Relationship between Lipid Profiles and Glycemic Control Among Patients with Type 2 Diabetes in Qingdao, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Investigation and Measurements
2.3. Definitions of Glycemic Control Lipid Profiles Control and Hypertension
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaiswal, M.; Schinske, A.; Busui, R.P. Lipids and lipid management in diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alalwan, T.A.; Perna, S.; Mandeel, Q.A.; Abdulhadi, A.; Alsayyad, A.S.; D’Antona, G.; Negro, M.; Riva, A.; Petrangolini, G.; Allegrini, P.; et al. Effects of Daily Low-Dose Date Consumption on Glycemic Control, Lipid Profile, and Quality of Life in Adults with Pre- and Type 2 Diabetes: A Randomized Controlled Trial. Nutrients 2020, 12, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A. Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients 2019, 11, 1983. [Google Scholar] [CrossRef] [Green Version]
- Silvio, E.I.; Richard, M.B.; John, B.B.; Michaela, D.; Ele, F.; Michael, N.; Anne, L.P.; Apostolos, T.; Richard, W.; David, R.M. Management of Hyperglycaemia in Type 2 Diabetes, 2015: A Patient-Centred Approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2015, 58, 429–442. [Google Scholar]
- Artha, I.M.J.R.; Bhargah, A.; Dharmawan, N.K.; Pande, U.W.; Triyana, K.A.; Mahariski, P.A.; Yuwono, J.; Bhargah, V.; Prabawa, I.P.Y.; Manuaba, I.B.A.P.; et al. High level of individual lipid profile and lipid ratio as a predictive marker of poor glycemic control in type-2 diabetes mellitus. Vasc. Health Risk Manag. 2019, 15, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Drew, B.G.; Duffy, S.J.; Formosa, M.F.; Natoli, A.K.; Henstridge, D.C.; Penfold, S.A.; Thomas, W.G.; Mukhamedova, N.; de Courten, B.; Forbes, J.M.; et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 2009, 119, 2103–2111. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y.; Fukushima, M.; Suzuki, H.; Taniguchi, A.; Nakai, Y.; Kuroe, A.; Yasuda, K.; Hosokawa, M.; Yamada, Y.; Inagaki, N.; et al. Short-term intensive glycemic control improves vibratory sensation in type 2 diabetes. Diabetes Res. Clin. Pract. 2008, 80, e16–e19. [Google Scholar] [CrossRef]
- Laverdy, O.G.; Hueb, W.A.; Sprandel, M.C.; Kalil-Filho, R.; Maranhão, R.C. Effects of glycemic control upon serum lipids and lipid transfers to HDL in patients with type 2 diabetes mellitus: Novel findings in unesterified cholesterol status. Exp. Clin. Endocrinol. Diabetes 2015, 123, 232–239. [Google Scholar] [CrossRef]
- Khan, H.A.; Sobki, S.H.; Khan, S.A. Association between glycaemic control and serum lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidaemia. Clin. Exp. Med. 2007, 7, 24–29. [Google Scholar] [CrossRef]
- Omar, S.M.; Musa, I.R.; Osman, O.E.; Adam, I. Assessment of glycemic control in type 2 diabetes in the Eastern Sudan. BMC Res. Notes 2018, 11, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.T.; Yu, M.; Hu, H.; He, Q.F.; Pan, J.; Hu, R.Y. Factors associated with glycemic control in community-dwelling elderly individuals with type 2 diabetes mellitus in Zhejiang, China: A cross-sectional study. BMC. Endocr. Disord. 2019, 19, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Salinas, C.A.; Olaiz, G.; Valles, V.; Torres, J.M.; Perez, F.J.; Rull, J.A.; Rojas, R.; Franco, A.; Sepulveda, J. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J. Lipid Res. 2001, 42, 1298–1307. [Google Scholar]
- Bergenstal, R.M.; Gal, R.L.; Connor, C.G.; Gubitosi-Klug, R.; Kruger, D.; Olson, B.A.; Willi, S.M.; Aleppo, G.; Weinstock, R.S.; Wood, J.; et al. Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels. Ann. Intern. Med. 2017, 167, 95–102. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S55–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, W.; Weng, J.; Zhu, D.; Ji, L.; Lu, J.; Zhou, Z.; Zou, D.; Guo, L.; Ji, Q.; Chen, L.; et al. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab. Res. Rev. 2019, 35, e3158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Li, J.; Li, S.; Zhang, B.; Du, S.; Gordon-Larsen, P.; Adair, L.; Popkin, B. The expanding burden of cardiometabolic risk in China: The China Health and Nutrition Survey. Obes. Rev. 2012, 13, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Rodbard, H.W.; Blonde, L.; Braithwaite, S.S.; Brett, E.M.; Cobin, R.H.; Handelsman, Y.; Hellman, R.; Jellinger, P.S.; Jovanovic, L.G.; Levy, P.; et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr. Pract. 2007, 13, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.Y.; Tang, X.; Sun, K.X.; Liu, Z.K.; Xiang, X.; Juan, J.; Song, J.; Duan, Q.Z.; Zhaxi, D.J.; Hu, Y.N.; et al. [Relationship between glycemic control and visceral adiposity index among the patients with type 2 diabetes mellitus]. Beijing Da Xue Xue Bao Yi Xue Ban 2017, 49, 446–450. [Google Scholar]
- Zhang, M.; Mao, J.; Tuerdi, A.; Zeng, X.; Quan, L.; Xiao, S.; Zhu, J.; Yao, H. The Constellation of Macrovascular Risk Factors in Early Onset T2DM: A Cross-Sectional Study in Xinjiang Province. China J. Diabetes Res. 2018, 2018, 3089317. [Google Scholar] [CrossRef] [Green Version]
- de Pablos-Velasco, P.; Parhofer, K.G.; Bradley, C.; Eschwege, E.; Gönder-Frederick, L.; Maheux, P.; Wood, I.; Simon, D. Current level of glycaemic control and its associated factors in patients with type 2 diabetes across Europe: Data from the PANORAMA study. Clin. Endocrinol. 2014, 80, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Carls, G.; Huynh, J.; Tuttle, E.; Yee, J.; Edelman, S.V. Achievement of glycated hemoglobin goals in the US remains unchanged through 2014. Diabetes Ther. 2017, 8, 863–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.; Ali, I.; Kaleem, W.A.; Yasmeen, F. Correlation between Body Mass Index and Lipid Profile in patients with Type 2 Diabetes attending a tertiary care hospital in Peshawar. Pak. J. Med. Sci. 2019, 35, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Timón, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; Del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444–470. [Google Scholar]
- Lim, S.; Kang, S.M.; Kim, K.M.; Moon, J.H.; Choi, S.H.; Hwang, H.; Jung, H.S.; Park, K.S.; Ryu, J.O.; Jang, H.C. Multifactorial intervention in diabetes care using real-time monitoring and tailored feedback in type 2 diabetes. Acta Diabetol. 2016, 53, 189–198. [Google Scholar] [CrossRef]
- Abbasi, A.; Corpeleijn, E.; Gansevoort, R.T.; Gans, R.O.; Hillege, H.L.; Stolk, R.P.; Navis, G.; Bakker, S.J.; Dullaart, R.P. Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: The PREVEND study. J. Clin. Endocrinol. Metab. 2013, 98, E1352–E1359. [Google Scholar] [CrossRef] [Green Version]
- von Eckardstein, A.; Schulte, H.; Assmann, G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: Implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Münster. J. Clin. Endocrinol. Metab. 2000, 85, 3101–3108. [Google Scholar] [CrossRef]
- Waldman, B.; Jenkins, A.J.; Davis, T.M.; Taskinen, M.R.; Scott, R.; O’Connell, R.L.; Gebski, V.J.; Ng, M.K.; Keech, A.C. FIELD Study Investigators. HDL-C and HDL-C/ApoA-I predict long-term progression of glycemia in established type 2 diabetes. Diabetes Care 2014, 37, 2351–2358. [Google Scholar] [CrossRef] [Green Version]
- Mullugeta, Y.; Chawla, R.; Kebede, T.; Worku, Y. Dyslipidemia associated with poor glycemic control in type 2 diabetes mellitus and the protective effect of metformin supplementation. Indian J. Clin. Biochem. 2012, 27, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Ozder, A. Lipid profile abnormalities seen in T2DM patients in primary healthcare in Turkey: A cross-sectional study. Lipids Health Dis. 2014, 13, 183. [Google Scholar] [CrossRef] [Green Version]
- Begum, A.; Irfan, S.R.; Hoque, M.R.; Habib, S.H.; Parvin, S.; Malek, R.; Akhter, S.; Sattar, S.; Sarkar, S. Relationship between HbA1c and Lipid Profile Seen in Bangladeshi Type 2 Diabetes Mellitus Patients Attending BIRDEM Hospital: A Cross-Sectional Study. Mymensingh Med. J. 2019, 28, 91–95. [Google Scholar] [PubMed]
- Qi, Q.; Liang, L.; Doria, A.; Hu, F.B.; Qi, L. Genetic predisposition to dyslipidemia and type 2 diabetes risk in two prospective cohorts. Diabetes 2012, 61, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.K.; Dahlof, B.; Dobson, J.; Sever, P.S.; Wedel, H.; Poulter, N.R. Anglo-Scandinavian Cardiac Outcomes Trial Investigators. Determinants of new-onset diabetes among 19,257 hypertensive patients randomized in the anglo-scandinavian cardiac outcomes trial—Blood pressure lowering arm and the relative influence of antihypertensive medication. Diabetes Care 2008, 31, 982–988. [Google Scholar]
- Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.; Seshasai, S.R.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet 2010, 375, 735–742. [Google Scholar] [CrossRef]
- Andersson, C.; Lyass, A.; Larson, M.G.; Robins, S.J.; Vasan, R.S. Low-density-lipoprotein cholesterol concentrations and risk of incident diabetes: Epidemiological and genetic insights from the framingham heart study. Diabetologia 2015, 58, 2774–2780. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Dou, J.; Liu, G.; Pan, Y.; Yan, Y.; Liu, F.; Gaisano, H.Y.; Lu, J.; He, Y. Association Between Triglyceride Level and Glycemic Control Among Insulin-Treated Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 1211–1220. [Google Scholar] [CrossRef]
- Zhang, S.L.; Chen, Z.C.; Yan, L.; Chen, L.H.; Cheng, H.; Ji, L.N. Determinants for inadequate glycaemic control in Chinese patients with mild-to-moderate type 2 diabetes on oral antidiabetic drugs alone. Chin. Med. J. (Engl.) 2011, 124, 2461–2468. [Google Scholar]
- Shahwan, M.J.; Jairoun, A.A.; Farajallah, A.; Shanabli, S. Prevalence of dyslipidemia and factors affecting lipid profile in patients with type 2 diabetes. Diabetes Metab. Syndr. 2019, 13, 2387–2392. [Google Scholar] [CrossRef]
- Awadalla, H.; Noor, S.K.; Elmadhoun, W.M.; Bushara, S.O.; Almobarak, A.O.; Sulaiman, A.A.; Ahmed, M.H. Comparison of serum lipid profile in type 2 diabetes with and without adequate diabetes control in Sudanese population in north of Sudan. Diabetes Metab. Syndr. 2018, 12, 961–964. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Jovanovic, M.; Zvrko, E.; Skerovic, V.; Scepanovic, A.; Medin, D.; Ninic, A. Association between unfavorable lipid profile and glycemic control in patients with type 2 diabetes mellitus. J. Res. Med. Sci. 2017, 22, 122. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Silverio, D.; Sourlas, A.; Garcia, F.; Montan, P.D.; Guzman, E. Impact of lipid-lowering therapy on glycemic control and the risk for new-onset diabetes mellitus. Drugs Context 2018, 7, 212562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beysen, C.; Murphy, E.J.; Deines, K.; Chan, M.; Tsang, E.; Glass, A.; Turner, S.M.; Protasio, J.; Riiff, T.; Hellerstein, M.K. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: A randomised controlled study. Diabetologia 2012, 55, 432–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.Y.; Zhou, R.R.; Han, S.; Wang, T.S.; Wang, L.Q.; Xie, X.H. Statin therapy on glycemic control in type 2 diabetic patients: A network meta-analysis. J. Clin. Pharm. Ther. 2018, 43, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Cheng, P.C.; Te Tu, S.; Hsu, S.R.; Cheng, Y.C.; Liu, Y.H. Effect of Metformin Monotherapy on Serum Lipid Profile in statin-naïve Individuals with Newly Diagnosed Type 2 Diabetes Mellitus: A Cohort Study. PeerJ 2018, 12, e4578. [Google Scholar] [CrossRef] [PubMed]
- Erion, D.M.; Park, H.J.; Lee, H.Y. The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities. BMB. Rep. 2016, 49, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Rodas, M.C.; Valenzuela, R.; Videla, L.A. Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2015, 16, 25168–25198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulven, S.M.; Leder, L.; Elind, E.; Ottestad, I.; Christensen, J.J.; Telle-Hansen, V.H.; Skjetne, A.J.; Raael, E.; Sheikh, N.A.; Holck, M.; et al. Exchanging a few commercial, regularly consumed food items with improved fat quality reduces total cholesterol and LDL-cholesterol: A double-blind, randomised controlled trial. Br. J. Nutr. 2016, 116, 1383–1393. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, CD003177. [Google Scholar]
- Lillioja, S.; Neal, A.L.; Tapsell, L.; Jacobs, D.R., Jr. Whole Grains, Type 2 Diabetes, Coronary Heart Disease, and Hypertension: Links to the Aleurone Preferred Over Indigestible Fiber. Biofactors 2013, 39, 242–258. [Google Scholar] [CrossRef] [Green Version]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Males (n = 2188) | Females (n = 3634) | Total (n = 5822) |
---|---|---|---|
Age (years) | 67.00 (16.00) | 67.00 (14.00) | 67.00 (15.00) |
BMI (kg/m2) | 24.22 (3.53) | 24.61 (3.94) | 24.34 (3.96) |
SBP (mmHg) | 140.00 (18.00) | 140.00 (20.00) | 140.00 (20.00) |
DBP (mmHg) | 84.00 (10.00) | 84.00 (11.00) | 84.00 (10.00) |
TG (mmol/L) | 1.17 (0.82) | 1.24 (0.90) | 1.22 (0.86) |
TC (mmol/dL) | 5.07 (1.45) | 5.20 (1.61) | 5.13 (1.55) |
HDL-C (mmol/dL) | 1.30 (0.41) | 1.30 (0.42) | 1.30 (0.42) |
LDL-C (mmol/dL) | 2.56 (1.10) | 2.59 (1.13) | 2.56 (1.11) |
FPG (mmol/L) | 7.50 (1.97) | 7.60 (2.00) | 7.60 (2.00) |
Duration of T2D (years) | 1.93 (3.60) | 2.16 (3.79) | 2.06 (3.70) |
Smoking, n (%) | 737 (33.70) | 176 (4.80) | 913 (15.7) |
Alcohol drinking, n (%) | |||
Not drinking | 1425 (65.10) | 3591 (98.80) | 5016 (86.2) |
Occasionally | 387 (17.70) | 25 (0.70) | 412 (7.1) |
Often | 376 (17.20) | 18 (0.50) | 394 (6.7) |
Hypertension, n (%) | 1326 (60.60) | 2258 (62.10) | 3584 (61.6) |
Antidiabetics | |||
No medication | 1040 (47.50) | 1384 (38.10) | 2424 (41.6) |
Taking medicine | 707 (32.30) | 1367 (37.60) | 2074 (35.6) |
Taking two types of medicine | 423 (19.30) | 835 (23.00) | 1258 (21.6) |
Taking three types of medicine | 18 (0.80) | 48 (1.30) | 66 (1.1) |
In marriage, n (%) | 1860 (85.00) | 2888 (79.50) | 4748 (81.60) |
Educational level | |||
Uneducated | 385 (17.60) | 1454 (40.00) | 1839 (31.60) |
Primary or junior high school | 1531 (70.00) | 2058 (56.60) | 3589 (61.60) |
High school and above | 272 (12.40) | 122 (3.40) | 394 (6.80) |
Physical exercise frequency | |||
Not exercising | 1230 (56.20) | 2226 (61.30) | 3456 (59.40) |
1–3 times per month | 115 (5.30) | 176 (4.80) | 291 (5.00) |
1–2 times per week | 220 (10.10) | 347 (9.50) | 576 (9.70) |
≥3 times per week | 623 (28.50) | 885 (24.40) | 1508 (25.90) |
Characteristic | FPG < 7.0 (n = 1602) | FPG ≥ 7.0 (n = 4220) | p |
---|---|---|---|
Age (years) | 69.00 (13.00) | 66.00 (15.00) | <0.001 ** |
BMI (kg/m2) | 24.44 (3.91) | 24.28 (3.94) | 0.939 |
SBP (mmHg) | 140.00 (16.00) | 140.00 (20.00) | <0.001 ** |
DBP (mmHg) | 80.50 (12.00) | 85.00 (10.00) | <0.001 ** |
TG (mmol/L) | 1.23 (0.87) | 1.22 (0.86) | 0.839 |
TC (mmol/L) | 5.09 (1.51) | 5.16 (1.50) | <0.001 ** |
HDL-C (mmol/L) | 1.35 (0.40) | 1.30 (0.40) | <0.001 ** |
LDL-C(mmol/L) | 2.56 (1.10) | 2.59 (1.11) | 0.254 |
Duration of T2D(years) | 1.91 (3.66) | 2.15 (3.71) | 0.059 |
Male, n (%) | 609 (38.00) | 1579 (37.40) | 0.674 |
Smoking, n (%) | 248 (15.50) | 665 (15.80) | 0.795 |
Alcohol drinking, n (%) | 0.433 | ||
Not drinking | 1386 (86.50) | 3630 (86.00) | |
Occasionally | 118 (7.40) | 294 (7.00) | |
Often | 98 (6.10) | 296 (7.00) | |
Hypertension, n (%) | <0.001 ** | ||
Antidiabetics | <0.001 ** | ||
No medication | 843 (52.60) | 1581 (37.50) | |
Taking medicine | 507 (31.60) | 1567 (37.10) | |
Taking two types of medicine | 240 (15.00) | 1018 (24.10) | |
Taking three types of medicine | 12 (0.70) | 54 (1.30) | |
In marriage, n (%) | 1281 (80.00) | 3467 (82.20) | 0.054 |
Educational level | <0.001 ** | ||
Uneducated | 561 (35.00) | 1278 (30.30) | |
Primary or junior high school | 893 (55.70) | 2696 (63.90) | |
High school and above | 148 (9.20) | 246 (5.80) | |
Physical exercise frequency | 0.216 | ||
Not exercising | 973 (60.70) | 2483 (58.80) | |
1–3 times per month | 74 (4.60) | 217 (5.10) | |
1–2 times per week | 166 (10.40) | 401 (9.50) | |
≥3 times per week | 389 (24.30) | 1119 (26.50) |
Lipid Profiles | FPG < 7.0 (1602 (27.50)) | FPG ≥ 7.0 (4220 (72.48)) | Total | p |
---|---|---|---|---|
TG (mmol/L) | 0.532 | |||
<1.70 | 1180 (73.70) | 3074 (72.80) | 4254 (73.10) | |
≥1.70 | 422 (26.30) | 1146 (27.20) | 1568 (26.90) | |
TC (mmol/L) | <0.001 ** | |||
<4.50 | 560 (35.00) | 1077 (25.50) | 1637 (28.10) | |
≥4.50 | 1042 (65.00) | 3143 (74.50) | 4185 (71.90) | |
HDL-C (mmol/L) | <0.001 ** | |||
>1.00 or >1.30 | 1129 (70.50) | 2610 (61.80) | 3739 (64.20) | |
≤1.00 or ≤1.30 | 473 (29.50) | 1610 (38.20) | 2083 (35.80) | |
LDL-C (mmol/L) | 0.117 | |||
<2.6 or <1.8 | 745 (46.50) | 1866 (44.20) | 2611 (44.80) | |
≥2.6 or ≥1.8 | 857 (53.50) | 2354 (55.80) | 3211 (55.20) |
Characteristic | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
TG (mmol/L) | 0.984 (0.932, 1.039) | 0.978 (0.926, 1.034) | 0.966 (0.913, 1.022) | 0.989 (0.935, 1.046) |
TC (mmol/L) | 0.853 (0.816, 0.891) | 0.835 (0.798, 0.873) | 0.840 (0.803, 0.879) | 0.862 (0.823, 0.903) |
LDL-C (mmol/L) | 0.998 (0.932, 1.068) | 0.981 (0.916, 1.051) | 0.967 (0.902, 1.036) | 0.987 (0.920, 1.060) |
HDL-C (mmol/L) | 2.229 (1.817, 2.735) | 2.233 (1.818, 2.743) | 2.223 (1.809, 2.733) | 2.173 (1.761, 2.683) |
Age (years) | 1.022 (1.016, 1.027) | 1.021 (1.015, 1.028) | 1.023 (1.017, 1.030) | |
Educational level | ||||
Uneducated | reference | reference | ||
Primary or junior high school | 0.892 (0.775, 1.026) | 0.898 (0.778, 1.037) | ||
High school and above | 1.603 (1.257, 2.044) | 1.511 (1.174, 1.945) | ||
Physical exercise frequency | ||||
Not exercising | reference | reference | ||
1–3 times per month | 0.926 (0.697, 1.230) | 0.801 (0.600, 1.070) | ||
1–2 times per week | 1.018 (0.834, 1.242) | 1.038 (0.847, 1.272) | ||
≥3 times per week | 0.853 (0.741, 0.982) | 0.802 (0.694, 0.926) | ||
Hypertension, n (%) | ||||
no | reference | |||
yes | 0.559 (0.493, 0.634) | |||
Antidiabetics | ||||
No medication | reference | |||
Taking medicine | 0.584 (0.510, 0.669) | |||
Taking two types of medicine | 0.438 (0.370, 0.519) | |||
Taking three types of medicine | 0.487 (0.256, 0.925) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ji, X.; Zhang, Z.; Xue, F. Relationship between Lipid Profiles and Glycemic Control Among Patients with Type 2 Diabetes in Qingdao, China. Int. J. Environ. Res. Public Health 2020, 17, 5317. https://doi.org/10.3390/ijerph17155317
Wang S, Ji X, Zhang Z, Xue F. Relationship between Lipid Profiles and Glycemic Control Among Patients with Type 2 Diabetes in Qingdao, China. International Journal of Environmental Research and Public Health. 2020; 17(15):5317. https://doi.org/10.3390/ijerph17155317
Chicago/Turabian StyleWang, Shukang, Xiaokang Ji, Zhentang Zhang, and Fuzhong Xue. 2020. "Relationship between Lipid Profiles and Glycemic Control Among Patients with Type 2 Diabetes in Qingdao, China" International Journal of Environmental Research and Public Health 17, no. 15: 5317. https://doi.org/10.3390/ijerph17155317
APA StyleWang, S., Ji, X., Zhang, Z., & Xue, F. (2020). Relationship between Lipid Profiles and Glycemic Control Among Patients with Type 2 Diabetes in Qingdao, China. International Journal of Environmental Research and Public Health, 17(15), 5317. https://doi.org/10.3390/ijerph17155317