Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates—A Systematic Review
Abstract
:1. Introduction
Objectives
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Process of the Selection of the Articles
3.2. Geographical and Chronological Distribution of the Papers
3.3. Type of Samples Included in the Studied Material
3.3.1. Clinical Samples
3.3.2. Water Samples
3.4. Methods Used for the Determination of Resistance
3.5. Media Used for the Identification of L. pneumophila’s Antimicrobial Susceptibility
3.6. Groups of Antibiotics and Antimicrobial Agents
3.7. Criteria Used for the Choice of the Antibiotic Scheme for the Patient
3.8. The Choice of Antibiotics and Geographical Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. 2016. Available online: https://wellcomecollection.org/works/thvwsuba (accessed on 22 November 2019).
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; He, H.; Chen, S.; Huang, T.; Lu, K.; Zhang, Z.; Wang, R.; Zhang, X.; Li, H. Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis. J. Environ. Sci. 2019, 82, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xin, R.; Zhao, Z.; Ma, Y.; Zhang, Y.; Niu, Z. Antibiotic Resistance Genes in drinking water of China: Occurrence, distribution and influencing factors. Ecotoxicol. Environ. Saf. 2019, 188, 109837. [Google Scholar] [CrossRef]
- Sanganyado, E.; Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total. Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef]
- Wang, H.; Hu, C.; Shen, Y.; Shi, B.; Zhao, D.; Xing, X. Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. Chemosphere 2019, 218, 197–204. [Google Scholar] [CrossRef]
- Gholami, S.; Tabatabaei, M.; Sohrabi, N. Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolates. Microb. Pathog. 2017, 109, 94–98. [Google Scholar] [CrossRef]
- Descours, G.; Ginevra, C.; Jacotin, N.; Forey, F.; Chastang, J.; Kay, E.; Etienne, J.; Lina, G.; Doublet, P.; Jarraud, S. Ribosomal mutations conferring macrolide resistance in legionella pneumophila. Antimicrob. Agents Chemother. 2017, 61, 02116–02188. [Google Scholar] [CrossRef] [Green Version]
- Terranova, W.; Cohen, M.L.; Fraser, D.W. Outbreak of legionnaires’ disease diagnosed in 1977 clinical and epidemiological features. Lancet 1978, 312, 122–124. [Google Scholar] [CrossRef]
- Roig, J.; Carreres, A.; Domingo, C.; Roig, J. Treatment of legionnaires’ disease. Drugs 1993, 46, 63–79. [Google Scholar] [CrossRef]
- Stout, J.; Arnold, B.; Yu, V.L. Activity of azithromycin, clarithromycin, roxithromycin, dirithromycin, quinupristin/dalfopristin and erythromycin against Legionella species by intracellular susceptibility testing in HL-60 cells. J. Antimicrob. Chemother. 1998, 41, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Higa, F.; Akamine, M.; Haranaga, S.; Tohyama, M.; Shinzato, T.; Tateyama, M.; Koide, M.; Saito, A.; Fujita, J. In vitro activity of pazufloxacin, tosufloxacin and other quinolones against Legionella species. J. Antimicrob. Chemother. 2005, 56, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Mandell, L.; Wunderink, R.G.; Anzueto, A.; Bartlett, J.G.; Campbell, G.D.; Dean, N.C.; Dowell, S.F.; File, T.M.; Musher, D.M.; Niederman, M.S.; et al. Infectious diseases society of America/American thoracic society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 2007, 44, S27–S72. [Google Scholar] [CrossRef] [PubMed]
- Woodhead, M.A.; Blasi, F.; Ewig, S.; Garau, J.; Huchon, G.; Ieven, M.; Ortqvist, A.; Schaberg, T.; Torres, A.; Van Der Heijden, G.; et al. Guidelines for the management of adult lower respiratory tract infections—Full version. Clin. Microbiol. Infect. 2011, 17, E1–E59. [Google Scholar] [CrossRef] [Green Version]
- Yu, V.L.; Greenberg, R.N.; Zadeikis, N.; Stout, J.E.; Khashab, M.M.; Olson, W.H.; Tennenberg, A.M. Levofloxacin efficacy in the treatment of community-acquired Legionellosis. Chest 2004, 125, 2135–2139. [Google Scholar] [CrossRef]
- Mykietiuk, A.; Carratalà, J.; Sabé, N.; Dorca, J.; Verdaguer, R.; Manresa, F.; Gudiol, F. Clinical outcomes for hospitalized patients with legionella pneumonia in the antigenuria era: The influence of levofloxacin therapy. Clin. Infect. Dis. 2005, 40, 794–799. [Google Scholar] [CrossRef]
- Garrido, R.M.B.; Parra, F.J.E.; Francés, L.A.; Guevara, R.M.R.; Sánchez-Nieto, J.M.; Hernández, M.S.; Martínez, J.A.S.; Huerta, F.H. Antimicrobial chemotherapy for legionnaires disease: Levofloxacin versus macrolides. Clin. Infect. Dis. 2005, 40, 800–806. [Google Scholar] [CrossRef]
- Sabrià, M.; Pedro-Botet, M.L.; Gómez, J.; Roig, J.; Vilaseca, B.; Sopena, N.; Baños, V. Fluoroquinolones vs macrolides in the treatment of legionnaires disease. Chest 2005, 128, 1401–1405. [Google Scholar] [CrossRef] [Green Version]
- Haranaga, S.; Tateyama, M.; Higa, F.; Miyagi, K.; Akamine, M.; Azuma, M.; Yara, S.; Koide, M.; Fujita, J. Intravenous ciprofloxacin versus erythromycin in the treatment of Legionella pneumonia. Intern. Med. 2007, 46, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A.T.; Peyrani, P.; Wiemken, T.; Arnold, F. Macrolides versus quinolones in Legionella pneumonia: Results from the Community-Acquired Pneumonia Organization international study. Int. J. Tuberc. Lung Dis. 2010, 14, 495–499. [Google Scholar]
- Stone, S.P.; Cooper, B.S.; Kibbler, C.C.; Cookson, B.D.; Roberts, J.A.; Medley, G.F.; Duckworth, G.; Lai, R.; Ebrahim, S.; Brown, E.M.; et al. The ORION statement: Guidelines for transparent reporting of Outbreak Reports and Intervention studies Of Nosocomial infection. J. Antimicrob. Chemother. 2007, 59, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.N.; Eliopoulos, G.M.; Chambers, H.F.; Saag, M.S.; Pavia, A.T. The Sanford Guide to Antimicrobial Therapy 2020: 50 Years: 1969-2019, 50th ed.; Antimicrobial Therapy: Speryville, VA, USA, 2020. [Google Scholar]
- Alexandropoulou, I. Antibiotic susceptibility surveillance of environmental legionella Strains: Application of the E-Test to bacteria isolated from hospitals in Greece. J. Infect. Dis. Ther. 2014, 2, 103. [Google Scholar] [CrossRef] [Green Version]
- Alexandropoulou, I.; Parasidis, T.; Konstantinidis, T.; Panopoulou, M.; Constantinidis, T. A Proactive environmental approach for preventing legionellosis in infants: Water sampling and antibiotic resistance monitoring, a 3-Years Survey Program. Health 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Tsakris, A.; Alexiou-Daniel, S.; Souliou, E.; Antoniadis, A. In-vitro activity of antibiotics against Legionella pneumophila isolates from water systems. J. Antimicrob. Chemother. 1999, 44, 693–695. [Google Scholar] [CrossRef] [Green Version]
- Sandalakis, V.; Chochlakis, D.; Goniotakis, I.; Tselentis, Y.; Psaroulaki, A. Minimum inhibitory concentration distribution in environmental Legionella spp. isolates. J. Water Health 2014, 12, 678–685. [Google Scholar] [CrossRef]
- Bruin, J.; Ijzerman, E.P.; Boer, J.W.D.; Mouton, J.W.; Diederen, B. Wild-type MIC distribution and epidemiological cut-off values in clinical Legionella pneumophila serogroup 1 isolates. Diagn. Microbiol. Infect. Dis. 2012, 72, 103–108. [Google Scholar] [CrossRef]
- Sharaby, Y.; Nitzan, O.; Brettar, I.; Höfle, M.G.; Peretz, A.; Halpern, M. Antimicrobial agent susceptibilities of Legionella pneumophila MLVA-8 genotypes. Sci. Rep. 2019, 9, 6138. [Google Scholar] [CrossRef]
- Antimicrobial Wild Type Distributions of Microorganisms. Available online: https://mic.eucast.org/Eucast2/SearchController/search.jsp%3Faction=init (accessed on 22 November 2019).
- EUCAST. General Consultation on Considerations in the Numerical Estimation of Epidemiological Cutoff (ECOFF) Values. 22 March 2018. Available online: https://www.eucast.org/documents/consultations/ (accessed on 22 November 2019).
- Turnidge, J.; Kahlmeter, G.; Kronvall, G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 2006, 12, 418–425. [Google Scholar] [CrossRef]
- Thornsberry, C.; Baker, C.N.; Kirven, L.A. In vitro activity of antimicrobial agents on legionnaires disease bacterium. Antimicrob. Agents Chemother. 1978, 13, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Vickers, R.M.; Stout, J.E.; Tompkins, L.S.; Troup, N.J.; Yu, V.L. Cefamandole-susceptible strains of Legionella pneumophila serogroup 1: Implications for diagnosis and utility as an epidemiological marker. J. Clin. Microbiol. 1992, 30, 537–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.M.; Erwin, M.E.; Barrett, M.S.; Gooding, B.B.; Jones, R.N. Antimicrobial activity of ten macrolide, linsosamine and streptogramin drugs tested against Legionella species. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.; Spitalny, K.; Barbaree, J.; Faur, Y.; McKinney, R. Pontiac fever outbreak associated with a cooling tower. Am. J. Public Health 1987, 77, 568–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Giglio, O.; Napoli, C.; Lovero, G.; Diella, G.; Rutigliano, S.; Caggiano, G.; Montagna, M.T. Antibiotic susceptibility of Legionella pneumophila strains isolated from hospital water systems in Southern Italy. Environ. Res. 2015, 142, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, N.; Kobayashi, I.; Higa, F.; Aoki, Y.; Kikuchi, T.; Seki, M.; Tateda, K.; Maki, N.; Uchino, K.; Ogasawara, K.; et al. In vitro activity of various antibiotics against clinical strains of Legionella species isolated in Japan. J. Infect. Chemother. 2018, 24, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Al Sulami, A.; Al Taee, A.; Yehyazarian, A. Isolation and identification of Legionella pneumophila from drinking water in Basra governorate, Iraq. East. Mediterr. Health J. 2013, 19, 936–941. [Google Scholar] [CrossRef]
- Torre, I.; Alfano, R.; Borriello, T.; De Giglio, O.; Iervolino, C.; Montagna, M.T.; Scamardo, M.S.; Pennino, F. Environmental surveillance and in vitro activity of antimicrobial agents against Legionella pneumophila isolated from hospital water systems in Campania, South Italy: A 5-year study. Environ. Res. 2018, 164, 574–579. [Google Scholar] [CrossRef]
- Marques, T.; Piedade, J. Susceptibility testing by E-test and agar dilution of 30 strains of Legionella spp. isolated in Portugal. Clin. Microbiol. Infect. 1997, 3, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, H.; Can, F.; Demirbilek, M.; Timurkaynak, F.; Arslan, H. In vitro activity of antimicrobial agents against Legionella isolated from environmental water systems: First results from Turkey. Environ. Monit. Assess. 2010, 171, 487–491. [Google Scholar] [CrossRef]
- Al-Matawah, Q.A.; Al-Zenki, S.F.; Qasem, J.A.; Al-Waalan, T.E.; Ben Heji, A.H. Detection and quantification of legionella pneumophila from water systems in kuwait residential facilities. J. Pathog. 2012, 2012, 138389. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Yan, H.; Shi, L.; Mo, Z. Antibiotic susceptibility of Legionella strains isolated from public water sources in Macau and Guangzhou. J. Water Health 2016, 14, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Sikora, A.; Gładysz, I.; Kozioł-Montewka, M.; Wójtowicz-Bobin, M.; Stańczak, T.; Matuszewska, R.; Krogulska, B. Assessment of antibiotic susceptibility of Legionella pneumophila isolated from water systems in Poland. Ann. Agric. Environ. Med. 2017, 24, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.; Bangsborg, J.M.; Høiby, N. Susceptibility of Legionella species to five antibiotics and development of resistance by exposure to erythromycin, ciprofloxacin, and rifampicin. Diagn. Microbiol. Infect. Dis. 2000, 36, 43–48. [Google Scholar] [CrossRef]
- Sreenath, K.; Chaudhry, R.; Vinayaraj, E.V.; Thakur, B. Antibiotic susceptibility of environmental Legionella pneumophila isolated in India. Futur. Microbiol. 2019, 14, 661–669. [Google Scholar] [CrossRef]
- Coscollá, M.; Fernández, C.; Colomina, J.; Sánchez-Busó, L.; González-Candelas, F. Mixed infection by Legionella pneumophila in outbreak patients. Int. J. Med. Microbiol. 2014, 304, 307–313. [Google Scholar] [CrossRef]
- Mizrahi, H.; Peretz, A.; Lesnik, R.; Aizenberg-Gershtein, Y.; Rodríguez-Martínez, S.; Sharaby, Y.; Pastukh, N.; Brettar, I.; Höfle, M.G.; Halpern, M. Comparison of sputum microbiome of legionellosis-associated patients and other pneumonia patients: Indications for polybacterial infections. Sci. Rep. 2017, 7, 40114. [Google Scholar] [CrossRef] [Green Version]
- Establishment of a provisional National Committee on Clinical Laboratory Standards; NCCLS, Department of Helath, Education and Welfare, Public Health Service Burea of Disease Prevention and Environmental Control, National Communicable Disease Center: Atlanta, Georgia, 1967; Available online: https://clsi.org/about/clsis-history/ (accessed on 22 November 2019).
- Clinical and Laboratory Standards Institute. Available online: https://clsi.org/about/clsis-history/ (accessed on 22 November 2019).
- Jia, X.; Ren, H.; Nie, X.; Li, Y.; Li, J.; Qin, T. Antibiotic resistance and azithromycin resistance mechanism of legionella pneumophila serogroup 1 in China. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing’ (EUCAST), Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 7.1. 2017. Available online: http://www.eucast.org/ast_of_bacteria/ (accessed on 22 November 2019).
- Edelstein, P.H.; Meyer, R.D. Susceptibility of Legionella pneumophila to twenty antimicrobial agents. Antimicrob. Agents Chemother. 1980, 18, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, P.H.; Edelstein, M.A.; Holzknecht, B. In vitro activities of fleroxacin against clinical isolates of Legionella spp., its pharmacokinetics in guinea pigs, and use to treat guinea pigs with L. pneumophila pneumonia. Antimicrob. Agents Chemother. 1992, 36, 2387–2391. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, P.H.; Edelstein, M.A. In vitro extracellular and intracellular activities of clavulanic acid and those of piperacillin and ceftriaxone alone and in combination with tazobactam against clinical isolates of Legionella species. Antimicrob. Agents Chemother. 1994, 38, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, P.H.; Edelstein, M.A.; Ren, J.; Polzer, R.; Gladue, R.P. Activity of trovafloxacin (CP-99,219) against Legionella isolates: In vitro activity, intracellular accumulation and killing in macrophages, and pharmacokinetics and treatment of guinea pigs with L. pneumophila pneumonia. Antimicrob. Agents Chemother. 1996, 40, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Hoogkamp-Korstanje, J.; A Hoogkamp-Korstanje, J. In-vitro activities of ciprofloxacin, levofloxacin, lomefloxacin, ofloxacin, pefloxacin, sparfloxacin and trovafloxacin against gram-positive and gram-negative pathogens from respiratory tract infections. J. Antimicrob. Chemother. 1997, 40, 427–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.N.; Barry, A.L. Antimicrobial activity of imipenem and SCH34343 against Legionella species. Diagn. Microbiol. Infect. Dis. 1987, 6, 307–309. [Google Scholar] [CrossRef]
- Blasco, M.; Esteve, C.; Alcaide, E. Multiresistant waterborne pathogens isolated from water reservoirs and cooling systems. J. Appl. Microbiol. 2008, 105, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Sawatari, K.; Fukuda, Y.; Nagasawa, M.; Koga, H.; Tomonaga, A.; Nakazato, H.; Fujita, K.; Shigeno, Y.; Suzuyama, Y. Susceptibility of Legionella pneumophila to ofloxacin in vitro and in experimental Legionella pneumonia in guinea pigs. Antimicrob. Agents Chemother. 1985, 28, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, D.; Engels, I.; Daschner, F.D.; Frank, U. The effect of azithromycin on intracellular Legionella pneumophila in the Mono Mac 6 cell line at serum concentrations attainable in vivo. J. Antimicrob. Chemother. 2000, 46, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Kunishima, H.; Takemura, H.; Yamamoto, H.; Kanemitsu, K.; Shimada, J. Evaluation of the activity of antimicrobial agents against Legionella pneumophila multiplying in a human monocytic cell line, THP-1, and an alveolar epithelial cell line, A549. J. Infect. Chemother. 2000, 6, 206–210. [Google Scholar] [CrossRef]
- Liebers, D.M.; Baltch, A.L.; Smith, R.P.; Hammer, M.C.; Conroy, J.V. Susceptibility of Legionella pneumophila to eight antimicrobial agents including four macrolides under different assay conditions. J. Antimicrob. Chemother. 1989, 23, 37–41. [Google Scholar] [CrossRef]
- Mallegol, J.; Fernandes, P.; Melano, R.G.; Guyard, C. Antimicrobial Activity of Solithromycin against Clinical Isolates of Legionella pneumophila Serogroup 1. Antimicrob. Agents Chemother. 2013, 58, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Stout, J.E.; Sens, K.; Mietzner, S.; Obman, A.; Yu, V.L. Comparative activity of quinolones, macrolides and ketolides against Legionella species using in vitro broth dilution and intracellular susceptibility testing. Int. J. Antimicrob. Agents 2005, 25, 302–307. [Google Scholar] [CrossRef]
- Tan, J.S.; File, J.T.M.; DiPersio, J.R.; DiPersio, L.P.; Hamor, R.; Saravolatz, L.D.; Stout, J.E. Persistently positive culture results in a patient with community-acquired pneumonia due to Legionella pneumophila. Clin. Infect. Dis. 2001, 32, 1562–1566. [Google Scholar] [CrossRef] [Green Version]
- Stout, E.; Arnold, J.B.; Yu, V.L. Comparative activity of ciprofloxacin, ofloxacin, levofloxacin, and erythromycin against legionella species by broth microdilution and intracellular susceptibility testing in HL-60 Cells. Diagn. Microbiol. Infect. Dis. 1998, 30, 37–43. [Google Scholar] [CrossRef]
- Lai, C.C.; Tan, C.K.; Chou, C.H.; Hsu, H.L.; Huang, Y.T.; Liao, C.H.; Hsueh, P.R. Hospital-acquired pneumonia and bacteremia caused by legionella pneumophila in an immunocompromised patient. Infection 2010, 38, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Shadoud, L.; AlMahmoud, I.; Jarraud, S.; Etienne, J.; Larrat, S.; Schwebel, C.; Timsit, J.F.; Schneider, M.; Maurin, M. Hidden selection of bacterial resistance to fluoroquinolones in vivo: the case of legionella pneumophila and humans. EBioMedicine 2015, 2, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, J.; Joly, J.R. In vitro activity of lomefloxacin (SC 47111 or NY-198) against isolates of Legionella spp. Diagn. Microbiol. Infect. Dis. 1989, 12, 89–91. [Google Scholar] [CrossRef]
- Ruckdeschel, G.; Ehret, W.; Ahl, A. Susceptibility ofLegionella spp. to imipenem and 27 other beta-lactam antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 1984, 3, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Pendland, S.L.; Martin, S.J.; Chen, C.; Schreckenberger, P.C.; Danziger, L.H. Comparison of charcoal- and starch-based media for testing susceptibilities of Legionella species to macrolides, azalides, and fluoroquinolones. J. Clin. Microbiol. 1997, 35, 3004–3006. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Lus, M.L.; Gómez-Lus, M.P.; Carsia, C.; Castillo, J.; Benito, R.; Gómez-Lus, R. In vitro susceptibility of 98 clinical and environmental isolates of Legionella pneumophila to ciprofloxacin, norfloxacin and ofloxacin. Rev. Esp. Quimiterap. 1991, 4, 69–71. [Google Scholar]
- Onody, C.; Matsiota-Bernard, P.; Nauciel, C. Lack of resistance to erythromycin, rifampicin and ciprofloxacin in 98 clinical isolates of Legionella pneumophila. J. Antimicrob. Chemother. 1997, 39, 815–816. [Google Scholar] [CrossRef]
- Ruckdeschel, G.; Dalhoff, A. The in-vitro activity of moxifloxacin against Legionella species and the effects of medium on susceptibility test results. J. Antimicrob. Chemother. 1999, 43, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, T.R.; Sader, H.S.; Cleeland, R.; Jones, R.N. Comparative antimicrobial characterization of LBM415 (NVP PDF-713), a new peptide deformylase inhibitor of clinical importance. Antimicrob. Agents Chemother. 2005, 49, 1468–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, T.H.; Fyfe, C.; O’Brien, W.; Hackel, M.; Minyard, M.B.; Waites, K.B.; Dubois, J.; Murphy, T.M.; Slee, A.M.; Weiss, W.J.; et al. Fluorocycline TP-271 is potent against complicated community-acquired bacterial pneumonia pathogens. mSphere 2017, 2, e00004-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucci, M.J.; Bronson, J.J.; Barrett, J.F.; DenBleyker, K.L.; Discotto, L.F.; Fung-Tomc, J.C.; Ueda, Y. Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Antimicrob. Agents Chemother. 2004, 48, 3697–3701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucci, M.J.; Cheng, J.; Podos, S.D.; Thoma, C.L.; Thanassi, J.A.; Buechter, D.D.; Mushtaq, G.; Vigliotti, G.A.; Bradbury, B.J.; Deshpande, M. In vitro and in vivo antibacterial activities of heteroaryl isothiazolones against resistant gram-positive pathogens. Antimicrob. Agents Chemother. 2007, 51, 1259–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loza, E.; Beltrán, J.M.; Baquero, F.; León, A.; Cantón, R.; Garijo, B.; Spanish Collaborative Group. Comparative in vitro activity of clarithromycin. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11, 856–866. [Google Scholar] [CrossRef]
- Rahimi, B.; Vesal, A. Antimicrobial resistance properties of legionella pneumophila isolated from the cases of lower respiratory tract infections. Biomed. Pharmacol. J. 2017, 10, 59–65. [Google Scholar] [CrossRef]
- Hohl, P.E.; Buser, U.; Frei, R. FatalLegionella pneumophila pneumonia: Treatment failure despite early sequential oral-parenteral amoxicillin-clavulanic acid therapy. Infection 1992, 20, 99–100. [Google Scholar] [CrossRef]
- Bruin, J.; Diederen, B.; Ijzerman, E.P.; Boer, J.W.D.; Mouton, J.W. Correlation of MIC value and disk inhibition zone diameters in clinical Legionella pneumophila serogroup 1 isolates. Diagn. Microbiol. Infect. Dis. 2013, 76, 339–342. [Google Scholar] [CrossRef]
- Garciía, M.T.; Pelaz, C.; Gimenez, M.J.; Aguilar, L. In vitro activities of gemifloxacin versus five quinolones and two macrolides against 271 Spanish isolates of legionella pneumophila: Influence of charcoal on susceptibility test results. Antimicrob. Agents Chemother. 2000, 44, 2176–2178. [Google Scholar] [CrossRef] [Green Version]
- Graells, T.; Hernandez-Garcia, M.; Pérez-Jové, J.; Guy, L.; Padilla, E. Legionella pneumophila recurrently isolated in a Spanish hospital: Two years of antimicrobial resistance surveillance. Environ. Res. 2018, 166, 638–646. [Google Scholar] [CrossRef]
- Rhomberg, P.R.; Jones, R.N. Evaluations of the etest for antimicrobial susceptibility testing of Legionella pneumophila, including validation of the imipenem and sparfloxacin strips. Diagn. Microbiol. Infect. Dis. 1994, 20, 159–162. [Google Scholar] [CrossRef]
- Sader, H.S.; Paukner, S.; Ivezic-Schoenfeld, Z.; Biedenbach, D.J.; Schmitz, F.J.; Jones, R.N. Antimicrobial activity of the novel pleuromutilin antibiotic BC-3781 against organisms responsible for community-acquired respiratory tract infections (CARTIs). J. Antimicrob. Chemother. 2012, 67, 1170–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbar, L.; Farrell, D. Activity of telithromycin and comparators against isolates of Legionella pneumophila collected from patients with community-acquired respiratory tract infections: PROTEKT Years 1–5. Clin. Microbiol. Infect. 2007, 13, 743–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birteksöz-Tan, A.S.; Zeybek, Z. Postantibiotic effect of various antibiotics on Legionella pneumophila strains isolated from water systems. Folia Microbiol. 2012, 57, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, G.; Lanzafame, A.; Santini, L.; Mattina, R. In vitro activity of thiamphenicol, erythromycin and fluoroquinolones against legionella pneumophila. J. Chemother. 2004, 16, 502–503. [Google Scholar] [CrossRef]
- Farrell, D.J.; Sader, H.S.; Castanheira, M.; Biedenbach, D.J.; Rhomberg, P.R.; Jones, R.N. Antimicrobial characterisation of CEM-101 activity against respiratory tract pathogens, including multidrug-resistant pneumococcal serogroup 19A isolates. Int. J. Antimicrob. Agents 2010, 35, 537–543. [Google Scholar] [CrossRef]
- Koide, M.; Miyara, T.; Higa, F.; Kusano, N.; Tateyama, M.; Kawakami, K.; Saito, A. In vitro and in vivo evaluation of the antimicrobial activity of azithromycin against legionella species. J. Infect. Chemother. 1997, 3, 90–96. [Google Scholar] [CrossRef]
- Liguori, G.; Bagattini, M.; Gallè, F.; Quartucci, V.; Di Onofrio, V.; Negrone, M.; Triassi, M. Microbiological evaluation of the efficacy of two new biodetergents on multidrug-resistant nosocomial pathogens. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- March, G.A.; Gutiérrez, M.P.; López, I.; Muñoz, M.F.; De Lejarazu, R.O.; Simarro, M.; Orduña, A.; Bratos, M.Á. Epidemiological surveillance and wild-type MIC distribution of Legionella pneumophila in north-western Spain. 2003–2016. Enfermedades Infecciosas y Microbiología Clínica 2019, 37, 514–520. [Google Scholar] [CrossRef]
- Smith, R.P.; Baltch, A.L.; Michelsen, P.B.; Ritz, W.J.; Alteri, R. Use of the microbial growth curve in postantibiotic effect studies of legionella pneumophila. Antimicrob. Agents Chemother. 2003, 47, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Viasus, D.; Di Yacovo, S.; Garcia-Vidal, C.; Verdaguer, R.; Manresa, F.; Dorca, J.; Gudiol, F.; Carratalà, J. Community-acquired legionella pneumophila pneumonia. Medicine 2013, 92, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaslianifard, S.; Mohammadzadeh, M.; Pourmand, M.R.; Yaslianifard, S.; Sepehr, M.N.; Arfaatabar, M.; Norouzi, M. Prevalence and molecular distribution of Legionella pneumophila in cold water taps across Alborz province, Iran. Clin. Epidemiol. Glob. Health 2019, 7, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Koshkolda, T.; Lück, C. Antibiotic susceptibility of clinical Legionella pneumophila serogroup 1 strains isolated in Germany. J. Antimicrob. Chemother. 2017, 73, 541–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, D.; Engels, I.; Friedhoff, C.; Spitzmüller, B.; Daschner, F.D.; Frank, U. Efficacy of moxifloxacin, trovafloxacin, clinafloxacin and levofloxacin against intracellular Legionella pneumophila. J. Antimicrob. Chemother. 2001, 47, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Öbrink-Hansen, K.; Hardlei, T.F.; Brock, B.; Jensen-Fangel, S.; Thomsen, M.K.; Petersen, E.; Kreilgaard, M. Moxifloxacin pharmacokinetic profile and efficacy evaluation in empiric treatment of community-acquired pneumonia. Antimicrob. Agents Chemother. 2015, 59, 2398–2404. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, D. Treatment of Legionaires’ Disease (Legionella pneumonia) 2020. Available online: https://www.uptodate.com/contents/treatment-and-prevention-of-legionella-infection (accessed on 22 November 2019).
- Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef]
- Shteinberg, M.; Schneer, S.; Lavon, O.; Adir, Y. Long term treatment with macrolides in chronic lung diseases. Harefuah 2016, 155, 567–571. [Google Scholar]
- Bin Abdulhak, A.; Khan, A.; Garbati, A.R.; Qazi, M.; Erwin, A.H.; Kisra, P.; Aly, S.; Farid, A.; El-Chami, T.; Wimmer, M.F. Azithromycin and risk of cardiovascular death. Am. J. Ther. 2015, 22, e122–e129. [Google Scholar] [CrossRef]
Legionella pneumophila OR L. pneumophila AND Resistance to antibiotics |
Legionella pneumophila OR L. pneumophila AND Antibiotic susceptibility |
Legionella pneumophila OR L. pneumophila AND Antibiotic sensitivity |
Legionella pneumophila OR L. pneumophila AND cooling towers AND Resistance to antibiotics |
Legionella pneumophila OR L. pneumophila AND drinking water AND Resistance to antibiotics |
Legionella pneumophila OR L. pneumophila AND swimming pool water AND Resistance to antibiotics |
Legionella pneumophila OR L. pneumophila AND bath water AND Resistance to antibiotics |
Legionella pneumophila OR L. pneumophila AND clinical AND Resistance to antibiotics |
Legionella pneumophila OR L. pneumophila AND cooling towers AND Resistance to antibiotics AND biofilm |
Legionella pneumophila AND swimming pool water AND Resistance to antibiotics AND biofilm |
Legionella pneumophila AND bath water AND Resistance to antibiotics AND biofilm |
Legionella pneumophila OR L. pneumophila AND clinical AND Resistance to antibiotics AND biofilm |
Legionella pneumophila AND Community Acquired Pneumoniae AND Resistance to antibiotics |
Legionella pneumophila AND CAP AND Resistance to antibiotics |
Validity Criteria |
---|
The site of sampling for the water and biofilm isolates (cooling towers, drinking water, swimming pool water, bath water) |
The specimen(s) for the clinical isolates |
The method chosen for antimicrobial testing |
The interpretation criteria used for the evaluation of the antimicrobial sensitivity |
Antibiotics | ECOFFs (mg/L) | ||
---|---|---|---|
Bruin, 2012 | Sharaby, 2019 | EUCAST, 2017 | |
CIP | 1 | 4 | ND |
ERM | 1 | 0.5 | 1 |
AZM | 1 | 2 | ND |
LEV | 0.5 | 1 | ND |
CL | 0.5 | 0.5 | 0.5 |
DOX | 8 | ||
RIF | 0.032 | 0.023 | ND |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappa, O.; Chochlakis, D.; Sandalakis, V.; Dioli, C.; Psaroulaki, A.; Mavridou, A. Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates—A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 5809. https://doi.org/10.3390/ijerph17165809
Pappa O, Chochlakis D, Sandalakis V, Dioli C, Psaroulaki A, Mavridou A. Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates—A Systematic Review. International Journal of Environmental Research and Public Health. 2020; 17(16):5809. https://doi.org/10.3390/ijerph17165809
Chicago/Turabian StylePappa, Olga, Dimosthenis Chochlakis, Vassilios Sandalakis, Chrysa Dioli, Anna Psaroulaki, and Athena Mavridou. 2020. "Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates—A Systematic Review" International Journal of Environmental Research and Public Health 17, no. 16: 5809. https://doi.org/10.3390/ijerph17165809
APA StylePappa, O., Chochlakis, D., Sandalakis, V., Dioli, C., Psaroulaki, A., & Mavridou, A. (2020). Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates—A Systematic Review. International Journal of Environmental Research and Public Health, 17(16), 5809. https://doi.org/10.3390/ijerph17165809