Assessing the Psychometric Properties of the Internet Addiction Test in Peruvian University Students
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Design
3.2. Participants
3.3. Instruments
3.3.1. IAT—Internet Addiction Test
3.3.2. EHS—Social Skills Scale
3.4. Procedure
3.5. Data Analysis
4. Results
4.1. Item Analysis
4.2. Validity Evidence Based on the Internal Structure
4.3. Validity Evidence Based on Relations to Other Variables
4.4. Reliability
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- How often do you find that you stay online longer than you intended?¿Con qué frecuencia se conecta a internet más de lo previsto?
- How often do you neglect household chores to spend more time online?¿Con qué frecuencia descuida las actividades de la casa para estar más tiempo conectado?
- How often do you prefer the excitement of the internet to intimacy with your partner?¿Con qué frecuencia prefiere más la emoción que le produce estar conectado a la intimidad con su pareja o la relación directa con sus amigos?
- How often do you form new relationships with fellow online users?¿Con qué frecuencia forma nuevas relaciones con usuarios de Internet?
- How often do others in your life complain to you about the amount of time you spend online?¿Con qué frecuencia las personas cercanas a usted se quejan por la cantidad de tiempo que permanece conectado?
- How often do your grades or school work suffer because of the amount of time you spend online?¿Con qué frecuencia sus calificaciones o actividades académicas se afectan negativamente por la cantidad de tiempo que permanece en Internet?
- How often do you check your email before something else that you need to do?¿Con qué frecuencia revisa su correo electrónico antes de realizar otra tarea que necesita hacer?
- How often does your job performance or productivity suffer because of the internet?¿Con qué frecuencia el tiempo que pasa en Internet afecta negativamente su desempeño o productividad en el trabajo?
- How often do you become defensive or secretive when anyone asks you what you do online?¿Con qué frecuencia está a la defensiva o se muestra reservado cuando alguien le pregunta qué hace en Internet?
- How often do you block out disturbing thoughts about your life with soothing thoughts of the internet?¿Con qué frecuencia bloquea los pensamientos desagradables de su vida con pensamientos agradables relacionados con Internet?
- How often do you find yourself anticipating when you will go online again?¿Con qué frecuencia anticipa cuando estará conectado de nuevo?
- How often do you fear that life without the internet would be boring, empty, and joyless?¿Con qué frecuencia teme que la vida sin Internet sería aburrida, vacía o triste?
- How often do you snap, yell, or act annoyed if someone bothers you while you are online?¿Con qué frecuencia se enoja si alguien lo molesta mientras está conectado?
- How often do you lose sleep due to being online?¿Con qué frecuencia se queda sin dormir por conectarse durante la noche?
- How often do you feel preoccupied with the internet when off-line, or fantasize about being online?¿Con qué frecuencia se siente preocupado por no estar conectado o imagina estarlo?
- How often do you find yourself saying “just a few more minutes” when online?¿Con qué frecuencia dice: “unos minutos más”, cuando está conectado?
- How often do you try to cut down the amount of time you spend online and fail?¿Con qué frecuencia trata de disminuir el tiempo que pasa en Internet y no lo logra?
- How often do you try to hide how long you’ve been online?¿Con qué frecuencia intenta ocultar el tiempo que permanece conectado?
- How often do you choose to spend more time online over going out with others?¿Con qué frecuencia prefiere pasar más tiempo en Internet que salir con otras personas?
- How often do you feel depressed, moody, or nervous when you are off-line, which goes away once you are back online?¿Con qué frecuencia se siente deprimido, malhumorado o nervioso cuando no está conectado, pero se siente mejor cuando se conecta de nuevo?
References
- Freeman, C.G. The implications of online connectivity for world heritage in a digital platform society. Hist. Environ. 2018, 30, 84–95. [Google Scholar]
- Engelberg, E.; Sjöberg, L. Internet use, social skills, and adjustment. Cyberpsychol. Behav. 2004, 7, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracia Blanco, M.D.; Vigo Anglada, M.; Fernández Perez, M.J.; Marcó Arbones, M. Problemas conductuales relacionados con el uso de Internet: Un estudio exploratorio. Psicologia 2002, 18, 273–292. [Google Scholar]
- Mayer, M.A. The use of the Internet among adolescents; Risks and benefits. Aten. Primaria 2011, 43, 287–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Carbonell, X.; Beranuy, M.; Castellana, M.; Chamarro, A.; Oberst, U. La adicción a Internet y al móvil: ¿moda o trastorno? Adicciones 2008, 20, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Garcia del Castillo, J.A.; Terol, M.D.C.; Nieto, M.; Lledó, A.; Sánchez, S.; Martín-Aragón, M.; Sitges, E. Uso y abuso de Internet en jóvenes universitarios. Adicciones 2008, 20, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, C.; Geijo, S.; Sánchez, I.; Imaz, C.; Cabús, G. Revision of the mechanisms involved in the problematic use of the Internet. Rev. Asoc. Esp. Neuropsiquiatr. 2012, 32, 691–705. [Google Scholar]
- Kuss, D.J.; Lopez-Fernandez, O. Internet addiction and problematic Internet use: A systematic review of clinical research. World J. Psychiatry 2016, 6, 143. [Google Scholar] [CrossRef]
- Starcevic, V.; Aboujaoude, E. Internet addiction: Reappraisal of an increasingly inadequate concept. CNS Spectr. 2017, 22, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Young, K.S. Internet addiction: A new clinical phenomenon and its consequences. Am. Behav. Sci. 2004, 48, 402–415. [Google Scholar] [CrossRef]
- Block, J.J. Issues for DSM-V: Internet addiction. Am. J. Psychiatry 2008, 165, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Young, K.S.; Nabuco de Abreu, C. Internet Addiction: A Handbook and Guide to Evaluation and Treatment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; ISBN 978-0-470-55116-5. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 978-0-89042-554-1. [Google Scholar]
- Davis, R.A. A cognitive-behavioral model of pathological Internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Teo, C.P.A.; Lim, K.; Oei, T.P. Problematic Internet Use: Variants of cognitive-behavioural model under path analysis. Int. J. Psychol. Behav. Anal. 2017, 3, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Aguado, M.J.; Martín-Babarro, J.; Falcón, L. Problematic Internet use, maladaptive future time perspective and school context. Psicothema 2018, 30, 195–200. [Google Scholar]
- Fernandes, B.; Rodrigues, B.; Pontes, H.M. Internet addiction or problematic internet use ? Which term should be used ? Psicol. USP 2019, 30, e190020. [Google Scholar] [CrossRef]
- Demetrovics, Z.; Szeredi, B.; Rózsa, S. The three-factor model of Internet addiction: The development of the Problematic Internet Use Questionnaire. Behav. Res. Methods 2008, 40, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Meerkerk, G.-J.; Van Den Eijnden, R.J.J.M.; Vermulst, A.A.; Garretsen, H.F.L. The Compulsive Internet Use Scale (CIUS): Some psychometric properties. Cyberpsychol. Behav. 2008, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.; Phillips, J.G.; Saling, L.L. Potential determinants of heavier Internet usage. Int. J. Hum. Comput. Stud. 2000, 53, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Casas, J.A.; Ruiz-Olivares, R.; Ortega-Ruiz, R. Validation of the internet and social networking experiences questionnaire in Spanish adolescents. Int. J. Clin. Health Psychol. 2013, 13, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Young, K.S. Caught in the Net: How to Recognize the Signs of Internet Addiction—And a Winning Strategy for Recovery; John Wiley & Sons, Ltd.: New York, NY, USA, 1998; ISBN 978-0-471-19159-9. [Google Scholar]
- Widyanto, L.; McMurran, M. The psychometric properties of the Internet Addiction Test. Cyberpsychol. Behav. 2004, 7, 443–450. [Google Scholar] [CrossRef]
- Ngai, S.S.Y. Exploring the validity of the Internet Addiction Test for students in grades 5–9 in Hong Kong. Int. J. Adolesc. Youth 2007, 13, 221–237. [Google Scholar] [CrossRef]
- Chang, M.K.; Man, S.P. Factor structure for Young’s Internet Addiction Test: A confirmatory study. Comput. Hum. Behav. 2008, 24, 2597–2619. [Google Scholar] [CrossRef]
- Khazaal, Y.; Billieux, J.; Thorens, G.; Khan, R.; Louati, Y.; Scarlatti, E.; Theintz, F.; Lederrey, J.; Van Der Linden, M.; Zullino, D. French validation of the Internet Addiction Test. Cyberpsychol. Behav. 2008, 11, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Widyanto, L.; Griffiths, M.D.; Brunsden, V. A psychometric comparison of the Internet Addiction Test, the Internet-Related Problem Scale, and self-diagnosis. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Panayides, P.; Walker, M.J. Evaluation of the psychometric properties of the Internet Addiction Test (IAT) in a sample of Cypriot high school students: The Rasch measurement perspective. Eur. J. Psychol. 2012, 8, 327–351. [Google Scholar] [CrossRef]
- Jelenchick, L.A.; Becker, T.; Moreno, M.A. Assessing the psychometric properties of the Internet Addiction Test (IAT) in US college students. Psychiatry Res. 2012, 196, 296–301. [Google Scholar] [CrossRef] [Green Version]
- Barke, A.; Nyenhuis, N.; Kröner-Herwig, B. The German version of the Internet Addiction Test: A validation study. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 534–542. [Google Scholar] [CrossRef]
- Puerta-Cortés, D.X.; Carbonell, X.; Chamarro, A. Análisis de las propiedades psicométricas de la versión en español del Internet Addiction Test. Trastor. Adict. 2012, 14, 99–104. [Google Scholar] [CrossRef]
- Faraci, P.; Craparo, G.; Messina, R.; Severino, S. Internet Addiction Test (IAT): Which is the best factorial solution? J. Med. Internet Res. 2013, 15, e225. [Google Scholar] [CrossRef]
- Watters, C.A.; Keefer, K.V.; Kloosterman, P.H.; Summerfeldt, L.J.; Parker, J.D.A. Examining the structure of the Internet Addiction Test in adolescents: A bifactor approach. Comput. Hum. Behav. 2013, 29, 2294–2302. [Google Scholar] [CrossRef]
- Pawlikowski, M.; Altstötter-Gleich, C.; Brand, M. Validation and psychometric properties of a short version of Young’s Internet Addiction Test. Comput. Hum. Behav. 2013, 29, 1212–1223. [Google Scholar] [CrossRef]
- Lee, K.; Gyeong, H.; Yu, B.; Song, Y.M.; Lee, H.K.; Kim, D. Reliability and validity of the Korean version of the Internet Addiction Test among college students. J. Korean Med. Sci. 2013, 28, 763–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawi, N.S. Arabic validation of the Internet Addiction Test. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 200–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.-M.; Mak, K.-K.; Watanabe, H.; Ang, R.P.; Pang, J.S.; Ho, R.C.M. Psychometric properties of the Internet Addiction Test in Chinese adolescents. J. Pediatr. Psychol. 2013, 38, 794–807. [Google Scholar] [CrossRef] [Green Version]
- Pontes, H.M.; Patrão, I.M.; Griffiths, M.D. Portuguese validation of the Internet Addiction Test: An empirical study. J. Behav. Addict. 2014, 3, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.K.M.R.; Nigar, N. The Internet Addiction Test: Assessing its psychometric properties in bangladeshi culture. Asian J. Psychiatr. 2014, 10, 75–83. [Google Scholar] [CrossRef]
- Tsimtsiou, Z.; Haidich, A.B.; Kokkali, S.; Dardavesis, T.; Young, K.S.; Arvanitidou, M. Greek version of the Internet Addiction Test: A validation study. Psychiatr. Q. 2014, 85, 187–195. [Google Scholar] [CrossRef]
- Chong, N.; Isa, S.M.; Hashim, A.H.; Kumar, S.; Harbajan, M.K. Validity of the Malay version of the internet addiction test: A study on a group of medical students in Malaysia. Asia-Pac. J. Public Heath 2015, 27, NP2210–NP2219. [Google Scholar] [CrossRef]
- Fernández-Villa, T.; Molina, A.J.; García-Martín, M.; Llorca, J.; Delgado-Rodríguez, M.; Martín, V. Validation and psychometric analysis of the Internet Addiction Test in Spanish among college students. BMC Public Health 2015, 15, 953. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yeo, K.J. Psychometric properties of the Internet Addiction Test in a sample of Malaysian undergraduate students. Psicol. Educ. 2015, 21, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Dhir, A.; Chen, S.; Nieminen, M. Psychometric validation of Internet Addiction Test with Indian adolescents. J. Educ. Comput. Res. 2015, 53, 15–31. [Google Scholar] [CrossRef]
- Lai, C.M.; Mak, K.K.; Cheng, C.; Watanabe, H.; Nomachi, S.; Bahar, N.; Young, K.S.; Ko, H.C.; Kim, D.; Griffiths, M.D. Measurement invariance of the Internet Addiction Test among Hong Kong, Japanese, and Malaysian adolescents. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 609–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fioravanti, G.; Casale, S. Evaluation of the psychometric properties of the Italian internet addiction test. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawi, N.S.; Blachnio, A.; Przepiorka, A. Polish validation of the Internet Addiction Test. Comput. Hum. Behav. 2015, 48, 548–553. [Google Scholar] [CrossRef]
- Kaya, F.; Delen, E.; Young, K.S. Psychometric properties of the Internet Addiction Test in Turkish. J. Behav. Addict. 2016, 5, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Servidio, R. Assessing the psychometric properties of the Internet Addiction Test: A study on a sample of Italian university students. Comput. Hum. Behav. 2017, 68, 17–29. [Google Scholar] [CrossRef]
- Boysan, M.; Kuss, D.J.; Barut, Y.; Ayköse, N.; Güleç, M.; Özdemir, O. Psychometric properties of the Turkish version of the Internet Addiction Test (IAT). Addict. Behav. 2017, 64, 247–252. [Google Scholar] [CrossRef]
- Samaha, A.A.; Fawaz, M.; El Yahfoufi, N.; Gebbawi, M.; Abdallah, H.; Baydoun, S.A.; Ghaddar, A.; Eid, A.H. Assessing the psychometric properties of the Internet Addiction Test (IAT) among Lebanese college students. Front. Public Health 2018, 6, 365. [Google Scholar] [CrossRef]
- Waqas, A.; Farooq, F.; Raza, M.; Javed, S.T.; Khan, S.; Ghumman, M.E.; Naveed, S.; Haddad, M. Validation of the Internet Addiction Test in students at a Pakistani medical and dental school. Psychiatr. Q. 2018, 89, 235–247. [Google Scholar] [CrossRef]
- Neelapaijit, A.; Pinyopornpanish, M.; Simcharoen, S.; Kuntawong, P.; Wongpakaran, N.; Wongpakaran, T. Psychometric properties of a Thai version Internet Addiction Test. BMC Res. Notes 2018, 11, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsermentseli, S.; Karipidis, N.; Samaras, P.; Thompson, T. Assessing the factorial structure of the Internet Addiction Test in a sample of Greek adolescents. Hell. J. Psychol. 2018, 15, 274–288. [Google Scholar]
- Hernández, C.; Rivera, D. A Chilean transcultural adaptation and assessment of the Internet Addiction Test’s factor structures: Development of a brief version. Rev. Iberoam. Diag. Eval. 2018, 49, 143–155. [Google Scholar]
- Černja, I.; Vejmelka, L.; Rajter, M. Internet Addiction Test: Croatian preliminary study. BMC Psychiatry 2019, 19, 388. [Google Scholar] [CrossRef] [Green Version]
- Tudorel, O.I.; Vintilă, M.; Vlaicu, L.; Bălăuță, D.; Goian, C.; Rusu, A. Romanian version of the Internet Addiction Test: Psychometric properties and cross-gender invariance. Int. J. Ment. Health Addict. 2019, 17, 234–246. [Google Scholar] [CrossRef]
- Ndasauka, Y.; Pitafi, A.; Kayange, G.M. Psychometric properties of Young’s Internet Addiction Test (IAT) in Urdu language. Asian J. Psychiatr. 2019, 40, 39–44. [Google Scholar] [CrossRef]
- Yaffe, Y.; Seroussi, D.-E. Further evidence for the psychometric properties of young’s Internet Addiction Test (IAT): A study on a sample of Israeli-Arab male adolescents. Am. J. Health Behav. 2019, 43, 1030–1039. [Google Scholar] [CrossRef]
- Talwar, P.; Mohamad, F.S.; Mustaffa, M.S.; Othman, M.K.; Bee, O.Y.; Hian, C.C. Internet addiction among university students: Psychometric properties of three factor model Internet Addiction Test. Online J. Health Allied Sci. 2019, 18, 1–7. [Google Scholar]
- Lu, X.; Yeo, K.J.; Guo, F.; Zhao, Z. Factor structure and a multiple indicators multiple cause model of Internet Addiction Test: The effect of socio-demographic and internet use variables. Curr. Psychol. 2019. [Google Scholar] [CrossRef]
- Raykov, T.; Marcoulides, G.A. Thanks coefficient alpha, we still need you! Educ. Psychol. Meas. 2019, 79, 200–210. [Google Scholar] [CrossRef]
- Viladrich, C.; Angulo-Brunet, A.; Doval, E. A journey around alpha and omega to estimate internal consistency reliability. Psicoogia 2017, 33, 755–782. [Google Scholar]
- Moon, S.J.; Hwang, J.S.; Kim, J.Y.; Shin, A.L.; Bae, S.M.; Kim, J.W. Psychometric properties of the Internet Addiction Test: A systematic review and meta-analysis. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.; Peter, H. Questionable research practices when using confirmatory factor analysis. J. Manag. Psychol. 2019, 34, 18–30. [Google Scholar]
- Sellbom, M.; Tellegen, A. Factor analysis in psychological assessment research: Common pitfalls and recommendations. Psychol. Assess. 2019, 31, 1428–1441. [Google Scholar] [CrossRef] [PubMed]
- Matalinares, M.; Raymundo, O.; Baca, D. Psychometric adaptation of the Test of Internet Addiction. Rev. Peru. Psicol. Trab. Soc. 2014, 3, 45–66. [Google Scholar]
- Wang, L.; Luo, J.; Gao, W.; Kong, J. The effect of Internet use on adolescents’ lifestyles: A national survey. Comput. Hum. Behav. 2012, 28, 2007–2013. [Google Scholar] [CrossRef]
- Zegarra, C.O.; Cuba, M.S. Frequency of Internet addiction and development of social skills in adolescents in an urban area of Lima. Medwave 2017, 17, e6857. [Google Scholar] [CrossRef]
- Torrente, E.; Piqueras, J.A.; Orgilés, M.; Espada, J.P. Association of Internet addiction with social anxiety and lack of social skills in spanish adolescents. Ter. Psicol. 2014, 32, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.; Huang, M.; Chang, Y.; Chen, Y.; Hu, H.; Yen, C. Social skills deficits and their association with Internet addiction and activities in adolescents with attention-deficit/hyperactivity disorder. J. Behav. Addict. 2017, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- American Educational Research Association; American Psychological Association; National Council on Measurement in Education. Standards for Educational and Psychological Testing; American Educational Research Association: Washington, DC, USA, 2014; ISBN 978-0935-302-356. [Google Scholar]
- Ato, M.; López, J.J.; Benavente, A. A classification system for research designs in psychology. Psicologia 2013, 29, 1038–1059. [Google Scholar]
- Zickar, M.J. Measurement development and evaluation. Annu. Rev. Organ. Psychol. Organ. Behav. 2020, 7, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Kerlinger, F.N.; Lee, H.B. Foundations of Behavioral Research, 4th ed.; Harcourt College Publishers: Fort Worth, TX, USA, 2000; ISBN 9780155078970. [Google Scholar]
- Turner, D.P.; Houle, T.T. The importance of statistical power calculations. Headache J. Head Face Pain 2018, 58, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pr. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Gismero, E. EHS: Escala de Habilidades Sociales; TEA Ediciones: Madrid, Spain, 2000; ISBN 84-7174-609-3. [Google Scholar]
- Miranda-Zapata, E.; Riquelme-Mella, E.; Cifuentes-Cid, H.; Riquelme-Bravo, P. Análisis factorial confrmatorio de la Escala de habilidades sociales en universitarios chilenos. Rev. Lat. Psicol. 2014, 46, 73–82. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: New York, NY, USA, 2019; ISBN 9780134792866. [Google Scholar]
- Meyer, J.P. Applied Measurement with Jmetrik; Routledge: New York, NY, USA, 2014; ISBN 978-0-203-11519-0. [Google Scholar]
- McHorney, C.A.; Tarlov, A.R. Individual-patient monitoring in clinical practice: Are available health status surveys adequate? Qual. Life Res. 1995, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 2016, 48, 936–949. [Google Scholar] [CrossRef] [Green Version]
- Keith, T.Z. Multiple Regression and Beyond: An Introduction to Multiple Regression and Structural Equation Modeling, 3rd ed.; Routledge: New York, NY, USA, 2019; ISBN 9781351667937. [Google Scholar]
- DiStefano, C.; Liu, J.; Jiang, N.; Shi, D. Examination of the Weighted Root Mean Square Residual: Evidence for trustworthiness? Struct. Equ. Model. A Multidiscip. J. 2018, 25, 453–466. [Google Scholar] [CrossRef]
- Wilcox, R.R.; Rousselet, G.A.; Pernet, C.R. Improved methods for making inferences about multiple skipped correlations. J. Stat. Comput. Simul. 2018, 88, 3116–3131. [Google Scholar] [CrossRef] [Green Version]
- Zumbo, B.D.; Gadermann, A.M.; Zeisser, C. Ordinal versions of coefficients alpha and theta for Likert rating scales. J. Mod. Appl. Stat. Method 2007, 6, 21–29. [Google Scholar] [CrossRef]
- Nunnally, J.; Bernstein, I. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994; ISBN 9780070478497. [Google Scholar]
- Erdfelder, E.; Faul, F.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org (accessed on 9 June 2020).
- Rinker, T.W.; Kurkiewicz, D. Pacman: Package Management for R. 2018. Available online: http://github.com/trinker/pacman (accessed on 9 June 2020).
- Hadley, W.; Bryan, J. Readxl: Read Excel Files. 2019. Available online: https://cran.r-project.org/package=readxl (accessed on 9 June 2020).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; Mcgowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. 2019. Available online: https://cran.r-project.org/package=psych (accessed on 9 June 2020).
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Dueber, D. BifactorIndicesCalculator: Bifactor Indices Calculator. 2020. Available online: https://cran.r-project.org/package=BifactorIndicesCalculator (accessed on 9 June 2020).
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. SemTools: Useful tools for structural equation modeling. 2020. Available online: https://cran.r-project.org/package=semTools (accessed on 9 June 2020).
- Wilcox, R.R.; Schönbrodt, F.D. The WRS Package for Robust Statistics in R. 2019. Available online: https://github.com/nicebread/WRS (accessed on 9 June 2020).
- Dominguez-Lara, S.; Rodriguez, A. Statistical indices from bifactor models. Interacciones 2017, 3, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Reise, S.P.; Haviland, M.G. Evaluating bifactor models: Calculating and interpreting statistical indices. Psychol. Methods 2016, 21, 137–150. [Google Scholar] [CrossRef]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Conti, M.A.; Pelegrino, A.; Hearst, N.; Athanássios, T.; Tavares, H.; Nabuco de Abreu, C. Evaluation of semantic equivalence and internal consistency of a Portuguese version of the Internet Addiction Test (IAT). Rev. Psiquiatr. Clin. 2012, 39, 106–110. [Google Scholar] [CrossRef] [Green Version]
Study | Country | Sample Size | Factors | Data Analysis | Items | Reliability (α) |
---|---|---|---|---|---|---|
1. Widyanto et al. (2004) [24] | - | 86 | 6 | PCA | 20 | >0.50 c |
2. Ngai (2007) [25] | Hong Kong | 988 | 4 | PCA | 20 | >0.60 c |
3. Chang et al. (2008) [26] | Hong Kong | 410 | 3 | PCA, CFA a | 20 | >0.80 d |
4. Khazaal et al. (2008) [27] | France | 246 | 1 | EFA, CFA | 20 | 0.93 |
5. Widyanto et al. (2011) [28] | - | 225 | 3 | PCA | 20 | - |
6. Panayides et al. (2012) [29] | Cyprus | 604 | 1 | PCA | 20 | 0.89 |
7. Jelenchick et al. (2012) [30] | United States | 215 | 2 | EFA | 20 | >0.80 c |
8. Barke et al. (2012) [31] | Germany | 841 | 2 | PCA, CFA | 20 | 0.89 |
9. Puerta-Cortés et al. (2012) [32] | Colombia | 1117 | 3 | PCA | 20 | 0.89 |
10. Faraci et al. (2013) [33] | Italy | 485 | 1, 2 | EFA, CFA | 20, 18 | >0.70 c |
11. Watters et al. (2013) [34] | Canada | 1948 | 2 | CFA b | 20 | 0.93 |
12. Pawlikowski et al. (2013) [35] | Germany | 1049 | 2 | PCA, CFA | 11 | >0.80 c |
13. Lee et al. (2013) [36] | Korea | 279 | 4 | PCA | 20 | 0.91 |
14. Hawi (2013) [37] | Lebanon | 817 | 1 | PCA, CFA | 20 | 0.92 |
15. Lai et al. (2013) [38] | Hong Kong | 844 | 3 | CFA a | 20 | 0.93 |
16. Pontes et al. (2014) [39] | Portugal | 593 | 1 | CFA | 20 | 0.90 |
17. Karim et al. (2014) [40] | Bangladesh | 177 | 4 | PCA | 18 | 0.89 |
18. Tsimtsiou et al. (2014) [41] | Greece | 151 | 3 | EFA | 20 | 0.91 |
19. Chong et al. (2015) [42] | Malaysia | 162 | 5 | PCA | 20 | 0.91 |
20. Fernández-Villa et al. (2015) [43] | Spain | 963 | 2 | EFA, CFA | 19 | 0.91 |
21. Lu et al. (2015) [44] | Malaysia | 104 | 6 | EFA | 20 | 0.93 e |
22. Dhir et al. (2015) [45] | India | 1914 | 1 | EFA, CFA | 20 | 0.88 |
23. Lai et al. (2015) [46] | Hong Kong, Japan and Malaysia | 2535 | 3 | CFA | 20 | - |
24. Fioravanti et al. (2015) [47] | Italy | 840 | 2 | EFA, CFA | 20 | >0.80 c |
25. Hawi (2015) [48] | Poland | 1245 | 2 | PCA, CFA | 20 | 0.90 |
26. Kaya (2016) [49] | Turkey | 990 | 4 | EFA, CFA | 20 | 0.92 |
27. Servidio (2017) [50] | Italy | 659 | 2 | PCA, CFA | 18 | 0.89 |
28. Boysan et al. (2017) [51] | Turkey | 455 | 1 | PCA, CFA | 20 | 0.93 |
29. Samaha et al. (2018) [52] | Lebanon | 256 | 4 | EFA, CFA | 19 | 0.91 |
30. Waqas et al. (2018) [53] | Pakistan | 522 | 1 | EFA, CFA | 20 | 0.90 |
31. Neelapaijit et al. (2018) [54] | Thailand | 324 | 3 | EFA, CFA | 20 | 0.89 |
32. Tsermentseli et al. (2018) [55] | Greece | 725 | 3 | EFA, CFA b | 19 | >0.70 f |
33. Hernández et al. (2018) [56] | Chile | 425 | 2 | CFA | 10 | 0.85 |
34. Černja et al. (2019) [57] | Croatia | 352 | 3 | PCA, CFA | 20 | 0.91 |
35. Tudorel et al. (2019) [58] | Romania | 421 | 2 | EFA, CFA | 20 | 0.86 |
36. Ndasauka et al. (2019) [59] | Pakistan | 506 | 4 | EFA | 20 | 0.88 |
37. Yaffe et al. (2019) [60] | Israel | 180 | 2 | PCA, CFA | 18 | >0.70 c |
38. Talwar et al. (2019) [61] | Malaysia | 307 | 3 | PCA, CFA | 19 | >0.70 c |
39. Lu et al. (2019) [62] | Malaysia | 1120 | 4 | EFA, CFA | 17 | - |
Characteristic | n | % |
---|---|---|
Gender | ||
Male | 97 | 42.70 |
Female | 130 | 57.30 |
Year of study | ||
First | 24 | 10.60 |
Second | 68 | 30.00 |
Third | 63 | 27.80 |
Fourth | 42 | 18.50 |
Fifth | 30 | 13.20 |
Academic discipline | ||
Health Sciences | 41 | 18.10 |
Humanities | 30 | 13.20 |
Social Sciences | 27 | 11.90 |
Basic sciences | 43 | 18.90 |
Engineering | 45 | 19.80 |
Economic-Business | 41 | 18.10 |
Item | M | SD | Sk | Ku | Item-Rest Correlation | Floor (%) | Ceiling (%) |
---|---|---|---|---|---|---|---|
Item 1 | 3.084 | 1.200 | 0.115 | −0.989 | 0.378 | 8 | 16 |
Item 2 | 2.066 | 0.902 | 0.734 | 0.375 | 0.570 | 28 | 1 |
Item 3 | 1.885 | 1.146 | 1.118 | 0.203 | 0.381 | 53 | 4 |
Item 4 | 1.670 | 0.826 | 1.329 | 1.882 | 0.381 | 51 | 1 |
Item 5 | 1.925 | 1.021 | 1.092 | 0.775 | 0.560 | 42 | 3 |
Item 6 | 1.828 | 0.908 | 1.013 | 0.437 | 0.532 | 43 | 0 |
Item 7 | 3.084 | 1.211 | 0.168 | −1.016 | 0.371 | 7 | 17 |
Item 8 | 1.797 | 0.889 | 0.968 | 0.163 | 0.591 | 45 | 0 |
Item 9 | 1.656 | 0.860 | 1.506 | 2.404 | 0.471 | 53 | 1 |
Item 10 | 1.753 | 0.913 | 1.024 | 0.245 | 0.465 | 51 | 0 |
Item 11 | 1.855 | 0.898 | 0.798 | −0.072 | 0.496 | 43 | 0 |
Item 12 | 1.626 | 0.900 | 1.489 | 1.868 | 0.451 | 59 | 1 |
Item 13 | 1.771 | 0.960 | 1.275 | 1.200 | 0.527 | 50 | 2 |
Item 14 | 1.877 | 1.006 | 1.053 | 0.442 | 0.515 | 45 | 2 |
Item 15 | 1.502 | 0.772 | 1.571 | 2.251 | 0.684 | 64 | 0 |
Item 16 | 2.286 | 1.094 | 0.833 | 0.149 | 0.443 | 24 | 6 |
Item 17 | 2.093 | 1.066 | 0.906 | 0.138 | 0.558 | 33 | 3 |
Item 18 | 1.736 | 1.000 | 1.415 | 1.409 | 0.538 | 54 | 2 |
Item 19 | 1.414 | 0.796 | 2.275 | 5.499 | 0.626 | 72 | 1 |
Item 20 | 1.352 | 0.658 | 2.176 | 5.640 | 0.512 | 73 | 0 |
Model | SSχ2 | df | SSχ2/df | RMSEA (90% CI) | CFI | TLI | SRMR | WRMR |
---|---|---|---|---|---|---|---|---|
1. One-factor [29,45,51,53] | 387.285 | 161 | 2.405 | 0.079 (0.069; 0.089) | 0.890 | 0.871 | 0.092 | 1.168 |
2. Khazaal et al. (2008) [27] | 449.357 | 169 | 2.659 | 0.086 (0.076; 0.095) | 0.864 | 0.847 | 0.101 | 1.288 |
3. Widyanto et al. (2011) [28] | 423.779 | 167 | 2.358 | 0.082 (0.073; 0.092) | 0.876 | 0.859 | 0.095 | 1.244 |
4. Jelenchick et al. (2012) [30] | 393.896 | 169 | 2.331 | 0.077 (0.067; 0.087) | 0.891 | 0.878 | 0.092 | 1.189 |
5. Barke et al. (2012) [31] | 382.215 | 167 | 2.289 | 0.076 (0.066; 0.086) | 0.896 | 0.881 | 0.091 | 1.163 |
6. Watters et al. (2013) [34] | 285.741 | 154 | 1.855 | 0.062 (0.050; 0.073) | 0.936 | 0.921 | 0.073 | 0.939 |
7. Hawi (2013) [37] | 462.205 | 166 | 2.784 | 0.089 (0.079; 0.099) | 0.857 | 0.836 | 0.102 | 1.311 |
8. Lee et al. (2013) [36] | 340.237 | 164 | 2.075 | 0.069 (0.059; 0.079) | 0.915 | 0.901 | 0.084 | 1.086 |
9. Pontes et al. (2014) [39] | 437.216 | 168 | 2.602 | 0.084 (0.075; 0.094) | 0.870 | 0.853 | 0.099 | 1.267 |
10. Tsimtsiou et al. (2014) [41] | 375.281 | 167 | 2.247 | 0.074 (0.064; 0.084) | 0.899 | 0.885 | 0.090 | 1.156 |
11. Fioravanti et al. (2015) [47] | 390.065 | 165 | 2.364 | 0.078 (0.068; 0.088) | 0.891 | 0.875 | 0.093 | 1.182 |
12. Hawi (2015) [48] | 342.871 | 169 | 2.029 | 0.067 (0.057; 0.078) | 0.916 | 0.905 | 0.085 | 1.097 |
13. Dhir et al. (2015) [45] | 437.235 | 166 | 2.634 | 0.085 (0.075; 0.095) | 0.869 | 0.850 | 0.099 | 1.266 |
14. Waqas et al. (2018) [53] | 475.709 | 170 | 2.798 | 0.089 (0.080; 0.099) | 0.852 | 0.835 | 0.104 | 1.336 |
15. Tudorel et al. (2019) [58] | 388.449 | 167 | 2.326 | 0.077 (0.067; 0.087) | 0.893 | 0.878 | 0.092 | 1.176 |
16. Černja et al. (2019) [57] | 399.818 | 167 | 2.394 | 0.079 (0.069; 0.088) | 0.887 | 0.872 | 0.093 | 1.200 |
Variable | Time/Control | Stress/Compensate | Internet Addiction |
---|---|---|---|
1. Time/Control | - | ||
2. Stress/Compensate | 0.400 *** | - | |
3. Internet Addiction | 0.804 *** | 0.861 *** | - |
4. Self-Expression | −0.117 | −0.197 ** | −0.331 *** |
5. Defense of rights | −0.185 ** | −0.189 ** | −0.350 *** |
6. Disagreement | −0.055 | −0.205 ** | −0.311 *** |
7. Assertiveness | −0.054 | −0.189 ** | −0.196 ** |
8. Making requests | 0.019 | −0.029 | −0.118 |
9. Starting interactions | −0.127 | 0.058 | −0.118 |
10. Social Skills | −0.137 * | −0.186 ** | −0.257 *** |
11. Hours on the Internet | 0.397 *** | 0.112 | 0.337 *** |
12. Ordinal Alpha | 0.727 | 0.856 | 0.888 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafur-Mendoza, A.A.; Acosta-Prado, J.C.; Zárate-Torres, R.A.; Ramírez-Ospina, D.E. Assessing the Psychometric Properties of the Internet Addiction Test in Peruvian University Students. Int. J. Environ. Res. Public Health 2020, 17, 5782. https://doi.org/10.3390/ijerph17165782
Tafur-Mendoza AA, Acosta-Prado JC, Zárate-Torres RA, Ramírez-Ospina DE. Assessing the Psychometric Properties of the Internet Addiction Test in Peruvian University Students. International Journal of Environmental Research and Public Health. 2020; 17(16):5782. https://doi.org/10.3390/ijerph17165782
Chicago/Turabian StyleTafur-Mendoza, Arnold Alejandro, Julio César Acosta-Prado, Rodrigo Arturo Zárate-Torres, and Duván Emilio Ramírez-Ospina. 2020. "Assessing the Psychometric Properties of the Internet Addiction Test in Peruvian University Students" International Journal of Environmental Research and Public Health 17, no. 16: 5782. https://doi.org/10.3390/ijerph17165782
APA StyleTafur-Mendoza, A. A., Acosta-Prado, J. C., Zárate-Torres, R. A., & Ramírez-Ospina, D. E. (2020). Assessing the Psychometric Properties of the Internet Addiction Test in Peruvian University Students. International Journal of Environmental Research and Public Health, 17(16), 5782. https://doi.org/10.3390/ijerph17165782