Epidemiological Study on the Dose–Effect Association between Physical Activity Volume and Body Composition of the Elderly in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements and Instruments
2.3. Procedures
2.4. Ethical Considerations
2.5. Statistical Analysis
3. Results
3.1. Demographic Analysis
3.2. The Difference of Separate Body Composition of Old Adults with Different Physical Activity Level
3.3. The Dose–Effect Association between Physical Activity Volume and Body Composition of Old Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruiz-Montero, P.J.; Ruiz, G.J.R.-R.; Martín-Moya, R.; González-Matarín, P.J. Do Health-Related Quality of Life and Pain-Coping Strategies Explain the Relationship between Older Women Participants in a Pilates-Aerobic Program and Bodily Pain? A Multiple Mediation Model. Int. J. Environ. Res. Public Health 2019, 16, 3249. [Google Scholar] [CrossRef] [Green Version]
- China country Assessment Report on Ageing and Health. Available online: https://www.who.int/ageing/publications/china-country-assessment/en/ (accessed on 31 May 2020).
- Gutiérrez, M.; Calatayud, P.; Tomás, J.M. Motives to practice exercise in old age and successful aging: A latent class analysis. Arch. Gerontol. Geriatr. 2018, 77, 44–50. [Google Scholar] [CrossRef]
- Roberts, C.E.; Phillips, L.H.; Cooper, C.L.; Gray, S.; Allan, J.L. Effect of Different Types of Physical Activity on Activities of Daily Living in Older Adults: Systematic Review and Meta-Analysis. J. Aging Phys. Act. 2017, 25, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Reinders, I.; Visser, M.; Schaap, L. Body weight and body composition in old age and their relationship with frailty. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinders, I.; Murphy, R.A.; Koster, A.; Brouwer, I.A.; Visser, M.; Garcia, M.E.; Launer, L.J.; Siggeirsdottir, K.; Eiriksdottir, G.; Jonsson, P.V.; et al. Muscle Quality and Muscle Fat Infiltration in Relation to Incident Mobility Disability and Gait Speed Decline: The Age, Gene/Environment Susceptibility-Reykjavik Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 1030–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beavers, K.M.; Beavers, D.P.; Houston, D.K.; Harris, T.B.; Hue, T.F.; Koster, A.; Newman, A.B.; Simonsick, E.M.; Studenski, S.; Nicklas, B.J.; et al. Associations between body composition and gait-speed decline: Results from the Health, Aging, and Body Composition study. Am. J. Clin. Nutr. 2013, 97, 552–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miljkovic, I.; Kuipers, A.L.; Cauley, J.; Prasad, T.; Lee, C.G.; Ensrud, K.E.; Cawthon, P.M.; Hoffman, A.R.; Dam, T.-T.; Gordon, C.L.; et al. Greater Skeletal Muscle Fat Infiltration Is Associated With Higher All-Cause and Cardiovascular Mortality in Older Men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 1133–1140. [Google Scholar] [CrossRef]
- Reinders, I.; Murphy, R.A.; Brouwer, I.A.; Visser, M.; Launer, L.; Siggeirsdottir, K.; Eiriksdottir, G.; Gudnason, V.; Jonsson, P.V.; Lang, T.F.; et al. Muscle Quality and Myosteatosis: Novel Associations with Mortality Risk. Am. J. Epidemiol. 2015, 183, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santanasto, A.J.; Goodpaster, B.H.; Kritchevsky, S.B.; Miljkovic, I.; Satterfield, S.; Schwartz, A.V.; Cummings, S.R.; Boudreau, R.M.; Harris, T.B.; Newman, A.B. Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2017, 72, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.; Goodpaster, B.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B.; et al. Sarcopenia: Alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 2003, 51, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, B.H.; Krishnaswami, S.; Harris, T.B.; Katsiaras, A.; Kritchevsky, S.B.; Simonsick, E.M.; Nevitt, M.; Holvoet, P.; Newman, A.B. Obesity, Regional Body Fat Distribution, and the Metabolic Syndrome in Older Men and Women. Arch. Intern. Med. 2005, 165, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, B.H.; Krishnaswami, S.; Resnick, H.; Kelley, D.E.; Haggerty, C.L.; Harris, T.B.; Schwartz, A.V.; Kritchevsky, S.; Newman, A.B. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 2003, 26, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Czernichow, S.; Bertrais, S.; Oppert, J.-M.; Galan, P.; Blacher, J.; Ducimetiere, P.; Hercberg, S.; Zureik, M. Body composition and fat repartition in relation to structure and function of large arteries in middle-aged adults (the SU.VI.MAX study). Int. J. Obes. 2005, 29, 826–832. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.; Johnell, O.; Oden, A.; De Laet, C.; Mellström, D. Epidemiology of Osteoporosis and Fracture in Men. Calcif. Tissue Int. 2004, 75, 90–99. [Google Scholar] [CrossRef]
- Mackey, R.H.; Sutton-Tyrrell, K.; Vaitkevicius, P.V.; Sakkinen, P.A.; Lyles, M.F.; Spurgeon, H.A.; Lakatta, E.G.; Kuller, L.H. Correlates of aortic stiffness in elderly individuals: A subgroup of the Cardiovascular Health Study. Am. J. Hypertens. 2002, 15, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Safar, M.E.; Thomas, F.; Blacher, J.; Nzietchueng, R.; Bureau, J.-M.; Pannier, B.; Benetos, A. Metabolic Syndrome and Age-Related Progression of Aortic Stiffness. J. Am. Coll. Cardiol. 2006, 47, 72–75. [Google Scholar] [CrossRef]
- Ramírez-Villada, J.F.; Leon, H.; Argüello-Gutiérrez, Y.P.; Porras-Ramires, K.A. Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years. Rev. Esp. Geriatr. Gerontol. 2016, 51, 68–74. [Google Scholar] [CrossRef]
- Schnell, S.; Friedman, S.M.; Mendelson, D.A.; Bingham, K.W.; Kates, S.L. The 1-Year Mortality of Patients Treated in a Hip Fracture Program for Elders. Geriatr. Orthop. Surg. Rehabil. 2010, 1, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Leibson, C.L.; Tosteson, A.N.A.; Gabriel, S.E.; Ransom, J.E.; Melton, L.J. Mortality, disability, and nursing home use for persons with and without hip fracture: A population-based study. J. Am. Geriatr. Soc. 2002, 50, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Barette, M.; Vanderschueren, D.; Lips, P.; Haentjens, P.; Boonen, S.; Autier, P. Functional outcome and quality of life following hip fracture in elderly women: A prospective controlled study. Osteoporos. Int. 2004, 15, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Tak, E.C.; Kuiper, R.; Chorus, A.M.; Hopman-Rock, M. Prevention of onset and progression of basic ADL disability by physical activity in community dwelling older adults: A meta-analysis. Ageing Res. Rev. 2013, 12, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.H.; Warburton, D.E. Physical activity and functional limitations in older adults: A systematic review related to Canada’s Physical Activity Guidelines. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Howe, T.E.; Rochester, L.; Neil, F.; Skelton, D.; Ballinger, C. Exercise for improving balance in older people. Cochrane Database Syst. Rev. 2011, 25, 3979–3992. [Google Scholar] [CrossRef]
- Allan, L.; Ballard, C.G.; Rowan, E.N.; Kenny, R.A. Incidence and Prediction of Falls in Dementia: A Prospective Study in Older People. PLoS ONE 2009, 4, e5521. [Google Scholar] [CrossRef]
- Gretebeck, R.J.; Ferraro, K.F.; Black, D.R.; Holland, K.; Gretebeck, K.A. Longitudinal change in physical activity and disability in adults. Am. J. Health Behav. 2012, 36, 385–394. [Google Scholar] [CrossRef]
- Orkaby, A.R.; Forman, D.E. Physical activity and CVD in older adults: An expert’s perspective. Expert Rev. Cardiovasc. Ther. 2018, 16, 1–10. [Google Scholar] [CrossRef]
- Kramer, S.; Hung, S.H.; Brodtmann, A. The Impact of Physical Activity before and After Stroke on Stroke Risk and Recovery: A Narrative Review. Curr. Neurol. Neurosci. Rep. 2019, 19, 28. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical activity and the risk of type 2 diabetes: A systematic review and dose–response meta-analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Neilson, H.K.; Farris, M.; Courneya, K. Physical Activity and Cancer Outcomes: A Precision Medicine Approach. Clin. Cancer Res. 2016, 22, 4766–4775. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Nishiguchi, S.; Fukutani, N.; Aoyama, T.; Arai, H. Mail-Based Intervention for Sarcopenia Prevention Increased Anabolic Hormone and Skeletal Muscle Mass in Community-Dwelling Japanese Older Adults: The INE (Intervention by Nutrition and Exercise) Study. J. Am. Med. Dir. Assoc. 2015, 16, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Physical Activity and Older Adults. Available online: https://www.who.int/dietphysicalactivity/factsheet_olderadults/en/ (accessed on 31 May 2020).
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, H.B.; Macfarlane, D.J.; Thomas, G.N.; Lao, X.Q.; Jiang, C.Q.; Cheng, K.K.; Lam, T.H. Reliability and Validity of the IPAQ-Chinese. Med. Sci. Sports Exerc. 2008, 40, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R. Origins and Clinical Relevance of Sarcopenia. Can. J. Appl. Physiol. 2001, 26, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shi, J.-P.; Shen, C.; Liu, Y.; Liu, J.-M.; Zheng, X.-Y. Sarcopenia-related features and factors associated with low muscle mass, weak muscle strength, and reduced function in Chinese rural residents: A cross-sectional study. Arch. Osteoporos. 2018, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Wu, S.; Han, Y.; Liu, J.-M.; Zhang, Y.; Zhang, E.; Zhang, Y.; Gong, H.; Pang, J.; Tang, Z.; et al. Differences in body composition and physical functions associated with sarcopenia in Chinese elderly: Reference values and prevalence. Arch. Gerontol. Geriatr. 2015, 60, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Liu, Y.; Wang, J.; Zhang, R.; Zhang, J.; Zhang, Y.; Zheng, Z.; Yu, X.; Jing, H.; Nosaka, N.; et al. Consumption of medium- and long-chain triacylglycerols decreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur. J. Clin. Nutr. 2009, 63, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Knuth, A.G.; Hallal, P.C. Temporal Trends in Physical Activity: A Systematic Review. J. Phys. Act. Health 2009, 6, 548–559. [Google Scholar] [CrossRef]
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 34, 1996–2001. [Google Scholar] [CrossRef]
- Kwaśniewska, M.; Pikala, M.; Bielecki, W.; Dziankowska-Zaborszczyk, E.; Rębowska, E.; Kozakiewicz, K.; Pajak, A.; Piwoński, J.; Tykarski, A.; Zdrojewski, T.; et al. Ten-Year Changes in the Prevalence and Socio-Demographic Determinants of Physical Activity among Polish Adults Aged 20 to 74 Years. Results of the National Multicenter Health Surveys WOBASZ (2003–2005) and WOBASZ II (2013–2014). PLoS ONE 2016, 11, e0156766. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; Guajardo, V.; et al. Original research Socio-demographic patterning of self-reported physical activity and sitting time in Latin American countries: Findings from ELANS. BMC Public Health 2019, 19, 1–12. [Google Scholar]
- Wallmann-Sperlich, B.; Froboese, I. Physical Activity during Work, Transport and Leisure in Germany—Prevalence and Socio-Demographic Correlates. PLoS ONE 2014, 9, e112333. [Google Scholar] [CrossRef]
- Carter, M.I.; Hinton, P.S. Physical Activity and Bone Health. Mo. Med. 2014, 111, 59–64. [Google Scholar] [PubMed]
- Bradbury, K.E.; Guo, W.; Cairns, B.J.; Armstrong, M.E.G.; Key, T.J. Association between physical activity and body fat percentage, with adjustment for BMI: A large cross-sectional analysis of UK Biobank. BMJ Open 2017, 7, e011843. [Google Scholar] [CrossRef] [Green Version]
- Westerterp, K.R. Changes in physical activity over the lifespan: Impact on body composition and sarcopenic obesity. Obes. Rev. 2018, 19 (Suppl. 1), 8–13. [Google Scholar] [CrossRef] [Green Version]
- Bendavid, E.J.; Shan, J.; Barrett-Connor, E. Factors associated with bone mineral density in middle-aged men. J. Bone Miner. Res. 2009, 11, 1185–1190. [Google Scholar] [CrossRef]
- Chahal, J.; Lee, R.; Luo, J. Loading dose of physical activity is related to muscle strength and bone density in middle-aged women. Bone 2014, 67, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Cartee, G.D.; Hepple, R.T.; Bamman, M.M.; Zierath, J.R. Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab. 2016, 23, 1034–1047. [Google Scholar] [CrossRef] [Green Version]
- Bielemann, R.M.; Martínez-Mesa, J.; Gigante, D.P. Physical activity during life course and bone mass: A systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet. Disord. 2013, 14, 77. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-J.; Liu, Y.-J.; Liu, P.-Y.; Hamilton, J.A.; Recker, R.R.; Deng, H.-W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laakkonen, E.K.; Soliymani, R.; Karvinen, S.; Kaprio, J.; Kujala, U.M.; Baumann, M.; Sipilä, S.; Kovanen, V.; Lalowski, M. Estrogenic regulation of skeletal muscle proteome: A study of premenopausal women and postmenopausal MZ cotwins discordant for hormonal therapy. Aging Cell 2017, 16, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.D. Menopause. Lancet 2008, 371, 760–770. [Google Scholar] [CrossRef]
- Pöllänen, E.L.; Sipilä, S.; Alén, M.; Ronkainen, P.H.A.; Ankarberg-Lindgren, C.; Puolakka, J.; Suominen, H.; Hämäläinen, E.; Turpeinen, U.; Konttinen, Y.T.; et al. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell 2011, 10, 650–666. [Google Scholar]
- Ho, S.C.; Wu, S.; Chan, S.G.; Sham, A. Menopausal transition and changes of body composition: A prospective study in Chinese perimenopausal women. Int. J. Obes. 2010, 34, 1265–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, S.D.; Lehman, A.; Thomas, F.; Johnson, K.C.; Jackson, R.; Wactawski-Wende, J.; Ko, M.; Chen, Z.; Curb, J.D.; Howard, B.V. Effects of self-reported age at nonsurgical menopause on time to first fracture and bone mineral density in the Women’s Health Initiative Observational Study. Menopause 2015, 22, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gómez, J.; Vicente-Rodríguez, G.; Royo, I.A.; Martínez-Redondo, D.; Foncillas, J.P.; Moreno, L.A.; Díez-Sánchez, C.; Casajús, J. Effect of endurance and resistance training on regional fat mass and lipid profile. Nutr. Hosp. 2013, 28, 340–346. [Google Scholar]
- Sebastião, E.; Gobbi, S.; Chodzko-Zajko, W.; Schwingel, A.; Papini, C.; Nakamura, P.M.; Netto, A.; Kokubun, E. The International Physical Activity Questionnaire-long form overestimates self-reported physical activity of Brazilian adults. Public Health 2012, 126, 967–975. [Google Scholar] [CrossRef]
- Wanner, M.; Probst-Hensch, N.; Kriemler, S.; Meier, F.; Autenrieth, C.; Martin, B.W. Validation of the long international physical activity questionnaire: Influence of age and language region. Prev. Med. Rep. 2016, 3, 250–256. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Participants | PA MET × min/wk No. (%) a | ||||
---|---|---|---|---|---|---|
0–600 (0–1 REC) | 600–1200 (1–2 REC) | 1200–2400 (2–4 REC) | 2400–3600 (4–6 REC) | >3600 (>6 REC) | ||
participants | 2664 | 660 (24.8) | 630 (23.6) | 862 (32.3) | 304 (11.4) | 208 (7.8) |
age(years) | ||||||
60–69 (include 69) | 1914 | 469 (24.5) | 463 (24.2) | 620 (32.4) | 214 (11.2) | 148 (7.7) |
70–79 (include 79) | 626 | 166 (26.5) | 141 (22.5) | 193 (30.8) | 77 (12.3) | 49 (7.9) |
≥80 | 124 | 25 (20.2) | 26 (21.0) | 49 (39.5) | 13 (10.5) | 11 (8.8) |
gender | ||||||
male | 984 | 241 (24.5) | 224 (22.8) | 320 (32.5) | 113 (11.5) | 86 (8.7) |
female | 1680 | 419 (24.9) | 406 (24.2) | 542 (32.3) | 191 (11.4) | 122 (7.3) |
smoking | ||||||
never | 2134 | 530 (24.8) | 500 (23.4) | 695 (32.6) | 250 (11.7) | 159 (7.4) |
yes, every day | 485 | 120 (24.7) | 117 (24.1) | 153 (31.5) | 48 (9.9) | 47 (9.7) |
yes, but not everyday | 45 | 10 (22.2) | 13 (28.9) | 14 (31.1) | 6 (13.3) | 2 (4.4) |
educational level | ||||||
never educated | 1664 | 435 (26.1) | 403 (24.2) | 518 (31.1) | 181 (10.9) | 127 (7.6) |
primary school | 414 | 103 (24.9) | 86 (20.8) | 139 (33.6) | 46 (11.1) | 40 (9.7) |
junior high school | 422 | 92 (21.8) | 97 (23.0) | 146 (34.6) | 50 (11.8) | 37 (8.8) |
senior high school | 151 | 30 (19.9) | 39 (25.8) | 53 (35.1) | 25 (16.6) | 4 (2.7) |
college | 13 | 0 (0.0) | 5 (38.5) | 6 (46.2) | 2 (15.4) | 0 (0.0) |
marital status | ||||||
married | 2130 | 528 (24.8) | 504 (23.7) | 687 (32.3) | 242 (11.4) | 169 (7.9) |
single | 47 | 14 (29.8) | 10 (21.3) | 13 (27.7) | 5 (10.6) | 5 (10.7) |
bereft of one’s spouse | 487 | 118 (24.2) | 116 (23.8) | 162 (33.3) | 57 (11.7) | 34 (7.0) |
occupation | ||||||
farmer | 1828 | 464 (25.4) | 446 (24.4) | 557 (30.5) | 209 (11.4) | 152 (8.3) |
worker | 118 | 17 (14.4) | 29 (24.6) | 45 (38.1) | 12 (10.2) | 15 (12.7) |
unemployed | 420 | 119 (28.3) | 90 (21.4) | 144 (34.4) | 42 (10.0) | 25 (5.9) |
retiree | 231 | 45 (19.5) | 54 (23.4) | 91 (39.4) | 29 (12.6) | 12 (5.2) |
mental worker | 47 | 9 (19.1) | 9 (19.1) | 19 (40.4) | 6 (12.8) | 4 (8.5) |
other | 13 | 4 (30.8) | 1 (7.7) | 4 (30.8) | 4 (30.8) | 0 (0.0) |
Body Composition Indicators | Gender | Below PA Recommendation | Over PA Recommendation | ||||
---|---|---|---|---|---|---|---|
M ± SD | 95% CI | Range | M ± SD | 95% CI | Range | ||
LBM (%) | Male | 69.1 ± 6.1 | 68.6–69.7 | 44.3–89.0 | 72.9 ± 9.4 ** | 72.3–73.6 | 48.4–86.7 |
Female | 62.6 ±9.0 | 63.0–62.2 | 39.7–78.1 | 64.3 ± 7.9 ** | 63.8–64.7 | 43.1–80.6 | |
BM (g/kg) | Male | 45.1 ± 5.4 | 44.7–45.6 | 23.0–71.4 | 49.2 ±5.7 * | 48.8–49.6 | 28.4–89.7 |
Female | 41.2 ± 5.9 | 40.9–41.4 | 19.1–74.7 | 44.6 ± 5.0 ** | 44.3–44.8 | 20.9–71.3 | |
FM (%) | Male | 27.3 ± 6.7 | 26.7–28.0 | 9.7–55.2 | 25.8 ± 8.1 * | 25.3–26.4 | 12.9–52.5 |
Female | 35.4 ± 17.6 | 34.9–35.8 | 22.3–60.0 | 33.0 ± 6.7 * | 32.6–33.4 | 19.8–57.4 |
Gender | Body Composition Indicators | 0–1 REC | 1–2 REC | 2–4 REC | 4–6 REC | >6 REC | p-Value | F | Eta2 |
---|---|---|---|---|---|---|---|---|---|
Male | LBM (%) | 69.1 ± 6.1 | 73.3 ± 9.1 * | 73.0 ± 3.9 * | 72.1 ± 4.0 | 73.4 ± 8.9 * | 0.047 | 2.423 | 0.102 |
BM (g/kg) | 45.1 ± 5.4 | 50.0 ± 5.4 *# | 48.6 ± 5.9 * | 47.6 ± 4.7 | 49.4 ± 7.2 | 0.046 | 2.433 | 0.102 | |
FM (%) | 27.3 ± 6.7 | 26.4 ± 4.7 | 25.7 ± 8.3 | 25.0 ± 8.8 | 25.2 ± 7.8 | 0.537 | 0.797 | 0.013 | |
Female | LBM (%) | 62.6 ±9.0 | 63.8 ± 7.1 | 66.4 ± 8.3 * | 64.0 ± 11.3 | 64.8 ± 5.2 | 0.023 | 2.847 | 0.117 |
BM (g/kg) | 41.2 ± 5.9 | 43.4 ± 5.5 | 45.9 ± 4.6 * | 43.0 ± 4.8 | 43.5 ± 3.7 | 0.045 | 2.443 | 0.105 | |
FM (%) | 35.4 ± 17.6 | 33.4 ± 12.4 | 33.5 ± 11.7 | 32.2 ± 7.9 | 32.1 ±5.5 | 0.323 | 1.169 | 0.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Tang, Z.-Y.; Liu, Y.; Liu, Y.-J.; Liu, J.-M. Epidemiological Study on the Dose–Effect Association between Physical Activity Volume and Body Composition of the Elderly in China. Int. J. Environ. Res. Public Health 2020, 17, 6365. https://doi.org/10.3390/ijerph17176365
Hou X, Tang Z-Y, Liu Y, Liu Y-J, Liu J-M. Epidemiological Study on the Dose–Effect Association between Physical Activity Volume and Body Composition of the Elderly in China. International Journal of Environmental Research and Public Health. 2020; 17(17):6365. https://doi.org/10.3390/ijerph17176365
Chicago/Turabian StyleHou, Xiao, Zheng-Yan Tang, Yu Liu, Yu-Jie Liu, and Jing-Min Liu. 2020. "Epidemiological Study on the Dose–Effect Association between Physical Activity Volume and Body Composition of the Elderly in China" International Journal of Environmental Research and Public Health 17, no. 17: 6365. https://doi.org/10.3390/ijerph17176365
APA StyleHou, X., Tang, Z.-Y., Liu, Y., Liu, Y.-J., & Liu, J.-M. (2020). Epidemiological Study on the Dose–Effect Association between Physical Activity Volume and Body Composition of the Elderly in China. International Journal of Environmental Research and Public Health, 17(17), 6365. https://doi.org/10.3390/ijerph17176365