Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Processing
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019(COVID-19) outbreak in China: Summary of a report of 72314cases from the Chinese Center for Disease Control and Prevention. Jama 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019(COVID-19): Situation Report 72; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Adhikari, S.P.; Meng, S.; Wu, Y.-J.; Mao, Y.-P.; Ye, R.-X.; Wang, Q.-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- Daley, D.J.; Gani, J. Epidemic Modelling: An introduction; Cambridge University Press: Cambridge, UK, 2001; Volume 15. [Google Scholar]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Lin, Q.; Zhao, S.; Gao, D.; Lou, Y.; Yang, S.; Musa, S.S.; Wang, M.H.; Cai, Y.; Wang, W.; Yang, L. A conceptual model for the outbreak of Coronavirus disease 2019(COVID-19) in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 2020, 93, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19epidemic and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 1–6. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Serrano-Aroca, Á. A spatio-temporal analysis for exploring the effect of temperature on COVID-19early evolution in Spain. Sci. Total Environ. 2020, 728, 138811. [Google Scholar] [CrossRef]
- Reis, R.F.; de Melo Quintela, B.; de Oliveira Campos, J.; Gomes, J.M.; Rocha, B.M.; Lobosco, M.; dos Santos, R.W. Characterization of the COVID-19pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil. Chaos Solitons Fractals 2020, 36, 109888. [Google Scholar] [CrossRef]
- Currie, C.S.; Fowler, J.W.; Kotiadis, K.; Monks, T.; Onggo, B.S.; Robertson, D.A.; Tako, A.A. How simulation modelling can help reduce the impact of COVID-19. J. Simul. 2020, 14, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Pirouz, B.; Shaffiee Haghshenas, S.; Pirouz, B.; Shaffiee Haghshenas, S.; Piro, P. Development of an assessment method for investigating the impact of climate and urban parameters in confirmed cases of covid-19: A new challenge in sustainable development. Int. J. Environ. Res. Public Health 2020, 17, 2801. [Google Scholar] [CrossRef] [Green Version]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019(COVID-19) in China: A report of 1014cases. Radiology 2020, 296, 200642. [Google Scholar] [CrossRef] [Green Version]
- Repici, A.; Maselli, R.; Colombo, M.; Gabbiadini, R.; Spadaccini, M.; Anderloni, A.; Carrara, S.; Fugazza, A.; Di Leo, M.; Galtieri, P.A. Coronavirus (COVID-19) outbreak: What the department of endoscopy should know. Gastrointest. Endosc. 2020, 92, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, K.; Feng, K.; Lv, W. High temperature and high humidity reduce the transmission of COVID-19. SSRN 3551767 2020. (In Press) [Google Scholar] [CrossRef] [Green Version]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and Covid-19pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef] [PubMed]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to the coronavirus (COVID-19) fatality rate. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xie, J. Association between ambient temperature and COVID-19infection in 122cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar]
- Liu, J.; Zhou, J.; Yao, J.; Zhang, X.; Li, L.; Xu, X.; He, X.; Wang, B.; Fu, S.; Niu, T. Impact of meteorological factors on the COVID-19transmission: A multi-city study in China. Sci. Total Environ. 2020, 726, 138513. [Google Scholar] [CrossRef]
- Tomar, A.; Gupta, N. Prediction for the spread of COVID-19in India and effectiveness of preventive measures. Sci. Total Environ. 2020, 728, 138762. [Google Scholar] [CrossRef]
- Auler, A.; Cássaro, F.; da Silva, V.; Pires, L. Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19in tropical climate: A case study for the most affected Brazilian cities. Sci. Total Environ. 2020, 729, 139090. [Google Scholar] [CrossRef]
- Oliveiros, B.; Caramelo, L.; Ferreira, N.C.; Caramelo, F. Role of temperature and humidity in the modulation of the doubling time of COVID-19cases. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.03.05.20031872v1 (accessed on 24 July 2020).
- Hu, H.; Nigmatulina, K.; Eckhoff, P. The scaling of contact rates with population density for the infectious disease models. Math. Biosci. 2013, 244, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Prata, D.N.; Rodrigues, W.; Bermejo, P.H. Temperature significantly changes COVID-19transmission in (sub) tropical cities of Brazil. Sci. Total Environ. 2020, 729, 138862. [Google Scholar] [CrossRef]
- Kodera, S.; Rashed, E.A.; Hirata, A. Correlation between COVID-19morbidity and mortality rates in japan and local population density, temperature, and absolute humidity. Int. J. Environ. Res. Public Health 2020. submitted. [Google Scholar]
- Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19in 166countries. Sci. Total Environ. 2020, 729, 139051. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, J.; Gu, Q.; Du, P.; Liang, H.; Dong, Q. Optimal temperature zone for the dispersal of COVID-19. Sci. Total Environ. 2020, 736, 139487. [Google Scholar] [CrossRef] [PubMed]
- Toyo Keizai Online. Coronavirus Disease (COVID-19) Situation Report in Japan. Available online: https://toyokeizai.net/sp/visual/tko/covid19/en.html (accessed on 31 May 2020).
- Ministry of Health Labour and Welfare. About Coronavirus Disease 2019(COVID-19). Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/newpage_00032.html (accessed on 26 May 2020).
- Aichi Prefecture. Aichi New Coronavirus Infectious Disease Top Page. Available online: https://www.pref.aichi.jp/site/covid19-aichi/ (accessed on 24 July 2020).
- Statistics Bureau of Japan. Population Estimates. Available online: https://www.stat.go.jp/english/ (accessed on 2 June 2020).
- Japan Meteorological Agency Weather/Earthquake. Available online: https://www.jma.go.jp/jma/indexe.html (accessed on 29 May 2020).
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E.; Hasell, J. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus#coronavirus-country-profiles (accessed on 29 June 2020).
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019(COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceylan, Z. Estimation of COVID-19prevalence in Italy, Spain, and France. Sci. Total Environ. 2020, 729, 138817. [Google Scholar] [CrossRef]
- Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 2020, 93, 284–286. [Google Scholar] [CrossRef]
- Gusev, A.I.; Lyubutin, S.K.; Rukin, S.N.; Tsyranov, S.N. Superfast thyristor-based switches operating in impact-ionization wave mode. IEEE Transact. Plasma Sci. 2016, 44, 1888–1893. [Google Scholar] [CrossRef]
- Ishikawa Prefecture. 2019 Novel Coronavirus. Available online: https://www.pref.ishikawa.lg.jp/kansen/coronakennai.html (accessed on 29 May 2020).
- Park, J.E.; Son, W.S.; Ryu, Y.; Choi, S.B.; Kwon, O.; Ahn, I. Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region. Influenza Other Respir. Viruses 2019, 14, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Metz, J.A.; Finn, A. Influenza and humidity–Why a bit more damp may be good for you! J. Infect. 2015, 71, S54–S58. [Google Scholar] [CrossRef] [PubMed]
- Michelozzi, P.; Accetta, G.; De Sario, M.; D’Ippoliti, D.; Marino, C.; Baccini, M.; Biggeri, A.; Anderson, H.R.; Katsouyanni, K.; Ballester, F. High temperature and hospitalizations for cardiovascular and respiratory causes in 12European cities. Am. J. Respir. Crit. Care Med. 2009, 179, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzinger, S.; Hampel, R.; Breitner, S.; Rückerl, R.; Kraus, U.; Cyrys, J.; Geruschkat, U.; Peters, A.; Schneider, A. Short-term effects of air temperature on blood pressure and pulse pressure in potentially susceptible individuals. Int. J. Hyg. Environ. Health 2014, 217, 775–784. [Google Scholar] [CrossRef] [PubMed]
- The Prime Minister in Action. Press Conference regarding the Novel Coronavirus Disease (COVID-19). Available online: https://japan.kantei.go.jp/98_abe/actions/202004/_00022.html (accessed on 29 May 2020).
- Kamiya, T.; Onishi, R.; Kodera, S.; Hirata, A. Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction. Int. J. Environ. Res. Public Health 2019, 16, 5097. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Kodera, S.; Hasegawa, K.; Egawa, R.; Sasaki, H.; Hirata, A. Different thermoregulatory responses of people from tropical and temperate zones: A computational study. Build. Environ. 2019, 159, 106152. [Google Scholar] [CrossRef]
- Tyler, C.J.; Reeve, T.; Hodges, G.J.; Cheung, S.S. The effects of heat adaptation on physiology, perception and exercise performance in the heat: A meta-analysis. Sports Med. 2016, 46, 1699–1724. [Google Scholar] [CrossRef]
- Peci, A.; Winter, A.-L.; Li, Y.; Gnaneshan, S.; Liu, J.; Mubareka, S.; Gubbay, J.B. Effects of absolute humidity, relative humidity, temperature, and wind speed on influenza activity in Toronto, Ontario, Canada. Appl. Environ. Microbiol. 2019, 85, e02426-18. [Google Scholar] [CrossRef] [Green Version]
- Shimmei, K.; Nakamura, T.; Ng, C.F.S.; Hashizume, M.; Murakami, Y.; Maruyama, A.; Misaki, T.; Okabe, N.; Nishiwaki, Y. Association between seasonal influenza and absolute humidity: Time-series analysis with daily surveillance data in Japan. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1628. [Google Scholar] [CrossRef]
- Kodera, S.; Nishimura, T.; Rashed, E.A.; Hasegawa, K.; Takeuchi, I.; Egawa, R.; Hirata, A. Estimation of heat-related morbidity from weather data: A computational study in three prefectures of Japan over 2013–2018. Environ. Int. 2019, 130, 104907. [Google Scholar] [CrossRef]
Population (×1000) | Population Density (People Per km2) | Total Cases (Through 25 May) | Daily Max Cases | Percentage of Positive Test Results (%) | |
---|---|---|---|---|---|
Tokyo | 13,921 | 6354.8 | 5170 | 206 | 34.8 |
Kanagawa * | 9198 | 3807.5 | 1336 | 94 | 14.7 |
Saitama * | 7350 | 1932.0 | 1000 | 56 | 5.2 |
Chiba * | 6259 | 1217.4 | 904 | 70 | 6.4 |
Ibaragi | 2860 | 470.4 | 168 | 28 | 3.7 |
Gunma | 1942 | 304.6 | 149 | 44 | 4.2 |
Shizuoka | 3644 | 467.9 | 75 | 18 | 2.2 |
Aichi | 7552 | 1460.0 | 507 | 21 | 5.2 |
Gifu ** | 1987 | 187.3 | 150 | 18 | 4.4 |
Ishikawa | 1138 | 271.7 | 296 | 20 | 11.2 |
Toyama | 1044 | 245.6 | 227 | 21 | 7.3 |
Osaka | 8809 | 4631.0 | 1781 | 108 | 6.1 |
Hyogo *** | 5466 | 650.4 | 699 | 57 | 6.4 |
Kyoto *** | 2583 | 560.1 | 358 | 20 | 4.6 |
Shiga *** | 1414 | 352.0 | 100 | 12 | 5.7 |
Hiroshima | 2804 | 331.1 | 167 | 51 | 2.5 |
Fukuoka | 5104 | 1024.8 | 672 | 108 | 5.7 |
Saga **** | 815 | 333.6 | 47 | 11 | 3.4 |
Okinawa | 1453 | 637.5 | 81 | 17 | 2.9 |
TSS | TSE | Daily Peak * | TDS | TDE | DS | DD | |
---|---|---|---|---|---|---|---|
Tokyo | 17-Mar | 3-Apr | 17-Apr | 10-Apr | 7-May | 17 | 27 |
Kanagawa | 19-Mar | 3-Apr | 10-Apr | 11-Apr | 19-May | 15 | 38 |
Chiba | 19-Mar | 2-Apr | 17-Apr | 13-Apr | 5-May | 14 | 22 |
Ibaraki | 16-Mar | 28-Mar | 3-Apr | 8-Apr | 23-Apr | 12 | 15 |
Gunma | 25-Mar | 5-Apr | 11-Apr | 9-Apr | 22-Apr | 11 | 13 |
Shizuoka | 25-Mar | 3-Apr | 10-Apr | 6-Apr | 27-Apr | 9 | 21 |
Aichi | 22-Feb | 30-Mar | 4-Apr | 1-Apr | 27-Apr | 37 | 26 |
Gifu | 25-Mar | 4-Apr | 8-Apr | 6-Apr | 17-Apr | 10 | 11 |
Toyama | 1-Apr | 13-Apr | 17-Apr | 18-Apr | 30-Apr | 12 | 12 |
Osaka | 18-Mar | 6-Apr | 14-Apr | 13-Apr | 6-May | 19 | 23 |
Hyogo | 19-Mar | 4-Apr | 9-Apr | 7-Apr | 4-May | 16 | 27 |
Kyoto | 16-Mar | 2-Apr | 7-Apr | 5-Apr | 9-May | 17 | 34 |
Hiroshima | 26-Mar | 6-Apr | 12-Apr | 10-Apr | 27-Apr | 11 | 17 |
Fukuoka | 22-Mar | 1-Apr | 11-Apr | 9-Apr | 27-Apr | 10 | 18 |
Saga | 23-Mar | 15-Apr | 19-Apr | 22-Apr | 1-May | 23 | 9 |
Okinawa | 28-Mar | 3-Apr | 7-Apr | 10-Apr | 25-Apr | 6 | 15 |
DS | DD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tave | Tmax | Tmin | Have | Hmax | Hmin | Tave | Tmax | Tmin | Have | Hmax | Hmin | |
Tokyo | 11.7 | 16.7 | 6.7 | 6.4 | 9.3 | 4.5 | 14.4 | 19.2 | 9.9 | 8.6 | 10.7 | 6.7 |
Kanagawa | 12.4 | 16.7 | 8.0 | 6.8 | 9.7 | 4.7 | 16.6 | 20.7 | 13.0 | 9.8 | 11.7 | 7.7 |
Chiba | 12.4 | 16.1 | 8.1 | 6.6 | 9.5 | 4.6 | 15.1 | 19.1 | 11.2 | 8.4 | 10.3 | 6.4 |
Ibaragi | 10.3 | 17.1 | 3.4 | 5.7 | 8.5 | 3.7 | 10.8 | 15.6 | 6.4 | 6.5 | 8.2 | 4.9 |
Gunma | 10.6 | 15.3 | 5.4 | 5.7 | 7.5 | 4.6 | 11.5 | 16.3 | 7.2 | 6.3 | 8.4 | 4.9 |
Shizuoka | 13.1 | 16.6 | 9.3 | 8.6 | 10.6 | 6.6 | 14.3 | 18.7 | 10.0 | 7.1 | 8.9 | 5.4 |
Aichi | 10.1 | 14.8 | 6.0 | 5.9 | 7.9 | 4.4 | 13.0 | 18.3 | 8.6 | 6.5 | 8.4 | 4.9 |
Gifu | 12.0 | 16.4 | 7.7 | 6.7 | 8.4 | 4.9 | 12.6 | 18.2 | 7.7 | 5.1 | 6.6 | 3.6 |
Toyama | 9.7 | 14.6 | 5.2 | 6.3 | 7.7 | 4.7 | 12.1 | 17.6 | 7.7 | 7.5 | 9.1 | 5.8 |
Osaka | 12.7 | 17.0 | 8.9 | 6.7 | 8.9 | 5.1 | 16.2 | 20.6 | 12.3 | 8.1 | 10.2 | 6.3 |
Hyogo | 12.7 | 16.4 | 9.1 | 7.2 | 9.6 | 5.3 | 15.5 | 19.0 | 12.4 | 8.1 | 9.5 | 6.0 |
Kyoto | 11.5 | 16.6 | 6.8 | 6.4 | 8.6 | 4.7 | 14.7 | 20.1 | 10.0 | 7.1 | 9.0 | 5.3 |
Hiroshima | 12.4 | 16.2 | 8.6 | 6.5 | 8.5 | 5.0 | 13.2 | 17.4 | 9.2 | 5.6 | 7.4 | 4.2 |
Fukuoka | 14.2 | 17.5 | 11.3 | 8.8 | 11.0 | 6.9 | 14.0 | 17.5 | 10.9 | 7.3 | 9.4 | 5.7 |
Saga | 13.4 | 17.9 | 9.0 | 7.3 | 9.1 | 5.5 | 14.9 | 20.1 | 9.8 | 7.1 | 8.6 | 5.4 |
Okinawa | 21.3 | 24.0 | 18.8 | 14.7 | 17.4 | 12.4 | 19.8 | 22.1 | 17.6 | 11.8 | 14.1 | 10.0 |
Ds/Density | Dd/Density | |||
---|---|---|---|---|
ρ | p-Value | ρ | p-Value | |
Tave | −0.526 | 0.05 | −0.459 | 0.099 |
Tmax | −0.659 | <0.05 | −0.385 | 0.175 |
Tmin | −0.415 | 0.140 | −0.465 | 0.094 |
Tdiff | 0.227 | 0.435 | 0.487 | 0.078 |
Have | −0.494 | 0.061 | −0.716 | <0.05 |
Hmax | −0.737 | <0.05 | −0.741 | <0.05 |
Hmin | −0.130 | 0.657 | −0.733 | <0.05 |
Hdiff | −0.760 | <0.05 | −0.718 | <0.05 |
R2 | adj. R2 | p-Value | |
---|---|---|---|
DS | 0.641 | 0.533 | <0.05 |
DD | 0.416 | 0.240 | 0.130 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashed, E.A.; Kodera, S.; Gomez-Tames, J.; Hirata, A. Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan. Int. J. Environ. Res. Public Health 2020, 17, 5354. https://doi.org/10.3390/ijerph17155354
Rashed EA, Kodera S, Gomez-Tames J, Hirata A. Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan. International Journal of Environmental Research and Public Health. 2020; 17(15):5354. https://doi.org/10.3390/ijerph17155354
Chicago/Turabian StyleRashed, Essam A., Sachiko Kodera, Jose Gomez-Tames, and Akimasa Hirata. 2020. "Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan" International Journal of Environmental Research and Public Health 17, no. 15: 5354. https://doi.org/10.3390/ijerph17155354
APA StyleRashed, E. A., Kodera, S., Gomez-Tames, J., & Hirata, A. (2020). Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan. International Journal of Environmental Research and Public Health, 17(15), 5354. https://doi.org/10.3390/ijerph17155354