Mobile Phone Addiction and Risk-Taking Behavior among Chinese Adolescents: A Moderated Mediation Model
Abstract
:1. Introduction
1.1. Mobile Phone Addiction and Risk-Taking Behavior
1.2. The Mediation Effect of Self-Control
1.3. The Moderation Effect of Sex
1.4. The Present Study
2. Method
2.1. Participants and Procedures
2.2. Measures
2.2.1. Mobile Phone Addiction at T1
2.2.2. Self-Control at T1 and T2
2.2.3. Risk-Taking Behavior at T1, T2, and T3
2.2.4. Covariates at T1
2.3. Data Analyses
3. Results
3.1. Descriptive Statistics and Bivariate Correlation
3.2. Examination of the Hypothesized Moderated Mediation Model
4. Discussion
4.1. MP Addiction and Adolescents’ Risk-Taking Behavior
4.2. The Mediation Effect of Self-Control
4.3. The Moderation of Sex
4.4. Implications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- China Internet Network Information Center. The 45th China Statistical Report on Internet Development. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202004/t20200428_70974.htm (accessed on 27 May 2020).
- Barczyk, A.N.; Thompson, S.J.; Rew, L. The impact of psychosocial factors on subjective well-being among homeless young adults. Health Soc. Work 2014, 39, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Tyler, K.A.; Schmitz, R.M. Using cell phones for data collection: Benefits, outcomes, and intervention possibilities with homeless youth. Child. Youth Serv. Rev. 2017, 76, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chahal, H.; Fung, C.; Kuhle, S.; Veugelers, P.J. Availability and night-time use of electronic entertainment and communication devices are associated with short sleep duration and obesity among Canadian children. Pediatr. Obes. 2013, 8, 42–51. [Google Scholar] [CrossRef]
- Demirci, K.; Akgönül, M.; Akpinar, A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J. Behav. Addict. 2015, 4, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, S.; Smith, P.K. Annual Research Review: Harms experienced by child users of online and mobile technologies: The nature, prevalence and management of sexual and aggressive risks in the digital age. J. Child Psychol. Psychiatry 2014, 55, 635–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De-Sola, J.; Talledo, H.; Rubio, G.; de Fonseca, F.R. Development of a mobile phone addiction craving scale and its validation in a Spanish adult population. Front. Psychiatry 2017, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Zhang, H.; Yan, A.; Qu, C. Time is money: The decision making of smartphone high users in gain and loss intertemporal choice. Front. Psychol. 2017, 8, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, B.; Faires, A.; Robbins, M.; Rollins, E. The mere presence of a cell phone may be distracting: Implications for attention and task performance. Soc. Psychol. 2014, 45, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.C.; Lei, L.; Wang, X.C.; Nie, J.; Chu, X.Y.; Jin, S.N. The exacerbating role of perceived social support and the “buffering” role of depression in the relation between sensation seeking and adolescent smartphone addiction. Pers. Individ. Differ. 2018, 130, 129–134. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Yang, X.J.; Hu, Y.T.; Zhang, C.Y.; Nie, Y.G. How and when is family dysfunction associated with adolescent mobile phone addiction? Testing a moderated mediation model. Child. Youth Serv. Rev. 2020, 111. [Google Scholar] [CrossRef]
- Burt, C.H.; Sweeten, G.; Simons, R.L. Self-control through emerging adulthood: Instability, multidimensionality, and criminological significance. Criminology 2014, 52, 450–487. [Google Scholar] [CrossRef]
- Jo, Y.; Bouffard, L. Stability of self-control and gender. J. Crim. Justice 2014, 42, 356–365. [Google Scholar] [CrossRef]
- Shoenberger, N.; Rocheleau, G.C. Effective parenting and self-control: Difference by gender. Women Crim. Justice 2017, 27, 271–286. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Zhao, X.X. Self-control and problematic mobile phone use in Chinese college students: The mediating role of mobile phone use patterns. BMC Psychiatry 2016, 16, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkmer, S.A.; Lermer, E. Unhappy and addicted to your phone?—Higher mobile phone use is associated with lower well-being. Comput. Hum. Behav. 2019, 93, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Gullone, E.; Moore, S.; Moss, S.; Boyd, C. The adolescent risk-taking questionnaire. J. Adolesc. Res. 2000, 15, 231–250. [Google Scholar] [CrossRef]
- Ju, C.; Wu, R.; Zhang, B.; You, X.; Luo, Y. Parenting style, coping efficacy, and risk-taking behavior in Chinese young adults. J. Pac. Rim Psychol. 2020, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, L. A social neuroscience perspective on adolescent risk-taking. Dev. Rev. 2008, 28, 78–106. [Google Scholar] [CrossRef] [Green Version]
- Shulman, E.P.; Smith, A.R.; Silva, K.; Icenogle, G.; Duell, N.; Chein, J.; Steinberg, L. The dual systems model: Review, reappraisal, and reaffirmation. Dev. Cogn. Neurosci. 2016, 17, 103–117. [Google Scholar] [CrossRef] [Green Version]
- van Duijvenvoorde, A.C.; Peters, S.; Braams, B.R.; Crone, E.A. What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neurosci. Biobehav. Rev. 2016, 70, 135–147. [Google Scholar] [CrossRef]
- Oulasvirta, A.; Rattenbury, T.; Ma, L.; Raita, E. Habits make smartphone use more pervasive. Pers. Ubiquitous Comput. 2011, 16, 105–114. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chang, C.T.; Lin, Y.; Cheng, Z.H. The dark side of smartphone usage: Psychological traits, compulsive behavior and technostress. Comput. Hum. Behav. 2014, 31, 373–383. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.W.; Choi, T.Y. Risk factors for smartphone addiction in Korean adolescents: Smartphone use patterns. J. Korean Med. Sci. 2017, 32, 1674–1679. [Google Scholar] [CrossRef]
- Truong, L.T.; Nguyen, H.T.T.; De Gruyter, C. Correlations between mobile phone use and other risky behaviours while riding a motorcycle. Accid. Anal. Prev. 2018, 118, 125–130. [Google Scholar] [CrossRef]
- Yang, Y.S.; Yen, J.Y.; Ko, C.H.; Cheng, C.P.; Yen, C.F. The association between problematic cellular phone use and risky behaviors and low self-esteem among Taiwanese adolescents. BMC Public Health 2010, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Hadlington, L.J. Cognitive failures in daily life: Exploring the link with Internet addiction and problematic mobile phone use. Comput. Hum. Behav. 2015, 51, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.; Liu, R.D.; Ding, Y.; Sheng, X.; Zhen, R. Mobile phone addiction and cognitive failures in daily life: The mediating roles of sleep duration and quality and the moderating role of trait self-regulation. Addict. Behav. 2020, 107, 106383. [Google Scholar] [CrossRef]
- Acheson, A.; Lake, S.L.; Bray, B.C.; Liang, Y.; Mathias, C.W.; Ryan, S.R.; Charles, N.E.; Dougherty, D.M. Early adolescent trajectories of impulsiveness and sensation seeking in children of fathers with histories of alcohol and other substance use disorders. Alcoholism 2016, 40, 2622–2630. [Google Scholar] [CrossRef]
- Kerin, J.L.; Webb, H.J.; Zimmer-Gembeck, M.J. Intuitive, mindful, emotional, external and regulatory eating behaviours and beliefs: An investigation of the core components. Appetite 2019, 132, 139–146. [Google Scholar] [CrossRef]
- Yang, Y.; Joshi, S.H.; Jahanshad, N.; Thompson, P.M.; Baker, L.A. Neural correlates of proactive and reactive aggression in adolescent twins. Aggress. Behav. 2017, 43, 230–240. [Google Scholar] [CrossRef]
- Moffitt, T.E.; Arseneault, L.; Belsky, D.; Dickson, N.; Hancox, R.J.; Harrington, H.; Houts, R.; Poulton, R.; Roberts, B.W.; Ross, S.; et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. USA 2011, 108, 2693–2698. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, D.T.; Lensvelt-Mulders, G.; Finkenauer, C.; Stok, F.M.; Baumeister, R.F. Taking stock of self-control: A meta-analysis of how trait self-control relates to a wide range of behaviors. Pers. Soc. Psychol. Rev. 2012, 16, 76–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazsonyi, A.T.; Mikuška, J.; Kelley, E.L. It’s time: A meta-analysis on the self-control-deviance link. J. Crim. Justice 2017, 48, 48–63. [Google Scholar] [CrossRef]
- Romero, E.; Go’mez-Fraguela, A.; Luengo, A.; Sobral, J. The self-control construct in the general theory of crime: An investigation in terms of personality psychology. Psychol. Crime Law 2003, 9, 61–86. [Google Scholar] [CrossRef]
- Koning, I.M.; van den Eijnden, R.J.; Engels, R.C.; Verdurmen, J.E.; Vollebergh, W.A. Why target early adolescents and parents in alcohol prevention? The mediating effects of self-control, rules and attitudes about alcohol use. Addiction 2011, 106, 538–546. [Google Scholar] [CrossRef]
- Walters, K.J.; Simons, J.S.; Simons, R.M. Self-control demands and alcohol-related problems: Within- and between-person associations. Psychol. Addict. Behav. 2018, 32, 573–582. [Google Scholar] [CrossRef]
- Flexon, J.L.; Meldrum, R.C.; Young, J.T.N.; Lehmann, P.S. Low self-control and the dark triad: Disentangling the predictive power of personality traits on young adult substance use, offending and victimization. J. Crim. Justice 2016, 46, 159–169. [Google Scholar] [CrossRef]
- Bergen, A.E.; Newby-Clark, I.R.; Brown, A. Low trait self-control in problem gamblers: Evidence from self-report and behavioral measures. J. Gamb. Stud. 2012, 28, 637–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavriel-Fried, B.; Ronen, T. Contribution of positivity ratio and self-control to reduced gambling severity among adolescents. Health Soc. Work 2015, 40, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, R.F.; Vohs, K.D.; Tice, D.M. The strength model of self-control. Curr. Dir. Psychol. 2007, 16, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Friehe, T.; Schildberg-Hörisch, H. Self-control and crime revisited: Disentangling the effect of self-control on risk taking and antisocial behavior. Int. Rev. Law Econ. 2017, 49, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Barr, N.; Pennycook, G.; Stolz, J.A.; Fugelsang, J.A. The brain in your pocket: Evidence that smartphones are used to supplant thinking. Comput. Hum. Behav. 2015, 48, 473–480. [Google Scholar] [CrossRef]
- Anshari, M.; Alas, Y.; Hardaker, G.; Jaidin, J.H.; Smith, M.; Ahad, A.D. Smartphone habit and behavior in Brunei: Personalization, gender, and generation gap. Comput. Hum. Behav. 2016, 64, 719–727. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, K.Z.K.; Gong, X.; Zhao, S.J.; Lee, M.K.O.; Liang, L. Examining the effects of motives and gender differences on smartphone addiction. Comput. Hum. Behav. 2017, 75, 891–902. [Google Scholar] [CrossRef]
- Shulman, E.P.; Harden, K.P.; Chein, J.M.; Steinberg, L. Sex differences in the developmental trajectories of impulse control and sensation-seeking from early adolescence to early adulthood. J. Youth Adolesc. 2015, 44, 1–17. [Google Scholar] [CrossRef]
- Cross, C.P.; Copping, L.T.; Campbell, A. Supplemental material for sex differences in impulsivity: A meta-analysis. Psychol. Bull. 2011, 97–130. [Google Scholar] [CrossRef] [Green Version]
- Cross, C.P.; Cyrenne, D.L.; Brown, G.R. Sex differences in sensation-seeking: A meta-analysis. Sci. Rep. 2013, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Leung, L. Linking psychological attributes to addiction and improper use of the mobile phone among adolescents in Hong Kong. J. Child. Media 2008, 2, 93–113. [Google Scholar] [CrossRef]
- Tangney, J.P.; Baumeister, R.F.; Boone, A.L. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. J. Pers. 2004, 72, 271–324. [Google Scholar] [CrossRef]
- Situ, Q.M.; Li, J.B.; Dou, K. Reexamining the linear and U-shaped relationships between self-control and emotional and behavioural problems. Asian J. Soc. Psychol. 2016, 19, 177–185. [Google Scholar] [CrossRef]
- Figner, B.; Mackinlay, R.J.; Wilkening, F.; Weber, E.U. Supplemental material for affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia card task. J. Exp. Psychol.-Learn. Mem. Cogn. 2009. [Google Scholar] [CrossRef] [Green Version]
- Pentz, M.A.; Shin, H.; Riggs, N.; Unger, J.B.; Collison, K.L.; Chou, C.P. Parent, peer, and executive function relationships to early adolescent e-cigarette use: A substance use pathway? Addict. Behav. 2015, 42, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acock, A.C. Working with missing values. J. Marriage Fam. 2005, 67, 1012–1028. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Steiger, J.H. Structural model evaluation and modification: An interval estimation approach. Multivar. Behav. Res. 1990, 25, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Sween, M.; Ceschi, A.; Tommasi, F.; Sartori, R.; Weller, J. Who is a distracted driver? Associations between mobile phone use while driving, domain-specific risk taking, and personality. Risk Anal. 2017, 37, 2119–2131. [Google Scholar] [CrossRef]
- Sherman, L.E.; Greenfield, P.M.; Hernandez, L.M.; Dapretto, M. Peer influence via Instagram: Effects on brain and behavior in adolescence and young adulthood. Child Dev. 2018, 89, 37–47. [Google Scholar] [CrossRef]
- Sherman, L.E.; Payton, A.A.; Hernandez, L.M.; Greenfield, P.M.; Dapretto, M. The power of the like in adolescence: Effects of peer influence on neural and behavioral responses to social media. Psychol. Sci. 2016, 27, 1027–1035. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, K.Z.K.; Gong, X.; Zhao, S.J.; Lee, M.K.O.; Liang, L. Understanding compulsive smartphone use: An empirical test of a flow-based model. Int. J. Inf. Manag. 2017, 37, 438–454. [Google Scholar] [CrossRef]
- Zheng, F.Z.; Gao, P.; He, M.D.; Li, M.; Wang, C.X.; Zeng, Q.C.; Zhou, Z.; Yu, Z.P.; Zhang, L. Association between mobile phone use and inattention in 7102 Chinese adolescents: A population-based cross-sectional study. BMC Public Health. 2014, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soror, A.A.; Hammer, B.I.; Steelman, Z.R.; Davis, F.D.; Limayem, M.M. Good habits gone bad: Explaining negative consequences associated with the use of mobile phones from a dual-systems perspective. Inf. Syst. J. 2015, 25, 403–427. [Google Scholar] [CrossRef]
- Kahn, R.E.; Holmes, C.; Farley, J.P.; Kim-Spoon, J. Delay discounting mediates parent-adolescent relationship quality and risky sexual behavior for low self-control adolescents. J. Youth Adolesc. 2015, 44, 1674–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | N | % |
---|---|---|
Adolescent sex | ||
Boys | 191 | 47.9% |
Girls | 208 | 52.1% |
Only child at home | ||
Yes | 198 | 49.6% |
No | 201 | 50.4% |
Father’s work status | ||
Unemployment | 32 | 8.0% |
Part-time job | 45 | 11.3% |
Full-time job | 322 | 80.7% |
Mother’s work status | ||
Unemployment | 82 | 20.6% |
Part-time job | 53 | 13.3% |
Full-time job | 264 | 66.2% |
Father’s highest educational level | ||
High school or below | 234 | 58.6% |
College or undergraduate | 152 | 38.1% |
Master or above | 13 | 3.3% |
Mother’s highest educational level | ||
High school or below | 254 | 63.7% |
College or undergraduate | 140 | 35.1% |
Master or above | 5 | 1.3% |
Total | 399 | 100% |
Study Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. MP addiction (T1) | —— | ||||||||||||
2. Self-control (T1) | −0.43 *** | ||||||||||||
3. Self-control (T2) | −0.35 *** | 0.51 *** | |||||||||||
4.Risk-taking behavior (T1) | 0.37 *** | −0.28 *** | −0.22 *** | ||||||||||
5.Risk-taking behavior (T2) | 0.32 *** | −0.25 *** | −0.30 *** | 0.27 *** | |||||||||
6.Risk-taking behavior (T3) | 0.22 *** | −0.22 *** | −0.27 *** | 0.19 *** | 0.38 *** | ||||||||
7. Sex (0 = boys, 1 = girls) | −0.17 *** | 0.06 | 0.01 | −0.24 *** | −0.19 *** | −0.13 ** | |||||||
Covariates at T1 | |||||||||||||
8. Age | 0.02 | 0.01 | 0.07 | −0.03 | −0.03 | 0.04 | 0.00 | ||||||
9. Only child at home | −0.16 ** | 0.03 | 0.10 | −0.02 | −0.11 * | −0.04 | 0.20 *** | −0.01 | |||||
10. Father’s work status | 0.02 | 0.07 | 0.01 | −0.01 | 0.06 | 0.04 | −0.09 | 0.04 | −0.03 | ||||
11. Mother’s work status | 0.03 | −0.07 | −0.06 | 0.05 | 0.06 | 0.01 | −0.06 | 0.11 * | −0.09 | 0.23 *** | |||
12. Father’s education | 0.13 ** | −0.05 | −0.11 * | 0.14 ** | 0.01 | 0.02 | −0.00 | −0.10 * | −0.18 *** | 0.07 | −0.00 | ||
13. Mother’s education | 0.05 | −0.05 | −0.03 | 0.19 *** | 0.08 | −0.03 | −0.02 | −0.09 | −0.17 ** | 0.02 | 0.11 * | 0.56 *** | |
M | 2.16 | 3.05 | 3.19 | 1.41 | 0.28 | 0.27 | 0.52 | 15.37 | 1.50 | 2.73 | 2.46 | 2.53 | 2.38 |
SD | 0.99 | 0.55 | 0.54 | 0.73 | 0.37 | 0.33 | 0.50 | 0.52 | 0.50 | 0.60 | 0.81 | 1.02 | 0.95 |
Self-Control (T2, R2 = 0.29) | Risk-Taking Behavior (T2, R2 = 0.13) | Risk-Taking Behavior (T3, R2 = 0.20) | |||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | p | B | SE | p | B | SE | p | |
Covariates at T1 | |||||||||
Age | 0.03 | 0.03 | 0.41 | ||||||
Only child at home | −0.03 | 0.02 | 0.19 | ||||||
Father’s work status | 0.01 | 0.02 | 0.56 | ||||||
Mother’s work status | 0.01 | 0.03 | 0.92 | ||||||
Father’s education | 0.01 | 0.04 | 0.80 | ||||||
Mother’s education | −0.01 | 0.02 | 0.77 | ||||||
Independent variable | |||||||||
MP addiction (T1) | −0.03 | 0.05 | 0.48 | 0.10 | 0.02 | <0.001 | 0.02 | 0.02 | 0.37 |
Mediating variable | |||||||||
Self-control (T1) | 0.40 | 0.06 | <0.001 | ||||||
Self-control (T2) | −0.11 | 0.04 | 0.002 | ||||||
Moderating variable | |||||||||
Sex | 0.23 | 0.14 | 0.10 | ||||||
Interaction term | |||||||||
MP addiction (T1) × Sex | −0.13 | 0.06 | 0.02 |
Sex | B | S.E. | 95% CI |
---|---|---|---|
Boys | 0.004 | 0.005 | [−0.006, 0.016] |
Girls | 0.018 | 0.007 | [0.006, 0.036] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, K.; Wang, L.-X.; Li, J.-B.; Wang, G.-D.; Li, Y.-Y.; Huang, Y.-T. Mobile Phone Addiction and Risk-Taking Behavior among Chinese Adolescents: A Moderated Mediation Model. Int. J. Environ. Res. Public Health 2020, 17, 5472. https://doi.org/10.3390/ijerph17155472
Dou K, Wang L-X, Li J-B, Wang G-D, Li Y-Y, Huang Y-T. Mobile Phone Addiction and Risk-Taking Behavior among Chinese Adolescents: A Moderated Mediation Model. International Journal of Environmental Research and Public Health. 2020; 17(15):5472. https://doi.org/10.3390/ijerph17155472
Chicago/Turabian StyleDou, Kai, Lin-Xin Wang, Jian-Bin Li, Guo-Dong Wang, Yan-Yu Li, and Yi-Ting Huang. 2020. "Mobile Phone Addiction and Risk-Taking Behavior among Chinese Adolescents: A Moderated Mediation Model" International Journal of Environmental Research and Public Health 17, no. 15: 5472. https://doi.org/10.3390/ijerph17155472
APA StyleDou, K., Wang, L.-X., Li, J.-B., Wang, G.-D., Li, Y.-Y., & Huang, Y.-T. (2020). Mobile Phone Addiction and Risk-Taking Behavior among Chinese Adolescents: A Moderated Mediation Model. International Journal of Environmental Research and Public Health, 17(15), 5472. https://doi.org/10.3390/ijerph17155472