Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO2 Flux: Potential and Constraints in Utilizing Decomposed Variables
Abstract
:1. Introduction
1.1. Benefits of IPAT/Kaya Identity
1.2. The Fossil-Fuel CO2 Flux
1.3. Characteristics of the GOSAT Fossil-Fuel CO2 Flux
1.4. Scope of this Paper
2. Materials and Methods
2.1. Study Area
2.2. IPAT/Kaya Identity
2.2.1. Description of IPAT/Kaya Identity
2.2.2. Data Sets for Computing the Decomposed Variables of IPAT/Kaya Identity
2.3. Multiple Regression and Cluster Analysis
3. Model Estimation and Evaluation of Results
3.1. Model Calibration
3.2. Using Cluster Analysis to Handle the Problem of Multicollinearity
3.3. Discussion
4. Potential and Constraints in Utilizing Decomposed Variables
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CARMA | Carbon Monitoring for Action |
CV | Coefficient of variation |
DMSP-OLS | Defense Meteorological Program—Operational Line-Scan System |
EC | Fossil-fuel energy consumption |
E | CO2 emissions/EC |
G | GDP/P |
GDP | Gross domestic product |
GOSAT | Japan Aerospace Exploration Agency Greenhouse Gases Observing Satellite |
I | TEC/GDP |
IEA | International Energy Agency |
M | EC/TEC |
NIR | National inventory report |
ODIAC | Open-source Data Inventory of Anthropogenic CO2 emissions |
OECD | Organization for Economic Cooperation and Development |
P/Pop | Population size |
TEC | Total energy consumptions |
UNFCCC | United Nations Framework Convention on Climate Change |
UNECE | United Nations Economic Commission for Europe |
Appendix A
Cluster Level. | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|
Decomposed Variables of G Factor | GDP: 24.66 | GDP: 16.61–17.21 | GDP: 4.72–11.02 | GDP: 0.27–2.80 |
Pop: 507.89 | Pop: 213.88–375.67 | Pop: 69.78–273.05 | Pop: 14.45–137.16 | |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
2.48 | 0.70–3.80 | 0.33–1.73 | 0.08–1.32 | |
Countries Belonging to the Cluster | NET | BEL, SWI | AUS, FRA, GER, IRE, ITA, UK | BEL, BUL, CRO, CZE, EST, FIN, GRE, HUN, LAT, LIT, NOR, POL, ROM, SI, SK, SPA, SWE, TUR, UKA |
G Factor | G: 0.07–0.08 | G: 0.04–0.06 | G: 0.01–0.03 | G: 0.00–0.01 |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
0.08–0.70 | 0.05–3.80 | 0.09–1.32 | 0.25–0.37 | |
Countries Belonging to the Cluster | NOR, IRE, SWI | AUS, BEL, DEN, FIN, FRA, GER, NET, SWE, UK | CRO, CZE, EST, GRE, HUN, ITA, LAT, LIT, POL, POR, SI, SK, SPA | BLR, BUL, ROM, TUR, UKR |
Decomposed Variables of I factor | GDP: 24.66 | GDP: 16.61–17.21 | GDP: 4.72–11.02 | GDP: 0.27–2.80 |
TEC: 1.74 | TEC: 0.47–1.34 | TEC: 0.16–0.65 | TEC: 0.06–0.35 | |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
2.48 | 0.70–3.80 | 0.33–1.73 | 0.08–0.35 | |
Countries Belonging to the Cluster | NET | BEL, SWI | AUS, FRA, GER, IRE, ITA, UK | BLR, BUL, CRO, CZE, EST, FIN, GRE, HUN, LAT, LIT, NOR, POL, ROM, SI, SK, SPA, SWE, TUR, UKA |
I Factor | I: 0.05–0.54 | I: 0.04–0.15 | I: 0.06–0.13 | I: 0.08–0.09 |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
0.05–0.49 | 0.58–0.77 | 1.10–1.73 | 2.48–3.80 | |
Countries Belonging to the Cluster | BEL, BUL, CRO, DEN, EST, FIN, GRE, HUN, IRE, LAT, LIT, NOR, POR, ROM, SPA, SWE, TUR, UKR | AUS, FRA, ITA, POL, SI, SK, SWI | CZE, GER, UK | BEL, NET |
Cluster Level | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|
Decomposed Variables of M Factor | EC: 1.03–1.37 | EC: 0.22–0.45 | EC: 0.15–0.30 | EC: 0.02–0.16 |
TEC: 1.34–1.74 | TEC: 0.35–0.65 | TEC: 0.22–0.47 | TEC: 0.06–0.33 | |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
2.48–3.80 | 1.10–1.73 | 0.49–0.77 | 0.08–0.41 | |
Countries Belonging to the Cluster | BEL, NET | GER, UK, CZE | HUN, AUS, FRA, ITA, POL, SI, SK, SWI | DEN, IRE, BLR, BUL, CRO, EST, FIN, GRE, LAT, LIT, NOR, POR, ROM, SPA, SWE, TUR, UKR |
M Factor | M: 0.77–0.79 | M: 0.63–0.75 | M: 0.59–0.68 | M: 0.34–0.75 |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
2.48–3.80 | 1.10–1.73 | 0.49–0.77 | 0.08–0.41 | |
Countries Belonging to the Cluster | BEL, NET | GER, UK, CZE | HUN, AUS, FRA, ITA, POL, SI, SK, SWI | DEN, IRE, BLR, BUL, CRO, EST, FIN, GRE, LAT, LIT, NOR, POR, ROM, SPA, SWE, TUR, UKR |
Decomposed Variables of E Factor | EC: 1.37 | EC: 1.03 | EC: 0.22–0.45 | EC: 0.02–0.30 |
CO2: 4.88 | CO2: 3.22 | CO2: 1.37–2.29 | CO2: 0.12–1.10 | |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
2.48 | 3.80 | 1.10–1.73 | 0.08–0.77 | |
Countries Belonging to the Cluster | NET | BEL | CZE, GER, UK | AUS, BEL, BUL, CRO, DEN, EST, FIN, FRA, GRE, HUN, IRE, ITA, LAT, LIT, NOR, POL, POR, ROM, SI, SK, SPA, SWE, SWI, TUR, UKR |
E Factor | E: 13.44 | E: 7.11–8.47 | E: 4.75–6.59 | E: 0.48–4.26 |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
0.32 | 0.25–0.36 | 0.08–1.73 | 0.06–3.80 | |
Countries Belonging to the Cluster | EST | BUL, GRE, UKR | BLR, CZE, DEN, FIN, GER, IRE, NOR, POL, POR, ROM, SI, SK, SPA, TUR | AUS, BEL, CRO, FRA, HUN, ITA, LAT, LIT, NET, SWE, SWI, UK |
Decomposed Variables of P Factor | Pop: 375.67–507.89 | Pop: 205.81–273.05 | Pop: 69.78–137.16 | Pop: 18.13–46.81 |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
2.48–3.80 | 0.70–1.73 | 0.25–1.32 | 0.05–0.32 | |
Countries Belonging to the Cluster | BEL, NET | GER, ITA, SWI, UK | AUS, BUL, CRO, CZE, DEN, FRA, GRE, HUN, IRE, POL, POR, ROM, SI, SK, SPA, TUR, UKR | BLR, EST, FIN, LAT, LIT, NOR, SWE |
P Factor | P: 81.10–82.66 | P: 60.54–66.87 | P: 37.97–46.59 | P: 1.32–19.59 |
Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | Fossil-fuel CO2 flux: | |
0.37–1.73 | 0.58–1.10 | 0.25–0.76 | 0.08–3.80 | |
Countries Belonging to the Cluster | GER, TUR | FRA, ITA, UK | POL, SPA, UKR | AUS, BEL, BLR, BUL, CRO, CZE, DEN, EST, FIN, GRE, HUN, IRE, LAT, LIT, NET, NOR, POR, ROM, SI, SK, SWE, SWI |
References
- IPCC. Special Report on Emissions Scenarios; IPCC: Cambridge, UK, 2000.
- Aye, G.C.; Edoja, P.E. Effect of economic growth on CO2 emission in developing countries: Evidence from a dynamic panel threshold model. Cogent Econ. Financ. 2017, 5, 1379239. [Google Scholar] [CrossRef]
- Tavakoli, A. A journey among top ten emitter country, decomposition of “Kaya Identity”. Sustain. Cities Soc. 2018, 38, 254–264. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Pandey, J. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Um, J.-S. Performance evaluation of OCO-2 XCO2 signatures in exploring casual relationship between CO2 emission and land cover. Spat. Inf. Res. 2016, 24, 451–461. [Google Scholar] [CrossRef]
- Gurney, K.; Liang, J.; Patarasuk, R.; O’Keeffe, D.; Huang, J.; Hutchins, M.; Lauvaux, T.; Turnbull, J.; Shepson, P. Reconciling the differences between a bottom-up and inverse-estimated FFCO2 emissions estimate in a large US urban area. Elem. Sci. Anth. 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.-S.; Lee, J.-J.; Park, S.-I.; Um, J.-S. Exploring explainable range of in-situ portable CO2 sensor signatures for carbon stock estimated in forestry carbon project. Sens. Mater. 2019, 31, 3773. [Google Scholar] [CrossRef] [Green Version]
- Chertow, M.R. The IPAT equation and its variants. J. Ind. Ecol. 2000, 4, 13–29. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Lutz, W. Population and environment—What do we need more urgently: Better data, better models, or better questions? In Environment and Population Change; Zaba, B., Clarke, J., Eds.; Derouaux Ordina Editions: Liege, Belgium, 1994. [Google Scholar]
- USGCRP. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report; U.S. Global Change Research Program: Washington, DC, USA, 2018. [Google Scholar]
- Gurney, K.R.; Law, R.M.; Denning, A.S.; Rayner, P.J.; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, Y.-H.; Ciais, P.; Fan, S.; et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 2002, 415, 626–630. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.; Um, J.-S. Evaluating co-relationship between OCO-2 XCO2 and in situ CO2 measured with portable equipment in Seoul. Spat. Inf. Res. 2016, 24, 565–575. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, J.-S. Exploring causal relationship between landforms and ground level CO2 in Dalseong forestry carbon project site of South Korea. Spat. Inf. Res. 2017, 25, 361–370. [Google Scholar] [CrossRef]
- Turnbull, J.C.; Keller, E.D.; Norris, M.W.; Wiltshire, R.M. Independent evaluation of point source fossil fuel CO2 emissions to better than 10%. Proc. Natl. Acad. Sci. USA 2016, 113, 10287–10291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avitabile, V.; Schultz, M.; Herold, N.; de Bruin, S.; Pratihast, A.K.; Manh, C.P.; Quang, H.V.; Herold, M. Carbon emissions from land cover change in Central Vietnam. Carbon Manag. 2016, 7, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Raupach, M.R.; Canadell, J.G.; Le Quéré, C. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 2008, 5, 1601–1613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gurney, K.R.; Rayner, P.; Baker, D.; Liu, Y.P. Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions. Atmos. Chem. Phys. 2016, 16, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Garrett, T.J. Are there basic physical constraints on future anthropogenic emissions of carbon dioxide? Clim. Chang. 2011, 104, 437–455. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements; The National Academies Press: Washington, DC, USA, 2010; p. 124. [Google Scholar] [CrossRef]
- Andrejiová, M.; Grincova, A.; Marasová, D. Study of the percentage of greenhouse gas emissions from aviation in the EU-27 countries by applying multiple-criteria statistical methods. Int. J. Environ. Res. Public Health 2020, 17, 3759. [Google Scholar] [CrossRef]
- Jung, S.; An, K.-J.; Dodbiba, G.; Fujita, T. Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity. Energy 2012, 46, 231–241. [Google Scholar] [CrossRef]
- Ma, M.; Cai, W. What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity. Sci. Total Environ. 2018, 634, 884–899. [Google Scholar] [CrossRef]
- Mahony, T.O. Decomposition of Ireland’s carbon emissions from 1990 to 2010: An extended Kaya identity. Energy Policy 2013, 59, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.; Nunes, M.L.; Cunha, J.; Lucena, A.F.P. A cross-country assessment of energy-related CO2 emissions: An extended Kaya index decomposition approach. Energy 2016, 115, 1361–1374. [Google Scholar] [CrossRef] [Green Version]
- IEA. Energy Statistics of OECD Countries 2015; OECD Publishing: Paris, France, 2015. [CrossRef]
- IEA. Energy Statistics of Non-OECD Countries 2015; IEA: Paris, France, 2015. [CrossRef]
- Fujimori, S.; Matsuoka, Y. Development of method for estimation of world industrial energy consumption and its application. Energy Econ. 2011, 33, 461–473. [Google Scholar] [CrossRef]
- IEA. Energy Balances of OECD Countries 2015; OECD Publishing: Paris, France, 2015. [CrossRef]
- IEA. Energy Balances of Non-OECD Countries 2015; IEA: Paris, France, 2015. [CrossRef]
- IEA. Available online: https://www.iea.org/data-and-statistics/data-tables?country=WORLD (accessed on 13 April 2020).
- Word Bank. Available online: https://data.worldbank.org/ (accessed on 13 April 2020).
- Gernaat, D.E.H.J.; Calvin, K.; Lucas, P.L.; Luderer, G.; Otto, S.A.C.; Rao, S.; Strefler, J.; van Vuuren, D.P. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Chang. 2015, 33, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, G.; Bilgili, A.V. Modeling seasonal variations of long-term soil CO2 emissions in an orchard plantation in a semiarid area, SE Turkey. Environ. Monit. Assess. 2018, 190, 486. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Andres, R.; Gregg, J.; Losey, L.; Marland, G.; Boden, T. Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B 2011, 63, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Maksyutov, S.; Takagi, H.; Belikov, D.A.; Saito, M.; Oda, T.; Saeki, T.; Valsala, V.K.; Saito, R.; Ito, A.; Yoshida, Y.; et al. Algorithm Theoretical Basis Document (ATBD) for the Estimation of CO2 Fluxes and Concentration Distributions from GOSAT and Surface-Based CO2 Data; NIES: Tsukuba, Japan, 2014. [Google Scholar]
- Chen, Y. Spatial autocorrelation approaches to testing residuals from least squares regression. PLoS ONE 2016, 11, e0146865. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.Z.; Comin, C.H.; Casanova, D.; Bruno, O.M.; Amancio, D.R.; Costa, L.d.F.; Rodrigues, F.A. Clustering algorithms: A comparative approach. PLoS ONE 2019, 14, e0210236. [Google Scholar] [CrossRef]
- Kaya, Y.; Yokobori, K. Environment, Energy, and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997. [Google Scholar]
- European Union. Analysis of Greenhouse Gas Emission Trends and Drivers; European Commission: Luxembourg, 2013. [Google Scholar]
- Davis, S.J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef] [Green Version]
- Agency, E.E. Are Energy Losses in Transformation and Distribution Declining in Europe? Available online: https://www.eea.europa.eu/data-and-maps/indicators/energy-efficiency-in-transformation/are-energy-losses-in-transformation (accessed on 13 April 2020).
- Alcamo, J.; Bouwman, A.; Edmonds, J.; Grubler, A.; Morita, T.; Sugandhy, A. An Evaluation of the IPCC IS92 Emission Scenarios; IIASA: Cambridge, UK, 1995. [Google Scholar]
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.C.; Diaz Morejon, C.F.; Mathur, R.; Nakicenovic, N.; Ofosu Ahenkora, A.; Pan, J.; et al. Drivers, trends and mitigation. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Friedlingstein, P.; Andrew, R.M.; Rogelj, J.; Peters, G.P.; Canadell, J.G.; Knutti, R.; Luderer, G.; Raupach, M.R.; Schaeffer, M.; van Vuuren, D.P.; et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 2014, 7, 709–715. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Mazei, Y.A. Future temperature extremes will be more harmful: A new critical factor for improved forecasts. Int. J. Environ. Res. Public Health 2019, 16, 4015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Min | Max | Mean | STDEV | CV (%) | |
---|---|---|---|---|---|---|
Kaya identity | G factor (MM $/person) | 0.00 | 0.10 | 0.03 | 0.02 | 0.70 |
I factor (ktoe/MM $) | 0.03 | 0.56 | 0.11 | 0.09 | 0.81 | |
M factor (ktoe) | 0.34 | 0.80 | 0.62 | 0.11 | 0.18 | |
E factor (kt CO2 Equation/ktoe) | 0.41 | 14.76 | 5.22 | 2.22 | 0.42 | |
P factor (MM person) | 1.32 | 82.66 | 21.68 | 24.50 | 1.13 | |
Decomposed variables of Kaya identity | GDP (MM $/km2) | 0.16 | 26.80 | 4.49 | 5.89 | 1.31 |
Population (person/km2) | 13.39 | 507.89 | 123.32 | 104.24 | 0.85 | |
TEC (ktoe/km2) | 0.05 | 1.93 | 0.30 | 0.37 | 1.22 | |
EC (ktoe/km2) | 0.02 | 1.54 | 0.21 | 0.29 | 1.40 | |
CO2 emission (kt CO2 Equation/km2) | 0.10 | 5.40 | 0.88 | 1.03 | 1.17 | |
Fossil-fuel CO2 flux (gC m2 day−1) | 0.06 | 3.79 | 0.68 | 0.78 | 1.14 |
Category | Standardized Coefficient | VIF | T-Statistics | Pearson Correlation Coefficient | |
---|---|---|---|---|---|
Kaya identity | G | 0.26 ** | 1.80 | 3.84 | 0.18 ** |
I | 0.03 | 1.63 | 0.41 | −0.18 ** | |
M | 0.66 ** | 1.44 | 10.68 | 0.56 ** | |
E | 0.03 | 1.31 | 0.56 | −0.23 ** | |
Population | −0.13 * | 1.29 | −2.18 | 0.16 ** |
Category | Standardized Coefficient | VIF | T-Statistics | Pearson Correlation Coefficient | |
---|---|---|---|---|---|
Decomposed variables of five factors in Kaya identity | CO2 emission | 0.30 ** | 12.94 | 3.08 | 0.89 ** |
TEC | 0.02 | 1.97 | 0.44 | 0.64 ** | |
EC | 0.56 ** | 22.86 | 4.36 | 0.90 ** | |
GDP | −0.35 ** | 7.28 | −4.89 | 0.77 ** | |
Population | 0.38 ** | 16.08 | 3.55 | 0.87 ** |
Category | CO2 Emission | GDP | Population | TEC | EC |
---|---|---|---|---|---|
CO2 emission | 1.000 | 0.325 | 0.037 | −0.086 | −0.221 |
GDP | - | 1.000 | 0.430 | −0.196 | −0.300 |
population | - | - | 1.000 | −0.091 | −0.307 |
TEC | - | - | - | 1.000 | −0.834 |
EC | - | - | - | - | 1.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.; Um, J.-S.; Schlüter, S. Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO2 Flux: Potential and Constraints in Utilizing Decomposed Variables. Int. J. Environ. Res. Public Health 2020, 17, 5976. https://doi.org/10.3390/ijerph17165976
Hwang Y, Um J-S, Schlüter S. Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO2 Flux: Potential and Constraints in Utilizing Decomposed Variables. International Journal of Environmental Research and Public Health. 2020; 17(16):5976. https://doi.org/10.3390/ijerph17165976
Chicago/Turabian StyleHwang, YoungSeok, Jung-Sup Um, and Stephan Schlüter. 2020. "Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO2 Flux: Potential and Constraints in Utilizing Decomposed Variables" International Journal of Environmental Research and Public Health 17, no. 16: 5976. https://doi.org/10.3390/ijerph17165976
APA StyleHwang, Y., Um, J.-S., & Schlüter, S. (2020). Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO2 Flux: Potential and Constraints in Utilizing Decomposed Variables. International Journal of Environmental Research and Public Health, 17(16), 5976. https://doi.org/10.3390/ijerph17165976