Measurement Invariance of the Burnout Assessment Tool (BAT) Across Seven Cross-National Representative Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measure
2.3. Data Analysis
3. Results
3.1. Testing the Second-Order Model in the Individual Countries
3.2. Measurement Invariance Testing Across Countries
3.3. Levels of Burnout Across Countries
4. Discussion
Limitations and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freudenberger, H.J. Staff burnout. J. Soc. Issues. 1974, 30, 159–165. [Google Scholar] [CrossRef]
- Ahola, K.; Hakanen, J.J. Burnout and Health. In New Perspectives on Burnout Research; Leiter, M.P., Bakker, A.B., Maslach, C., Eds.; Psychology Press: Palo Alto, CA, USA, 2014; pp. 10–31. [Google Scholar]
- Salvagioni, D.A.J.; Melanda, F.N.; Mesas, A.E.; González, A.D.; De Andrade, S.M.; Gabani, F.L. Physical, psychological and occupational consequences of job burnout: A systematic review of prospective studies. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Molina-Praena, J.; Ramirez-Baena, L.; Gómez-Urquiza, J.L.; Cañadas, G.R.; De la Fuente, E.I.; Cañadas-De la Fuente, G.A. Levels of Burnout and Risk Factors in Medical Area Nurses: A Meta-Analytic Study. Int. J. Environ. Res. Public Health 2018, 15, 2800. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fuentes, M.C.; Molero Jurado, M.M.; Martos Martínez, Á.; Gázquez Linares, J.J. New Burnout Evaluation Model Based on the Brief Burnout Questionnaire: Psychometric Properties for Nursing. Int. J. Environ. Res. Public Health 2018, 15, 2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Fuentes, M.C.; Molero Jurado, M.M.; Martos Martínez, Á.; Gázquez Linares, J.J. Burnout and Engagement: Personality Profiles in Nursing Professionals. J. Clin. Med. 2019, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Leiter, M.P.; Schaufeli, W.B. Consistency of the burnout construct across occupations. Anxiety Stress Coping 1996, 9, 229–243. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Leiter, M.P.; Maslach, C. Burnout: 35 years of research and practice. Career Dev. Int. 2009, 14, 204–220. [Google Scholar] [CrossRef] [Green Version]
- WHO [World Health Organization]. Burn-out an “Occupational Phenomenon”: International Classification of Diseases. Available online: https://www.who.int/mental_health/evidence/burn-out/en/ (accessed on 4 July 2020).
- Maslach, C.; Jackson, S.E. The measurement of experienced burnout. J. Organ. Behav. 1981, 2, 99–113. [Google Scholar] [CrossRef]
- Maslach, C.; Schaufeli, W.B. Historical and Conceptual Development of Burnout. Prof. Burn. Recent Dev. Theory Res. 1993, 12, 1–6. [Google Scholar]
- Schaufeli, W.B.; Taris, T.W. The conceptualization and measurement of burnout: Common ground and worlds apart. Work Stress 2005, 19, 256–262. [Google Scholar] [CrossRef]
- De Beer, L.T.; Bianchi, R. Confirmatory factor analysis of the Maslach Burnout Inventory: A Bayesian structural equation modeling approach. Eur. J. Psychol. Assess. 2019, 35, 217–224. [Google Scholar] [CrossRef]
- Deligkaris, P.; Panagopoulou, E.; Montgomery, A.J.; Masoura, E. Job burnout and cognitive functioning: A systematic review. Work Stress 2014, 28, 107–123. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Bakker, A.B.; Hoogduin, K.; Schaap, C.; Kladler, A. On the clinical validity of the Maslach Burnout Inventory and the Burnout Measure. Psychol. Health 2001, 16, 565. [Google Scholar] [CrossRef] [PubMed]
- Schaufeli, W.B. Work engagement in Europe: Relations with national economy, governance and culture. Organ. Dyn. 2018, 47, 99–106. [Google Scholar] [CrossRef]
- Brenninkmeijer, V.; Van Yperen, N. How to conduct research on burnout: Advantages and disadvantages of a unidimensional approach in burnout research. Occup. Environ. Med. 2003, 60, i16. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.L.; Vassar, M.; Barnes, L.L.B.; Worley, J.A. A reliability generalization meta-analysis of coefficient alpha for the Maslach burnout inventory. Educ. Psychol. Meas. 2011, 71, 231–244. [Google Scholar] [CrossRef]
- Bresó, E.; Salanova, M.; Schaufeli, W.B. In Search of the “Third Dimension” of Burnout: Efficacy or Inefficacy? Appl. Psychol. Int. Rev. 2007, 56, 460–478. [Google Scholar] [CrossRef]
- Lheureux, F.; Truchot, D.; Borteyrou, X.; Rascle, N. The Maslach Burnout Inventory-Human Services Survey (MBI-HSS): Factor structure, wording effect and psychometric qualities of known problematic items. Trav. Hum. 2017, 80, 161–186. [Google Scholar] [CrossRef]
- Worley, J.A.; Vassar, M.; Wheeler, D.L.; Barnes, L.L.B. Factor Structure of Scores from the Maslach Burnout Inventory: A Review and Meta-Analysis of 45 Exploratory and Confirmatory Factor-Analytic Studies. Educ. Psychol. Meas. 2008, 68, 797–823. [Google Scholar] [CrossRef]
- Galanakis, M.; Moraitou, M.; Garivaldis, F.J.; Stalikas, A. Factorial Structure and Psychometric Properties of the Maslach Burnout Inventory (MBI) in Greek Midwives. Eur. J. Psychol. 2009, 5, 52–70. [Google Scholar] [CrossRef]
- Firth, H.; McIntee, J.; McKeown, P.; Britton, P.G. Maslach Burnout Inventory: Factor structure and norms for British nursing staff. Psychol. Rep. 1985, 57, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Densten, I.L. Re-thinking burnout. J. Organ. Behav. 2001, 22, 833–847. [Google Scholar] [CrossRef]
- Byrne, B.M. The Maslach Burnout Inventory: Testing for factorial validity and invariance across elementary, intermediate and secondary teachers. J. Occup. Organ. Psychol. 1993, 66, 197–212. [Google Scholar] [CrossRef]
- Toppinen, S.; Kalimo, R.; Schaufeli, W.B.; Schutte, N. The factorial validity of the Maslach Burnout Inventory-General Survey (MBI-GS) across occupational groups and nations. J. Occup. Organ. Psychol. 2000, 73, 53–66. [Google Scholar] [CrossRef]
- Aboagye, M.O.; Qin, J.; Qayyum, A.; Antwi, C.O.; Jababu, Y.; Affum-Osei, E. Teacher burnout in pre-schools: A cross-cultural factorial validity, measurement invariance and latent mean comparison of the Maslach Burnout Inventory, Educators Survey (MBI-ES). Child. Youth Serv. Rev. 2018, 94, 186–197. [Google Scholar] [CrossRef]
- Squires, A.; Finlayson, C.; Gerchow, L.; Cimiotti, J.P.; Matthews, A.; Schwendimann, R.; Griffiths, P.; Busse, R.; Heinen, M.; Brzostek, T.; et al. Methodological considerations when translating “burnout”. Burn. Res. 2014, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Schaufeli, W.B.; Desart, S.; De Witte, H. Burnout Assessment Tool (BAT)—Development, Validity and Reliability. under review. Eur. J. Work. Organ. Psychol. 2020. [Google Scholar]
- Schaufeli, W.B.; De Witte, H.; Desart, S. Manual Burnout Assessment Tool (BAT); KU: Leuven, Belgium, 2019. [Google Scholar]
- Desart, S.; De Witte, H. Burnout 2.0—A New Look at the Conceptualization of Burnout. In The Fun and Frustration of Modern Working Life. Contributions from an Occupational Health Psychology Perspective; Taris, T.W., Peeters, M.C.W., De Witte, H., Eds.; Pelckmans Pro: Kalmthout, Belgium, 2019; pp. 140–152. [Google Scholar]
- Maslach, C.; Leiter, M.P.; Jackson, S.E. Maslach Burnout Inventory, 4th ed.; Mind Garden Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Demerouti, E.; Bakker, A.B.; Vardakou, I.; Kantas, A. The convergent validity of two burnout instruments: A multitrait-multimethod analysis. Eur. J. Psychol. Assess. 2003, 19, 12–23. [Google Scholar] [CrossRef]
- Bakker, A.B.; Demerouti, E. Job demands–resources theory: Taking stock and looking forward. J. Occup. Health Psychol. 2017, 22, 273–285. [Google Scholar] [CrossRef]
- Gadermann, A.; Guhn, M.; Zumbo, B.D. Ordinal Alpha. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 4513–4515. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2019. [Google Scholar]
- Millsap, R.E.; Yun-Tein, J. Assessing Factorial Invariance in Ordered-Categorical Measures. Multivar. Behav. Res. 2004, 39, 479–515. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-H. The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychol. Methods 2016, 21, 369–387. [Google Scholar] [CrossRef]
- Rutkowski, L.; Svetina, D. Measurement invariance in international surveys: Categorical indicators and fit measure performance. Appl. Meas. Educ. 2017, 30, 39–51. [Google Scholar] [CrossRef]
- Chen, F.F. What happens if we compare chopsticks with forks? The impact of making inappropriate comparisons in cross-cultural research. J. Pers. Soc. Psychol. 2008, 95, 1005. [Google Scholar] [CrossRef] [PubMed]
- Rudnev, M.; Lytkina, E.; Davidov, E.; Schmidt, P.; Zick, A. Testing Measurement Invariance for a Second-Order Factor. A Cross-National Test of the Alienation Scale. MDA Methods Data Anal. 2018, 12, 47–76. [Google Scholar]
- Little, T.D.; Siegers, D.W.; Card, N.A. A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Struct. Equ. Modeling 2006, 13, 59–72. [Google Scholar] [CrossRef]
- Shi, D.; Maydeu-Olivares, A.; Rosseel, Y. Assessing Fit in Ordinal Factor Analysis Models: SRMR vs. RMSEA. Struct. Equ. Modeling 2020, 27, 1–15. [Google Scholar] [CrossRef]
- Herbig, P.A.; Palumbo, F.A. Karoshi: Salaryman Sudden Death Syndrome. J. Manag. Psychol. 1994, 9, 11–16. [Google Scholar] [CrossRef]
- Hofstede Insights. Country Comparison. Available online: https://www.hofstede-insights.com/country-comparison/japan/ (accessed on 22 July 2020).
- Takahashi, M. Sociomedical problems of overwork-related deaths and disorders in Japan. J. Occup. Health 2019, 61, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Demetriou, A. New Labour Law Puts Limits on Japan’s Overworking Culture. Available online: https://www.telegraph.co.uk/news/2019/04/02/new-labour-law-puts-limits-japans-overworking-culture/ (accessed on 22 July 2020).
- Fischer, R.; Boer, D. What is more important for national well-being: Money or autonomy? A meta-analysis of well-being, burnout, and anxiety across 63 societies. J. Pers. Soc. Psychol. 2011, 101, 164–184. [Google Scholar] [CrossRef]
- Maslach, C.; Schaufeli, W.B.; Leiter, M.P. Job Burnout. Annu. Rev. Psychol. 2001, 52, 397–422. [Google Scholar] [CrossRef] [Green Version]
- Shimazu, A.; Schaufeli, W.B.; Miyanaka, D.; Iwata, N. Why Japanese workers show low work engagement: An item response theory analysis of the Utrecht Work Engagement scale. Biopsychosoc. Med. 2010, 4, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Schoot, R.; Kluytmans, A.; Tummers, L.; Lugtig, P.; Hox, J.; Muthen, B. Facing off with Scylla and Charybdis: A comparison of scalar, partial, and the novel possibility of approximate measurement invariance. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smid, S.C.; Miočević, M.; Van de Schoot, R.; McNeish, D. Bayesian Versus Frequentist Estimation for Structural Equation Models in Small Sample Contexts: A Systematic Review. Struct. Equ. Modeling 2020, 27, 131–161. [Google Scholar] [CrossRef] [Green Version]
Country | EX | MD | CI | EI | BURNOUT |
---|---|---|---|---|---|
The Netherlands | 0.91 | 0.93 | 0.93 | 0.95 | 0.96 |
Belgium (Flanders) | 0.90 | 0.92 | 0.92 | 0.93 | 0.95 |
Germany | 0.86 | 0.87 | 0.86 | 0.90 | 0.94 |
Austria | 0.85 | 0.90 | 0.87 | 0.89 | 0.94 |
Ireland | 0.84 | 0.87 | 0.88 | 0.86 | 0.92 |
Finland | 0.84 | 0.90 | 0.88 | 0.81 | 0.91 |
Japan | 0.91 | 0.80 | 0.91 | 0.91 | 0.95 |
Country | df | χ2 | CFI | TLI | RMSEA | SRMR |
---|---|---|---|---|---|---|
The Netherlands | 226 | 1760.08 | 0.988 | 0.987 | 0.066 | 0.021 |
Belgium | 226 | 2426.82 | 0.981 | 0.978 | 0.077 | 0.033 |
Germany | 226 | 1817.08 | 0.961 | 0.957 | 0.081 | 0.037 |
Austria | 226 | 1480.67 | 0.971 | 0.968 | 0.072 | 0.035 |
Finland | 226 | 424.50 | 0.980 | 0.977 | 0.020 | 0.055 |
Ireland | 226 | 866.76 | 0.964 | 0.960 | 0.081 | 0.049 |
Japan | 226 | 3073.04 | 0.948 | 0.942 | 0.110 | 0.047 |
Model | χ2 | df | CFI | RMSEA | ΔCFI | ΔRMSEA |
---|---|---|---|---|---|---|
1. Configural MI | 10,444.46 | 1702 | 0.977 | 0.064 | − | − |
2. Full scalar MI of first order, configural MI of second order | 11,179.02 | 2092 | 0.976 | 0.058 | −0.001 | −0.006 |
3. Metric MI of second-order factor, given scalar MI of the first-order factors | 11,182.74 | 2110 | 0.976 | 0.058 | 0.000 | 0.000 |
4. Scalar MI of second-order factor, given scalar MI of the first-order factors | 10,117.45 | 2119 | 0.979 | 0.054 | 0.003 | −0.004 |
5. Second-order intercepts are fixed to zero (true second-order scalar model) | 10,282.31 | 2122 | 0.978 | 0.055 | −0.001 | 0.001 |
AUS | BE * | FIN | GER | IRE | JAP | NL | |
---|---|---|---|---|---|---|---|
First-order model | |||||||
Exhaustion | −0.03 (0.08) | 0.00 (0.00) | −0.03 (0.10) | 0.05 (0.07) | −0.07 (0.10) | 1.12 (0.08) | −0.20 (0.07) |
Emotional impairment | −0.72 (0.12) | 0.00 (0.00) | −0.07 (0.11) | −0.60 (0.11) | −0.69 (0.14) | 0.87 (0.11) | −0.39 (0.10) |
Cognitive impairment | −0.30 (0.09) | 0.00 (0.00) | 0.11 (0.10) | −0.18 (0.09) | −0.68 (0.15) | 0.49 (0.10) | 0.11 (0.08) |
Mental distance | −0.54 (0.11) | 0.00 (0.00) | −0.34 (0.12) | −0.41 (0.10) | 0.24 (0.18) | 0.62 (0.09) | −0.45 (0.09) |
Second-order model | |||||||
Burnout | −0.26 (0.07) | 0.00 (0.00) | −0.09 (0.08) | −0.17 (0.07) | −0.15 (0.08) | 0.71 (0.07) | −0.21 (0.06) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Beer, L.T.; Schaufeli, W.B.; De Witte, H.; Hakanen, J.J.; Shimazu, A.; Glaser, J.; Seubert, C.; Bosak, J.; Sinval, J.; Rudnev, M. Measurement Invariance of the Burnout Assessment Tool (BAT) Across Seven Cross-National Representative Samples. Int. J. Environ. Res. Public Health 2020, 17, 5604. https://doi.org/10.3390/ijerph17155604
de Beer LT, Schaufeli WB, De Witte H, Hakanen JJ, Shimazu A, Glaser J, Seubert C, Bosak J, Sinval J, Rudnev M. Measurement Invariance of the Burnout Assessment Tool (BAT) Across Seven Cross-National Representative Samples. International Journal of Environmental Research and Public Health. 2020; 17(15):5604. https://doi.org/10.3390/ijerph17155604
Chicago/Turabian Stylede Beer, Leon T., Wilmar B. Schaufeli, Hans De Witte, Jari J. Hakanen, Akihito Shimazu, Jürgen Glaser, Christian Seubert, Janine Bosak, Jorge Sinval, and Maksim Rudnev. 2020. "Measurement Invariance of the Burnout Assessment Tool (BAT) Across Seven Cross-National Representative Samples" International Journal of Environmental Research and Public Health 17, no. 15: 5604. https://doi.org/10.3390/ijerph17155604
APA Stylede Beer, L. T., Schaufeli, W. B., De Witte, H., Hakanen, J. J., Shimazu, A., Glaser, J., Seubert, C., Bosak, J., Sinval, J., & Rudnev, M. (2020). Measurement Invariance of the Burnout Assessment Tool (BAT) Across Seven Cross-National Representative Samples. International Journal of Environmental Research and Public Health, 17(15), 5604. https://doi.org/10.3390/ijerph17155604