Synthetic Evaluation of China’s Regional Low-Carbon Economy Challenges by Driver-Pressure-State-Impact-Response Model
Abstract
:1. Introduction
2. Theoretical Framework
3. Methodology
4. Data and Variables
4.1. Measurement of CO2 Emissions from Energy Consumption
4.2. Other Data and Variables
5. Regional Evaluation of the Low-Carbon Economy
5.1. Index Calculation
5.2. Dimensionless Evaluation Factors
5.3. Weight of Evaluation Factors
5.4. The synthetic Index and Sub-Index of the Low-Carbon Economy
6. Assessing Coupling Coordination between the Sub-Indexes
7. Results and Analysis
7.1. Results
7.2. Analysis of DPSR Sub-Indexes
7.3. Analysis of the Degree of Coordination among the Four Sub-Indexes
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; p. 151.
- Michalena, E.; Kouloumpis, V.; Hills, J.M. Challenges for Pacific Small Island Developing States in achieving their Nationally Determined Contributions (NDC). Energy Policy 2018, 114, 508–518. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement. In Proceedings of the Conference of the Parties, 21 session, Durban Platform for Enhanced Action, Paris, France, 20 November–11 December 2016; Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 20 May 2020).
- Boucher, O.; Bellassen, V.; Benveniste, H.; Ciais, P.; Criqui, P.; Guivarch, C.; Le Treut, H.; Mathy, S.; Séférian, R. In the wake of Paris agreement, scientists must embrace new directions for climate change research. Proc. Natl. Acad. Sci. USA 2016, 113, 7287–7290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohringer, C.; RMoslener, T.F. Transition towards a low carbon economy: A computable general equilibrium analysis for Poland. Energy Policy 2013, 55, 16–26. [Google Scholar] [CrossRef]
- Andrew, R.; Forgie, V.A. three-perspective view of greenhouse gas emission responsibilities in New Zealand. Ecol. Econ. 2008, 68, 194–204. [Google Scholar] [CrossRef]
- Alexander, C. Micropolitan areas and urbanization processes in the US. Cities 2012, 29, 24–28. [Google Scholar]
- Chen, G.Q.; Zhang, B. Greenhouse gas emissions in China 2007: Inventory and input–output analysis. Energy Policy 2010, 38, 6180–6193. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, W. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin. Sci. Bull. 2006, 51, 1785–1803. [Google Scholar] [CrossRef]
- Pramit, V.; Raghubanshi, A.S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 2018, 93, 282–291. [Google Scholar]
- IEA. CO2 Emissions from Fuel Combustion 2009 Highlights. 2009. Available online: http://www.iea.org/co2highlights/co2highlights.pdf (accessed on 18 May 2020).
- Yan, Y.F.; Yang, L. China’s foreign trade and climate change: A case study of CO2 emissions. Energy Policy 2010, 38, 350–356. [Google Scholar]
- Wang, S.; Li, Y. Application of projection pursuit model in regional eco-environment quality assessment. Chin. J. Ecol. 2006, 25, 869–872. [Google Scholar]
- Hughes, N.; Strachan, N. Methodological review of UK and international low carbon scenarios. Energy Policy 2010, 38, 6056–6065. [Google Scholar] [CrossRef]
- Zhuang, G.Y.; Pan, J.H.; Zhu, S.X. Conceptual Identification and Evaluation Index System for Low Carbon Economy. J. Econ. Perspect. 2011, 13, 132–136. [Google Scholar]
- Gregory, A.; Atkins, J.; Burdon, D. A problem structuring method for ecosystem-based management: The DPSIR modelling process. Eur. J. Oper. Res. 2013, 227, 558–569. [Google Scholar] [CrossRef]
- Daniels, L. Climate change, economics and Buddhism Part I: An integrated environmental analysis framework. Ecol. Econ. 2010, 69, 952–961. [Google Scholar] [CrossRef]
- Elliott, M. The role of the DPSIR approach and conceptual models in marine environmental management: An example for offshore wind power. Mar. Pollut. Bull. 2002, 44, 3–7. [Google Scholar] [CrossRef]
- Vang, T.; Block, C.; Geens, J. Environmental response indicators for the industrial and energy sector in flander. J. Clean. Prod. 2006, 25, 75–86. [Google Scholar]
- Gray, J.S.; Elliott, M. Ecology of Marine Sediments-From Science to Management, 2nd ed.; Oxford University Press: Oxford, UK, 2009; pp. 56–59. ISBN 978-0-1985-6902-2. [Google Scholar]
- Krajnc, D.; Glavic, P. A model for integrated assessment of sustainable development. Resour. Conserv. Recy. 2005, 43, 189–208. [Google Scholar] [CrossRef]
- Atkins, J.P.; Burdon, D.; Elliott, M.; Gregory, A.J. Management of the marine environment: Integrating ecosystem services and societal benefits with the DPSIR framework in a systems approach. Mar. Pollut. Bull. 2011, 62, 215–226. [Google Scholar] [CrossRef]
- Maxim, L.; Joachim, H. An analysis of risks for biodiversity under the DPSIR framework. Ecol. Econ. 2009, 69, 12–23. [Google Scholar] [CrossRef]
- Ness, B.; Anderberg, S.; Olsson, L. Structuring problems in sustainability science: The multi-level DPSIR framework. Geoforum 2010, 41, 479–488. [Google Scholar] [CrossRef]
- Manjot, K.; Kasun, H.; Rehan, S. Investigating the impacts of urban densification on buried water infrastructure through DPSIR framework. Sustainability 2020, 20, 120897. [Google Scholar]
- Qu, S.; Hu, S.; Li, W.; Wang, H.; Zhang, C.; Li, Q. Interaction between urban land expansion and land use policy: An analysis using the DPSIR framework. Land Use Policy 2020, 99, 104856. [Google Scholar] [CrossRef]
- Shen, Y.C.; Fu, Y.Y.; Song, M.L. Coupling relationship between green production and green consumption: Case of the Yangtze River Delta area. Nat. Resour. Model. 2019, 8, 134–138. [Google Scholar] [CrossRef]
- Satty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Nachiappan, S.; Ramakrishnan, R. A review of applications of Analytic Hierarchy Process in operations management. Int. J. Prod. Res. 2012, 138, 215–241. [Google Scholar]
- Xiong, Y.; Zeng, G.M. Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China. Ecol. Modell. 2007, 209, 97–109. [Google Scholar]
- Li, Z.W.; Zeng, G.M.; Zhang, H. The Integrated Eco-environment Assessment of the Red Soil Hilly Region Based on GIS—A Case Study in Changsha City, China. Ecol. Modell. 2007, 202, 540–546. [Google Scholar] [CrossRef]
- Solnes, J. Environmental quality indexing of large industrial development alternatives using AHP. Environ. Environ. Impact Assess. Rev. 2003, 23, 283–303. [Google Scholar] [CrossRef]
- Chatzimouratidis, A.I.; Pilavachi, P.A. Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process. Energy Policy 2009, 37, 778–787. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Int. Ser. Oper. Res. Manag. Sci. 2012, 175, 149–158. [Google Scholar]
- Omasa, T.; Kishimoto, M.; Kawase, M. An attempt at decision making in tissue engineering: Reactor evaluation using the analytic hierarchy process (AHP). Biochem. Eng. J. 2004, 20, 173–179. [Google Scholar] [CrossRef]
First Grade | Second Grade | Weight | Third Grade | Weight | Fourth Grade | Weight | Positive or Negative |
---|---|---|---|---|---|---|---|
Comprehensive level of low-carbon economy (A) | Driver (D) | 0.1186 | Driver for social development (D1) | 0.0593 | Natural Population Growth (D11, ‰) | 0.0272 | Moderate |
Urbanization Rate (D12, %) | 0.0247 | Moderate | |||||
Engel’s coefficient on urban and rural households (D13, %) | 0.0075 | Negative | |||||
Driver for economic development (D2) | 0.0593 | per capita GDP (D21, yuan per capita) | 0.0183 | Positive | |||
GDP growth rate (D22, %) | 0.0065 | Positive | |||||
The average income of rural and urban family (D23, yuan per capita) | 0.0345 | Positive | |||||
Pressure (P) | 0.2162 | resource pressure (P1) | 0.0865 | The energy consumption per unit of GDP (P11, tons of coal per 10,000 yuan) | 0.0605 | Negative | |
Electricity consumption per capita (P12, kwh per capita) | 0.0259 | Negative | |||||
environmental pressure (P2) | 0.1297 | The industrial waste-gas discharge per unit of GDP (P21, cubic meter per 10,000 yuan) | 0.0741 | Negative | |||
SO2 emission per unit of GDP (P22, ton per 10,000 yuan) | 0.0371 | Negative | |||||
Public transportations per 10,000 people (P23) | 0.0185 | Positive | |||||
Status (S) | 0.4141 | Status of low-carbon consumption (S1) | 0.2071 | Carbon emissions per capita (S11, ton per capita) | 0.1305 | Negative | |
The carbon emissions of residents’ consumption (S12, ton per 10,000 yuan) | 0.0541 | Negative | |||||
The carbon emissions of government consumption (S13, ton per 10,000 yuan) | 0.0225 | Negative | |||||
Status of low-carbon resources (S2) | 0.2071 | Proportion of consumption of raw coal (S21, %) | 0.0941 | Negative | |||
Carbon emissions per unit of energy (S22, ton of CO2 per ton of coal) | 0.0188 | Negative | |||||
Forest coverage (S23, %) | 0.0941 | Positive | |||||
Response (R) | 0.2511 | Scientific Response (R1) | 0.1758 | Expenditure on science and technology per capita (R11, yuan per capita) | 0.0189 | Positive | |
The efficiency of energy process and conversion (R12, %) | 0.0181 | Positive | |||||
Carbon productivity (R13, 10,000 yuan per ton) | 0.1387 | Positive | |||||
Policy Response (R2) | 0.0753 | The proportion the tertiary industry output value accounts for GDP (R21, %) | 0.0442 | Positive | |||
The development plan of low-carbon economy (R22) | 0.0077 | Positive | |||||
Policy of carbon tax (R23) | 0.0081 | Positive | |||||
Supervision and statistics system of carbon emissions (R24) | 0.0154 | Positive |
Coordination Degree | Coordination Level | Coordination Degree | Coordination Level |
---|---|---|---|
0.01 < CD2 ≤ 0.10 | Extreme disorder ≤ | 0.51 < CD2 ≤ 0.60 | Bare coordination |
0.11 <CD2 ≤ 0.20 | Serious disorder | 0.61 < CD2 ≤ 0.70 | Primary coordination |
0.21 <CD2 ≤ 0.30 | Moderate disorder | 0.71 < CD2 ≤0.80 | Intermediate coordination |
0.31 <CD2 ≤ 0.40 | Mild disorder | 0.81 < CD2 ≤0.90 | Favorable coordination |
0.41 <CD2 ≤ 0.50 | On the verge of disorder | 0.91 < CD2 ≤ 0.10 | Quality coordination |
Energy Type | A | B | C = A × B × (44 / 12) × 1000 | D = C × 4186.8 × 10−9 × 10−3 | E | F = D × E | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
IPCC (2006) | Oxidation Rate in the Combustion | IPCC (2006) | Original Coefficient | Calorific Value of Unit Fuel in China | Suggested Coefficient | ||||||
Carbon Emission Coefficient | Measurement | CO2 Emission Coefficient | Measurement | Original Coefficient | Measurement | Average Calorific Value of Unit Fuel in China | Measurement | Coefficient | Measurement | ||
Crude coal | 25.8 | kgC/GJ | 1 | 94,600 | kgCO2/TJ | 0.000396071 | kgCO2/Kcal | 5000 | Kcal/Kg | 1.98 | kgCO2/Kg |
Coke | 29.2 | kgC/GJ | 1 | 107,066.67 | kgCO2/TJ | 0.000448267 | kgCO2/Kcal | 6800 | Kcal/Kg | 3.05 | kgCO2/Kg |
Crude oil | 20 | kgC/GJ | 1 | 73,333.33 | kgCO2/TJ | 0.000307032 | kgCO2/Kcal | 10,000 | Kcal/Kg | 3.07 | kgCO2/Kg |
Gasoline | 18.9 | kgC/GJ | 1 | 69,300 | kgCO2/TJ | 0.000290145 | kgCO2/Kcal | 10,300 | Kcal/Kg | 2.99 | kgCO2/Kg |
Jet kerosene | 19.6 | kgC/GJ | 1 | 71,866.67 | kgCO2/TJ | 0.000300891 | kgCO2/Kcal | 10,300 | Kcal/Kg | 3.10 | kgCO2/Kg |
Diesel oil | 20.2 | kgC/GJ | 1 | 74,066.67 | kgCO2/TJ | 0.000310102 | kgCO2/Kcal | 10,200 | Kcal/Kg | 3.16 | kgCO2/Kg |
Fuel oil | 21.1 | kgC/GJ | 1 | 77,366.67 | kgCO2/TJ | 0.000323919 | kgCO2/Kcal | 10,000 | Kcal/Kg | 3.24 | kgCO2/Kg |
Refinery gas | 16.8 | kgC/GJ | 1 | 61,600 | kgCO2/TJ | 0.000257907 | kgCO2/Kcal | 11,000 | Kcal/Kg | 2.84 | kgCO2/Kg |
Natural gas | 15.3 | kgC/GJ | 1 | 56,100 | kgCO2/TJ | 0.000234879 | kgCO2/Kcal | 9310 | kgCO2/M3 | 2.19 | kgCO2/M3 |
Liquefied petroleum gas | 17.2 | kgC/GJ | 1 | 63,066.67 | kgCO2/TJ | 0.000264048 | kgCO2/Kcal | 12,000 | kgCO2/M3 | 3.17 | kgCO2/M3 |
Year | Crude Coal Consumption (104 Tons) | Coke Consumption (104 Tons) | Crude Oil Consumption (104 Tons) | Gasoline Oil Consumption (104 Tons) | Jet Kerosene Consumption (104 Tons) | Diesel Oil Consumption (104 Tons) | Fuel Oil Consumption (104 Tons) | Natural Gas Consumption (104 Tons) | CO2 Emissions |
---|---|---|---|---|---|---|---|---|---|
1995 | 137,677 | 10,725.3 | 14,886.4 | 2910 | 512.1 | 4321 | 3693.7 | 177.4 | 49.46 |
1996 | 144,734.46 | 11,865 | 15,865.01 | 3182.4 | 555.5 | 4825.14 | 3632.31 | 185.9 | 51.56 |
1997 | 139,248.26 | 10,927 | 17,367.2 | 3312 | 681.71 | 5291.21 | 3848.2 | 196.44 | 51.58 |
1998 | 129,492.2 | 11,447.82 | 17,395.31 | 3328.6 | 706.41 | 5309.7 | 3828.6 | 202.6 | 49.77 |
1999 | 139,336.5 | 10,460.52 | 18,949.5 | 3389.3 | 824.21 | 6231.63 | 3934.11 | 214.94 | 52.58 |
2000 | 135,690 | 10,840.8 | 21,232 | 3505 | 871.6 | 6578.57 | 3872.8 | 245 | 52.64 |
2001 | 143,063 | 11,931.5 | 21,410.74 | 3597.6 | 890.3 | 6917.58 | 3850.22 | 274.3 | 54.55 |
2002 | 153,585 | 12,803.12 | 22,694.1 | 3804.32 | 919.2 | 7560.87 | 3723.9 | 292 | 57.16 |
2003 | 183,760 | 15,926.5 | 25,180.72 | 4118.52 | 921.61 | 8498.16 | 4330.34 | 339.1 | 67.21 |
2004 | 212,162 | 18,067.01 | 29,009.31 | 4695.72 | 1060.9 | 10,072.94 | 4844.8 | 397 | 77.04 |
2005 | 243,375 | 25,105.8 | 30,088.9 | 4855 | 1076.8 | 10,889.42 | 4244.2 | 466.1 | 84.06 |
2006 | 270,639 | 28,298 | 32,245.2 | 5242.55 | 1124.74 | 11,652.71 | 4471.2 | 573.33 | 92.20 |
2007 | 290,410 | 31,168.12 | 34,031.6 | 5519.1 | 1243.72 | 12,420.25 | 4157.5 | 705.23 | 96.89 |
2008 | 300,605 | 32,120.23 | 35,510.34 | 6145.52 | 1294.01 | 13,475.46 | 3236.8 | 813 | 97.20 |
2009 | 325,003 | 36,350 | 38,128.59 | 6172.69 | 1450.49 | 13,494.83 | 2828.8 | 895.2 | 102.87 |
2010 | 349,008 | 38,702.8 | 42,874.6 | 6956 | 1765.2 | 14,655.17 | 3758 | 1080.2 | 113.50 |
2011 | 388,961 | 42,063.3 | 43,965.8 | 7596 | 1816.7 | 15,593.54 | 3662.8 | 1341.1 | 122.97 |
2012 | 411,727 | 44,805.2 | 46,678.9 | 8166 | 1956.6 | 16,900.67 | 3683.3 | 1497 | 129.84 |
2013 | 424,426 | 45,851.9 | 48,652.2 | 9366 | 2164.1 | 17,106.75 | 3954 | 1705.4 | 134.65 |
2014 | 411,613 | 46,884.9 | 51,547 | 9776 | 2335.4 | 17,127.02 | 4400.5 | 1868.9 | 134.94 |
2015 | 397,014 | 44,058.7 | 54,088.3 | 11,368 | 2663.7 | 17,280.44 | 4662 | 1931.7 | 133.44 |
2016 | 384,560 | 45,462.4 | 56,025.9 | 11,866 | 2970.7 | 16,736.39 | 4631 | 2078.1 | 131.97 |
A | D | P | S | R |
---|---|---|---|---|
D | 1 | 1/4 | 1/7 | 1/5 |
P | 4 | 1 | 1/4 | 1/2 |
S | 7 | 4 | 1 | 4 |
R | 5 | 2 | 1/4 | 1 |
Regions and Areas | 2000 | 2003 | 2007 | 2010 | 2015 | Average | |
---|---|---|---|---|---|---|---|
East area | Beijing | 0.5882 | 0.6603 | 0.7980 | 0.7829 | 0.8634 | 0.7386 |
Tianjin | 0.3411 | 0.3505 | 0.5329 | 0.5340 | 0.5367 | 0.4590 | |
Hebei | 0.3783 | 0.3715 | 0.3581 | 0.3881 | 0.4660 | 0.3924 | |
Liaoning | 0.4309 | 0.4731 | 0.4136 | 0.4341 | 0.4443 | 0.4392 | |
Shanghai | 0.5259 | 0.5750 | 0.6332 | 0.6509 | 0.5744 | 0.5919 | |
Jiangsu | 0.4942 | 0.5364 | 0.5451 | 0.5581 | 0.5613 | 0.5390 | |
Zhejiang | 0.6057 | 0.6564 | 0.6469 | 0.6721 | 0.6414 | 0.6445 | |
Fujian | 0.6265 | 0.6241 | 0.6821 | 0.6832 | 0.6345 | 0.6501 | |
Shandong | 0.5299 | 0.5250 | 0.4755 | 0.4623 | 0.4724 | 0.4930 | |
Guangdong | 0.6256 | 0.6393 | 0.7191 | 0.7179 | 0.6618 | 0.6727 | |
Hainan | 0.6299 | 0.6274 | 0.6862 | 0.6307 | 0.5528 | 0.6254 | |
Average | 0.5251 | 0.5490 | 0.5901 | 0.5922 | 0.5826 | 0.5678 | |
Central area | Shanxi | 0.2756 | 0.2484 | 0.2420 | 0.2315 | 0.2481 | 0.2491 |
Inner Mongolia | 0.3232 | 0.3058 | 0.2181 | 0.2437 | 0.2763 | 0.2734 | |
Jilin | 0.5001 | 0.4981 | 0.4843 | 0.4932 | 0.5051 | 0.4962 | |
Heilongjiang | 0.5075 | 0.5535 | 0.5469 | 0.5176 | 0.5312 | 0.5313 | |
Anhui | 0.4491 | 0.4673 | 0.4833 | 0.4943 | 0.5580 | 0.4904 | |
Jiangxi | 0.5635 | 0.5855 | 0.5913 | 0.6032 | 0.5998 | 0.5887 | |
Henan | 0.4452 | 0.4812 | 0.4452 | 0.4623 | 0.5291 | 0.4726 | |
Hubei | 0.4957 | 0.5213 | 0.5254 | 0.5597 | 0.5741 | 0.5352 | |
Hunan | 0.5963 | 0.6012 | 0.5755 | 0.6115 | 0.6025 | 0.5974 | |
Guangxi | 0.5446 | 0.5641 | 0.5897 | 0.6170 | 0.5758 | 0.5782 | |
Average | 0.4701 | 0.4826 | 0.4702 | 0.4834 | 0.5000 | 0.4813 | |
West area | Chongqing | 0.5936 | 0.6194 | 0.4067 | 0.5733 | 0.5760 | 0.5538 |
Sichuan | 0.5045 | 0.5237 | 0.5419 | 0.5956 | 0.5657 | 0.5463 | |
Guizhou | 0.3203 | 0.3694 | 0.3351 | 0.4159 | 0.5176 | 0.3917 | |
Yunnan | 0.4982 | 0.5059 | 0.4910 | 0.5487 | 0.5369 | 0.5161 | |
Shaanxi | 0.5032 | 0.5078 | 0.5039 | 0.4795 | 0.4925 | 0.4974 | |
Gansu | 0.3910 | 0.4013 | 0.4197 | 0.4389 | 0.4422 | 0.4186 | |
Qinghai | 0.4259 | 0.4622 | 0.3845 | 0.4671 | 0.3813 | 0.4242 | |
Ningxia | 0.2546 | 0.2366 | 0.1530 | 0.1505 | 0.1931 | 0.1976 | |
Xinjiang | 0.4137 | 0.4530 | 0.3866 | 0.3323 | 0.2478 | 0.3667 | |
Average | 0.4339 | 0.4533 | 0.4025 | 0.4447 | 0.4392 | 0.4347 | |
Whole country | Average | 0.4791 | 0.4979 | 0.4933 | 0.5112 | 0.5073 | 0.4978 |
Category one (Leading status) | Beijing, Guangdong, Hainan, Fujian, Zhejiang, Shanghai, Jiangxi, Guangxi, Hunan |
Category two (Good status) | Heilongjiang, Sichuan, Jiangsu, Tianjin, Hubei, Shaanxi, Yunnan, Jilin, Anhui, Shandong |
Category three (Medium status) | Chongqing, Henan, Gansu, Liaoning, Xinjiang, Qinghai, Hebei, Guizhou |
Category four (Poor status) | Shanxi, Inner Mongolia, Ningxia |
Regions and Areas | d(x) | p(y) | s(z) | p(k) | C | T | D | Coordination Level | |
---|---|---|---|---|---|---|---|---|---|
East area | Beijing | 0.0897 | 0.2108 | 0.3488 | 0.2142 | 0.8980 | 0.8634 | 0.8805 | Favorable coordination |
Tianjin | 0.0696 | 0.1959 | 0.2401 | 0.0311 | 0.7486 | 0.5367 | 0.6338 | Primary coordination | |
Hebei | 0.0468 | 0.1429 | 0.2593 | 0.0169 | 0.6314 | 0.4660 | 0.5424 | Bare coordination | |
Liaoning | 0.0411 | 0.1494 | 0.2279 | 0.0259 | 0.6984 | 0.4443 | 0.5570 | Bare coordination | |
Shanghai | 0.0847 | 0.1795 | 0.2541 | 0.0562 | 0.8451 | 0.5744 | 0.6968 | Primary coordination | |
Jiangsu | 0.0668 | 0.1920 | 0.2719 | 0.0306 | 0.7241 | 0.5613 | 0.6375 | Primary coordination | |
Zhejiang | 0.0777 | 0.1838 | 0.3493 | 0.0306 | 0.6933 | 0.6414 | 0.6668 | Primary coordination | |
Fujian | 0.0696 | 0.1850 | 0.3619 | 0.0181 | 0.6038 | 0.6345 | 0.6189 | Primary coordination | |
Shandong | 0.0589 | 0.1756 | 0.2203 | 0.0176 | 0.6740 | 0.4724 | 0.5643 | Bare coordination | |
Guangdong | 0.0820 | 0.1906 | 0.3698 | 0.0194 | 0.6219 | 0.6618 | 0.6415 | Primary coordination | |
Hainan | 0.0346 | 0.1789 | 0.3071 | 0.0322 | 0.6402 | 0.5528 | 0.5949 | Bare coordination | |
Average | 0.0656 | 0.1804 | 0.2918 | 0.0448 | 0.7656 | 0.5826 | 0.6679 | Primary coordination | |
Central area | Shanxi | 0.0427 | 0.0841 | 0.0906 | 0.0307 | 0.9064 | 0.2481 | 0.4742 | On the verge of disorder |
Inner Mongolia | 0.0566 | 0.0990 | 0.1145 | 0.0061 | 0.6442 | 0.2763 | 0.4219 | On the verge of disorder | |
Jilin | 0.0313 | 0.1632 | 0.2972 | 0.0134 | 0.5316 | 0.5051 | 0.5182 | Bare coordination | |
Heilongjiang | 0.0293 | 0.1830 | 0.2925 | 0.0264 | 0.6043 | 0.5312 | 0.5666 | Bare coordination | |
Anhui | 0.0450 | 0.1733 | 0.3249 | 0.0148 | 0.5606 | 0.5580 | 0.5593 | Bare coordination | |
Jiangxi | 0.0389 | 0.1838 | 0.3677 | 0.0095 | 0.4707 | 0.5998 | 0.5314 | Bare coordination | |
Henan | 0.0381 | 0.1792 | 0.2958 | 0.0160 | 0.5700 | 0.5291 | 0.5491 | Bare coordination | |
Hubei | 0.0485 | 0.1777 | 0.3334 | 0.0145 | 0.5601 | 0.5741 | 0.5670 | Bare coordination | |
Hunan | 0.0491 | 0.1802 | 0.3542 | 0.0190 | 0.5835 | 0.6025 | 0.5929 | Bare coordination | |
Guangxi | 0.0350 | 0.1713 | 0.3633 | 0.0062 | 0.4215 | 0.5758 | 0.4926 | On the verge of disorder | |
Average | 0.0414 | 0.1595 | 0.2834 | 0.0157 | 0.5888 | 0.5000 | 0.5426 | Bare coordination | |
West area | Chongqing | 0.0479 | 0.1764 | 0.3335 | 0.0181 | 0.5873 | 0.5760 | 0.5816 | Bare coordination |
Sichuan | 0.0293 | 0.1807 | 0.3409 | 0.0148 | 0.5081 | 0.5657 | 0.5361 | Bare coordination | |
Guizhou | 0.0357 | 0.1626 | 0.2938 | 0.0255 | 0.6276 | 0.5176 | 0.5700 | Bare coordination | |
Yunnan | 0.0353 | 0.1332 | 0.3596 | 0.0088 | 0.4620 | 0.5369 | 0.4980 | On the verge of disorder | |
Shaanxi | 0.0391 | 0.1683 | 0.2649 | 0.0201 | 0.6254 | 0.4925 | 0.5550 | Bare coordination | |
Gansu | 0.0355 | 0.1268 | 0.2547 | 0.0251 | 0.6628 | 0.4422 | 0.5414 | Bare coordination | |
Qinghai | 0.0344 | 0.0809 | 0.2607 | 0.0052 | 0.4634 | 0.3813 | 0.4203 | On the verge of disorder | |
Ningxia | 0.0371 | 0.0453 | 0.0951 | 0.0157 | 0.8236 | 0.1931 | 0.3988 | Mild disorder | |
Xinjiang | 0.0239 | 0.0725 | 0.1354 | 0.0160 | 0.7105 | 0.2478 | 0.4196 | On the verge of disorder | |
Average | 0.0354 | 0.1274 | 0.2599 | 0.0166 | 0.6046 | 0.4392 | 0.5153 | Bare coordination | |
Whole country | Average | 0.0475 | 0.1558 | 0.2784 | 0.0257 | 0.6723 | 0.5073 | 0.5840 | Bare coordination |
Regions and Areas | d(x) | p(y) | s(z) | p(k) | C | T | D | Coordination Level | |
---|---|---|---|---|---|---|---|---|---|
East area | Beijing | 0.0897 | 0.2108 | 0.3488 | 0.2142 | 0.8980 | 0.8634 | 0.8805 | Favorable coordination |
Tianjin | 0.0696 | 0.1959 | 0.2401 | 0.0311 | 0.7486 | 0.5367 | 0.6338 | Primary coordination | |
Hebei | 0.0468 | 0.1429 | 0.2593 | 0.0169 | 0.6314 | 0.4660 | 0.5424 | Bare coordination | |
Liaoning | 0.0411 | 0.1494 | 0.2279 | 0.0259 | 0.6984 | 0.4443 | 0.5570 | Bare coordination | |
Shanghai | 0.0847 | 0.1795 | 0.2541 | 0.0562 | 0.8451 | 0.5744 | 0.6968 | Primary coordination | |
Jiangsu | 0.0668 | 0.1920 | 0.2719 | 0.0306 | 0.7241 | 0.5613 | 0.6375 | Primary coordination | |
Zhejiang | 0.0777 | 0.1838 | 0.3493 | 0.0306 | 0.6933 | 0.6414 | 0.6668 | Primary coordination | |
Fujian | 0.0696 | 0.1850 | 0.3619 | 0.0181 | 0.6038 | 0.6345 | 0.6189 | Primary coordination | |
Shandong | 0.0589 | 0.1756 | 0.2203 | 0.0176 | 0.6740 | 0.4724 | 0.5643 | Bare coordination | |
Guangdong | 0.0820 | 0.1906 | 0.3698 | 0.0194 | 0.6219 | 0.6618 | 0.6415 | Primary coordination | |
Hainan | 0.0346 | 0.1789 | 0.3071 | 0.0322 | 0.6402 | 0.5528 | 0.5949 | Bare coordination | |
Average | 0.0656 | 0.1804 | 0.2918 | 0.0448 | 0.7656 | 0.5826 | 0.6679 | Primary coordination | |
Central area | Shanxi | 0.0427 | 0.0841 | 0.0906 | 0.0307 | 0.9064 | 0.2481 | 0.4742 | On the verge of disorder |
Inner Mongolia | 0.0566 | 0.0990 | 0.1145 | 0.0061 | 0.6442 | 0.2763 | 0.4219 | On the verge of disorder | |
Jilin | 0.0313 | 0.1632 | 0.2972 | 0.0134 | 0.5316 | 0.5051 | 0.5182 | Bare coordination | |
Heilongjiang | 0.0293 | 0.1830 | 0.2925 | 0.0264 | 0.6043 | 0.5312 | 0.5666 | Bare coordination | |
Anhui | 0.0450 | 0.1733 | 0.3249 | 0.0148 | 0.5606 | 0.5580 | 0.5593 | Bare coordination | |
Jiangxi | 0.0389 | 0.1838 | 0.3677 | 0.0095 | 0.4707 | 0.5998 | 0.5314 | Bare coordination | |
Henan | 0.0381 | 0.1792 | 0.2958 | 0.0160 | 0.5700 | 0.5291 | 0.5491 | Bare coordination | |
Hubei | 0.0485 | 0.1777 | 0.3334 | 0.0145 | 0.5601 | 0.5741 | 0.5670 | Bare coordination | |
Hunan | 0.0491 | 0.1802 | 0.3542 | 0.0190 | 0.5835 | 0.6025 | 0.5929 | Bare coordination | |
Guangxi | 0.0350 | 0.1713 | 0.3633 | 0.0062 | 0.4215 | 0.5758 | 0.4926 | On the verge of disorder | |
Average | 0.0414 | 0.1595 | 0.2834 | 0.0157 | 0.5888 | 0.5000 | 0.5426 | Bare coordination | |
West area | Chongqing | 0.0479 | 0.1764 | 0.3335 | 0.0181 | 0.5873 | 0.5760 | 0.5816 | Bare coordination |
Sichuan | 0.0293 | 0.1807 | 0.3409 | 0.0148 | 0.5081 | 0.5657 | 0.5361 | Bare coordination | |
Guizhou | 0.0357 | 0.1626 | 0.2938 | 0.0255 | 0.6276 | 0.5176 | 0.5700 | Bare coordination | |
Yunnan | 0.0353 | 0.1332 | 0.3596 | 0.0088 | 0.4620 | 0.5369 | 0.4980 | On the verge of disorder | |
Shaanxi | 0.0391 | 0.1683 | 0.2649 | 0.0201 | 0.6254 | 0.4925 | 0.5550 | Bare coordination | |
Gansu | 0.0355 | 0.1268 | 0.2547 | 0.0251 | 0.6628 | 0.4422 | 0.5414 | Bare coordination | |
Qinghai | 0.0344 | 0.0809 | 0.2607 | 0.0052 | 0.4634 | 0.3813 | 0.4203 | On the verge of disorder | |
Ningxia | 0.0371 | 0.0453 | 0.0951 | 0.0157 | 0.8236 | 0.1931 | 0.3988 | Mild disorder | |
Xinjiang | 0.0239 | 0.0725 | 0.1354 | 0.0160 | 0.7105 | 0.2478 | 0.4196 | On the verge of disorder | |
Average | 0.0354 | 0.1274 | 0.2599 | 0.0166 | 0.6046 | 0.4392 | 0.5153 | Bare coordination | |
Whole country | Average | 0.0475 | 0.1558 | 0.2784 | 0.0257 | 0.6723 | 0.5073 | 0.5840 | Bare coordination |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.; Gulzar, M.A.; Hassan, W. Synthetic Evaluation of China’s Regional Low-Carbon Economy Challenges by Driver-Pressure-State-Impact-Response Model. Int. J. Environ. Res. Public Health 2020, 17, 5463. https://doi.org/10.3390/ijerph17155463
Pan W, Gulzar MA, Hassan W. Synthetic Evaluation of China’s Regional Low-Carbon Economy Challenges by Driver-Pressure-State-Impact-Response Model. International Journal of Environmental Research and Public Health. 2020; 17(15):5463. https://doi.org/10.3390/ijerph17155463
Chicago/Turabian StylePan, Wenyan, Muhammad Awais Gulzar, and Waseem Hassan. 2020. "Synthetic Evaluation of China’s Regional Low-Carbon Economy Challenges by Driver-Pressure-State-Impact-Response Model" International Journal of Environmental Research and Public Health 17, no. 15: 5463. https://doi.org/10.3390/ijerph17155463
APA StylePan, W., Gulzar, M. A., & Hassan, W. (2020). Synthetic Evaluation of China’s Regional Low-Carbon Economy Challenges by Driver-Pressure-State-Impact-Response Model. International Journal of Environmental Research and Public Health, 17(15), 5463. https://doi.org/10.3390/ijerph17155463