activity days, asthma etc.) |
Pollutants | Estonia | Lithuania | Latvia |
---|---|---|---|
Human Health Impacts of Classical Pollutants | |||
NH3 | 3323 | 2371 | 2901 |
NMVOC | 26 | 56 | 35 |
NOx | 2064 | 4653 | 3294 |
PPM co | 190 | 397 | 342 |
PPM25 | 7279 | 11,169 | 9371 |
SO2 | 3653 | 5017 | 4343 |
Human Health Impacts of Metals | |||
Cd | 46,200 | 46,200 | 46,200 |
As | 94,700 | 94,700 | 94,700 |
Ni | 4700 | 4700 | 4700 |
Pb | 710,600 | 710,600 | 710,600 |
Hg | 10,421,800 | 10,421,800 | 10,421,800 |
Cr | 37,300 | 37,300 | 37,300 |
Cr-IV | 284,200 | 284,200 | 284,200 |
Formaldehyde | 236,900 | 236,900 | 236,900 |
Dioxine | 4.40 × 1013 | 4.40 × 1013 | 4.40 × 1013 |
Estonia | Latvia | Lithuania | |
---|---|---|---|
Oil shale | 1.66702 | - | - |
Coal | 0.2942 | 0.4629 | 0.4629 |
Oil | 1.667 | 2.385 | 3.1645 |
Gas | 0.2397 | 0.3341 | 0.4361 |
Hydro | 0.0609 | 0.0417 | 0.0989 |
Wind | 0.0632 | 0.192 | 0.0753 |
Biomass | 0.1782 | 0.2355 | 0.7527 |
Biogas | 0.613 | 0.6826 | 0.7527 |
Solar | 0.1612 | 0.192 | 0.2229 |
Waste | 0.5635 | 0.72 | 0.8824 |
Nuclear | 0.4144 | 0.4254 | 0.4367 |
Fuels | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
Oil shale | 186.21 | 183.21 | 163.37 | 191.54 | 172.70 | 134.03 | 161.20 | 167.37 | 157.20 |
Coal | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.06 | 0.00 |
Oil | 0.67 | 0.67 | 1.00 | 2.17 | 0.67 | 2.17 | 4.33 | 2.00 | 1.33 |
Natural gas | 1.70 | 1.63 | 1.51 | 0.89 | 1.39 | 1.49 | 1.46 | 1.97 | 1.82 |
Hydro | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 |
Wind | 0.18 | 0.23 | 0.27 | 0.33 | 0.38 | 0.46 | 0.37 | 0.46 | 0.40 |
Biomass | 1.30 | 1.37 | 1.76 | 1.16 | 1.30 | 1.27 | 1.50 | 1.78 | 2.26 |
Biogases | 0.06 | 0.12 | 0.12 | 0.12 | 0.18 | 0.31 | 0.31 | 0.25 | 0.25 |
Solar | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.05 |
Waste | 0.00 | 0.00 | 0.00 | 0.34 | 0.39 | 0.73 | 0.73 | 0.79 | 0.56 |
Total | 190.13 | 187.25 | 168.06 | 196.60 | 177.07 | 140.46 | 169.95 | 174.70 | 163.89 |
Fuels | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
Coal | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 |
Natural gas | 9.99 | 10.06 | 6.88 | 8.92 | 7.82 | 9.22 | 9.82 | 6.92 | 10.76 |
Hydro | 1.47 | 1.21 | 1.55 | 1.21 | 0.83 | 0.78 | 1.06 | 1.83 | 1.01 |
Wind | 0.10 | 0.13 | 0.21 | 0.23 | 0.27 | 0.29 | 0.25 | 0.29 | 0.23 |
Biomass | 0.02 | 0.02 | 0.14 | 0.49 | 0.75 | 0.89 | 1.01 | 1.25 | 1.34 |
Biogasses | 0.41 | 0.75 | 1.50 | 1.98 | 2.39 | 2.66 | 2.73 | 2.80 | 2.53 |
Solar | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 11.99 | 11.69 | 10.28 | 12.84 | 12.06 | 13.84 | 14.87 | 13.08 | 15.92 |
Fuels | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
Oil | 20.57 | 6.65 | 7.59 | 6.65 | 5.06 | 8.86 | 6.96 | 4.43 | 4.11 |
Natural gas | 13.91 | 11.64 | 12.56 | 9.68 | 7.63 | 8.63 | 4.32 | 2.62 | 1.44 |
Hydro | 1.29 | 1.05 | 0.93 | 1.06 | 1.08 | 1.01 | 1.03 | 1.17 | 0.95 |
Wind | 0.17 | 0.35 | 0.41 | 0.45 | 0.48 | 0.61 | 0.86 | 1.02 | 0.86 |
Biomass | 0.90 | 0.90 | 1.35 | 2.26 | 2.41 | 2.71 | 2.41 | 2.86 | 3.01 |
Biogases | 0.23 | 0.30 | 0.30 | 0.45 | 0.60 | 0.68 | 0.90 | 0.98 | 1.05 |
Waste | 0.00 | 0.00 | 0.00 | 0.26 | 0.35 | 0.53 | 0.88 | 0.71 | 0.71 |
Solar | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.09 | 0.26 |
Total | 37.06 | 20.90 | 23.15 | 20.81 | 17.62 | 23.03 | 17.45 | 13.87 | 12.40 |
External Health Costs (EC) | Life Expectancy (LE) | Healthy Life Years (HL) | Self-Perceived Good Health | Infant Death Rate (IDR) | Long-Standing Illness (LSI) | |
---|---|---|---|---|---|---|
Latvia | ||||||
Mean | 2.553 | 4.238 | 3.983 | 3.834 | 1.526 | 3.673 |
Standard Deviation | 0.133 | 0.010 | 0.030 | 0.023 | 0.265 | 0.073 |
Maximum | 2.768 | 4.250 | 4.040 | 3.865 | 1.887 | 3.761 |
Minimum | 2.330 | 4.218 | 3.940 | 3.789 | 1.281 | 3.572 |
Observations | 9 | 9 | 9 | 9 | 9 | 9 |
Lithuania | ||||||
Mean | 2.983 | 4.235 | 4.071 | 3.804 | 1.423 | 3.470 |
Standard Deviation | 0.320 | 0.016 | 0.019 | 0.048 | 0.088 | 0.090 |
Maximum | 3.613 | 4.261 | 4.091 | 3.916 | 1.548 | 3.558 |
Minimum | 2.518 | 4.214 | 4.034 | 3.757 | 1.303 | 3.336 |
Observations | 9 | 9 | 9 | 9 | 9 | 9 |
Estonia | ||||||
Mean | 5.156 | 4.285 | 4.017 | 3.958 | 0.907 | 3.801 |
Standard Deviation | 0.100 | 0.016 | 0.015 | 0.012 | 0.138 | 0.028 |
Maximum | 5.281 | 4.304 | 4.010 | 3.980 | 1.250 | 3.833 |
Minimum | 4.945 | 4.261 | 3.987 | 3.942 | 0.761 | 3.752 |
Observations | 9 | 9 | 9 | 9 | 9 | 9 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
EC | −67.952 | −66.305 | −47.966 |
(−2.663) | (−3.815) | (−5.092) | |
LE | 0.6888 | ||
(0.0960) | |||
HL | 7.991 * | 8.219 ** | 4.374 ** |
(1.901) | (2.495) | (2.701) | |
SPG | 8.423 ** | 8.420 ** | 9.337 ** |
(4.537) | (4.855) | (5.634) | |
IDR | −1.356 | −1.371 ** | −1.684 ** |
(−2.791) | (−3.160) | (−5.261) | |
LSI | 1.540 | 1.667 | |
(0.809) | (1.284) | ||
Adjusted R2 | 0.910 | 0.920 | 0.920 |
Standard Error of Regression | 0.340 | 0.340 | 0.340 |
Number of Observations | 27 | 27 | 27 |
Renewables | Lithuania | Estonia |
---|---|---|
Wind Power Plants (PP) | Installed capacity < 10 kW: 5.2 €c/kWh Installed capacity > 10 kW < 350 kW: 5.0 €c/kWh Installed capacity > 350 kW: 4.1 €c/kWh | 5.4 €c/kWh |
Solar installations | Building-integrated solar installations: Installed capacity < 10 kW: 13.6 €c/kWh Installed capacity > 10 kW <100 kW: 12.4 €c/kWh Installed capacity >100 kW < 350kW: 11.5€c/kWh Installed capacity > 350 kW: 12.2€c/kWh Solar installations not integrated in buildings: Installed capacity < 10 kW: 16.9 €c/kWh Installed capacity > 10 kW < 100 kW: 15.2 €c/kWh Installed capacity >100 kW < 350kWh: 14.1 €c/kWh Installed capacity > 350 kWh: 14.8 €c/kWh | 5.4€c/kWh |
Geothermal PP energy | - | 5.4€c/kWh |
Biogas PP | PP using landfill gas: Installed capacity < 10 kW: 11.1 €c/kWh Installed capacity >10 kW < 500 kW: 10.6 €c/kWh Installed capacity > 500 kW: 8.6 €c/kWh PP using biogas derived from anaerobic digestion: Installed capacity < 10 kW: 13.4 €c/kWh Installed capacity >10 kW < 500 kW: 12.2 €c/kWh Installed capacity >500 kW < 1000 kW: 11.6 €c/kWh Installed capacity >1000 kW < 2000 kW: 11.0 €c/kWh Installed capacity > 2000 kW: 10.7 €c/kW | 5.4€c/kWh |
Hydro PP | Installed capacity < 10 kW:5.9€c/kWh Installed capacity > 10 kW < 1000 kW: 5.3€c/kWh Installed capacity > 1000 kW: 3. €c/kWh | 5.4€c/kWh |
Biomass PP | New PP using biomass: Installed capacity < 10 kW: 6.6 €c/kWh; Installed capacity > 10 kW < 5000 kW: 5.7€c/kWh Installed capacity > 5000 kW: 5.1 €c/kWh Reconstructed PP using biomass: Installed capacity < 10 kW: 4.6 €c/kWh Installed capacity > 10 kW < 5000 kW: 4.0 €c/kWh Installed capacity > 5000 kW: 3.5 €c/kWh | 5.4€c/kWh |
Electricity Generation Technologies | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|
Estonia | ||||||||
Solar | - | - | - | - | 16.09 | 22.62 | 20.64 | 20.50 |
Hydro | 51.85 | 51.61 | 14.50 | 10.56 | 16.09 | 22.62 | 20.64 | 20.50 |
Wind | 53.48 | 53.68 | 14.50 | 10.56 | 16.09 | 22.62 | 20.64 | 20.50 |
Biomass | 53.64 | 53.68 | 14.50 | 10.56 | 16.09 | 22.62 | 20.64 | 20.50 |
Total | 53.55 | 53.66 | 14.50 | 10.56 | 16.09 | 22.62 | 20.64 | 20.50 |
Latvia | ||||||||
Solar | - | - | - | - | ||||
Hydro | 130.03 | 138.42 | 143.32 | 137.41 | ||||
Wind | 5.17 | 67.28 | 70.47 | 72.71 | ||||
Biomass | 129.42 | 138.42 | 143.32 | 137.41 | ||||
Total | 120.22 | 117.61 | 104.85 | 117.44 | ||||
Lithuania | ||||||||
Solar | 367.82 | 191.90 | 119.21 | 116.68 | 322.95 | 326.48 | ||
Hydro | 29.45 | 25.97 | 24.67 | 21.10 | 33.51 | 36.99 | ||
Wind | 52.62 | 44.80 | 31.00 | 22.60 | 46.10 | 45.00 | ||
Biomass | 88.90 | 69.60 | 47.76 | 24.58 | 51.40 | 55.48 | ||
Total | 59.33 | 56.18 | 39.64 | 28.64 | 58.74 | 56.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zhang, C.; Ren, L.; Liang, M.; Strielkowski, W.; Streimikis, J. Evolution of External Health Costs of Electricity Generation in the Baltic States. Int. J. Environ. Res. Public Health 2020, 17, 5265. https://doi.org/10.3390/ijerph17155265
Lu J, Zhang C, Ren L, Liang M, Strielkowski W, Streimikis J. Evolution of External Health Costs of Electricity Generation in the Baltic States. International Journal of Environmental Research and Public Health. 2020; 17(15):5265. https://doi.org/10.3390/ijerph17155265
Chicago/Turabian StyleLu, Jintao, Chong Zhang, Licheng Ren, Mengshang Liang, Wadim Strielkowski, and Justas Streimikis. 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States" International Journal of Environmental Research and Public Health 17, no. 15: 5265. https://doi.org/10.3390/ijerph17155265
APA StyleLu, J., Zhang, C., Ren, L., Liang, M., Strielkowski, W., & Streimikis, J. (2020). Evolution of External Health Costs of Electricity Generation in the Baltic States. International Journal of Environmental Research and Public Health, 17(15), 5265. https://doi.org/10.3390/ijerph17155265