Impact of Air Pollution on the Health of the Population in Parts of the Czech Republic †
Abstract
:1. Introduction
- for children 0–6 years old:
- respiratory diseases: 2.90 vs. 0.54 nationwide (No. of cases/100),
- mental illness: 1.06 vs. 0.53 nationwide (No. of cases/100);
- for children 7–15 years old:
- respiratory diseases: 1.40 vs. 0.45 nationwide (No. of cases/100),
- mental illness: 4.09 vs.2.00 nationwide (No. of cases/100).
2. Teplice Program
2.1. Air Quality Monitoring
2.2. Genotoxicity and Embryotoxicity of Urban Air Particulate Matter
2.3. DNA Adducts and Personal Air Monitoring
2.4. Pregnancy Outcome
2.5. Biomarkers and Pregnancy, DNA Adducts
2.6. Semen Quality
2.7. Neurobehavioral Studies
2.8. Mortality
3. Discussion
4. Conclusions
- (1)
- In analyzing the sources of air pollution, approximately 70% of PM2.5 fine particles were attributed to local heating sources that used brown coal containing a high content of SO2. This result prompted the Czech government in 1994 to support the change of local heating in the mining districts from using coal to natural gas. This substantially decreased the concentration of SO2 and PM2.5 in the region;
- (2)
- In vitro studies, evaluated in terms of the level of DNA adducts, proved that PM10 extracts contained many c-PAHs and that those c-PAHs contributed to 50% of the genotoxicity of PM10 in the region;
- (3)
- The use of personal monitors and determining the level of DNA adducts in WBC of exposed subjects showed for the first time the relationship between c-PAH exposure and the impact on DNA adducts;
- (4)
- In the pregnancy outcome study, analyzing several thousand pregnancies over 4 years showed that the first month of gestation is the most sensitive to IUGR induction. The prevalence of IUGR was shown to be related to the concentration of c-PAHs > 15 ng/m3 (B[a]P > 2.8 ng/m3) adsorbed on PM2.5. This reduced fetal growth may substantially affect later adult health;
- (5)
- For the first time, the impact of air pollution on DNA fragmentation in sperm was demonstrated in the semen study;
- (6)
- In the neurobehavioral studies, poorer performance on neurobehavioral tests and high prevalence of learning disabilities in children from the polluted district was observed. The studies postulated a significant impact of air pollution that affects neurobehavioral function in children;
- (7)
- The mortality studies observed a significant decrease of life expectancy, approximately 2 years for males and females. Decreased air pollution later significantly decreased cardiovascular and respiratory mortality in mining districts;
- (8)
- It may be suspected that the health of the population in the mining districts of Northern Bohemia is significantly affected by decades of air pollution. High concentrations of c-PAH induced genetic damage as well as affected birth weight, which later exhibits as functional changes that increase morbidity. This damage seems to be long-lasting and can extend through an entire lifetime.
Funding
Acknowledgments
Conflicts of Interest
References
- Skorkovsky, J.; Kotesovec, F. Comparison of mortality in the industrial region of Northern Bohemia in the period of higher and lower level of air pollution. Air. Pollut. Prot. 2005, 18, 32–37. (In Czech) [Google Scholar]
- Kotesovec, F.; Skorkovsky, J.; Brynda, J.; Peters, A.; Heinrich, J. Daily mortality and air pollution in Northern Bohemia: Different affects for men and women. Cent. Eur. J. Public Health 2000, 8, 120–127. [Google Scholar]
- Sram, R.J. New ethical problems related to environmental pollution. In Ethical Issues of Molecular Genetics in Psychiatry; Sram, R.J., Bulyzhenkov, V., Prilipko, L., Christen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 94–105. [Google Scholar]
- Czech Statistical Office 2018. Available online: http://www.czso.cz (accessed on 17 April 2019).
- Sram, R.J.; BeneS, I.; Binková, B.; Dejmek, J.; Horstman, D.; Kotĕsovec, F.; Skalík, I. Teplice Program—The impact of air pollution on human health. Environ. Health Perspect. 1996, 104, 699–714. [Google Scholar] [PubMed] [Green Version]
- Benes, I.; Skorkovsky, J.; Novak, J.; Sram, R.J. The development of air pollution in Teplice, Prachatice and Prague in the last thirteen years. Air Pollut. Prot. 2007, 20, 9–10. (In Czech) [Google Scholar]
- CHMI (Czech Hydrometeorology Institute) 2018. Available online: http://portal.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2018_enh/pollution_my/CZTOS_BaP_CZ.html (accessed on 18 June 2019).
- Pinto, J.P.; Stevens, R.K.; Willis, R.D.; Kellog, R.; Mammane, Y.; Novak, J.; Šantroch, J.; Beneš, I.; Leniček, J.; Bureš, V. Czech air quality monitoring and receptor modelling study. Environ. Sci. Technol. 1998, 32, 843–854. [Google Scholar] [CrossRef]
- Pinto, J.P.; Stevens, R.K.; Willis, R.D.; Mamane, Y.; Ramadan, Z.; Hopke, P.K. Source-receptor relations in Teplice and Prachatice. In Teplice Program—Impact of Air Pollution on Human Health; Sram, R.J., Ed.; Academia: Prague, Czech Republic, 2001; pp. 71–80. [Google Scholar]
- Binková, B.; Leníček, J.; Beneš, I.; Vidová, P.; Gajdoš, O.; Fried, M.; Šrám, R.J. Genotoxicity of coke-oven and urban air particulate matter in in vitro acellular assays coupled with 32P-postlabeling and HPLC analysis of DNA adducts. Mutat. Res. 1998, 414, 77–94. [Google Scholar] [CrossRef]
- Binkova, B.; Vesely, D.; Vesela, D.; Jelinek, R.; Sram, R.J. Genotoxicity and embryotoxicity of urban air particulate matter collected during winter and summer period in two different districts of the Czech Republic. Mutat. Res. 1999, 440, 45–58. [Google Scholar] [CrossRef]
- De Marini, D.M.; Shelton, M.L.; Bell, D.A. Mutation spectra in Salmonella of complex mixtures: Comparison of urban air to benzo[a]pyrene. Environ. Mol. Mutagen. 1994, 24, 262–275. [Google Scholar] [CrossRef]
- De Marini, D.M. Mutation spectra of complex mixtures. Mutat. Res. 1998, 411, 77–94. [Google Scholar]
- Binkova, B.; Lewtas, J.; Miskova, I.; Lenicek, J.; Sram, R. DNA adducts and personal air monitoring of carcinogenic polycyclic aromatic hydrocarbons in an environmentally exposed population. Carcinogenesis 1995, 16, 1037–1046. [Google Scholar] [CrossRef]
- Watts, R.; Lewtas, J.; Stevens, R.; Hartlage, T.; Pinto, J.; Williams, R.; Šrám, R. Czech-US EPA health study: Assessment of personal and ambient air exposures to PAH and organic mutagens in the Teplice district of Northern Bohemia. Int. J. Environ. Anal. Chem. 1994, 56, 271–287. [Google Scholar] [CrossRef]
- Dejmek, J.; Selevan, S.G.; Benes, I.; Solansky, I.; Sram, R.J. Fetal growth and maternal exposure to particulate matter during pregnancy. Environ. Health Perspect. 1999, 107, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Topinka, J.; Binkova, B.; Mračková, G.; Stavkova, Z.; Beneš, I.; Dejmek, J.; Šrám, R.J. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutat. Res. 1997, 390, 59–68. [Google Scholar] [CrossRef]
- Dejmek, J.; Solansky, I.; Benes, I.; Lenicek, J.; Sram, R.J. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ. Health Perspect. 2000, 108, 1159–1164. [Google Scholar] [CrossRef]
- Huel, G.; Girard, F.; Nessmann, C.; Godin, J.; Blot, P.; Bréart, G.; Moreau, T. Placental aryl hydrocarbon hydroxylase activity and placental calcification. Toxicology 1992, 71, 257–266. [Google Scholar] [CrossRef]
- Huel, G.; Godin, J.; Frery, N.; Girard, F.; Moreau, T.; Nessmann, C.; Blot, P. Aryl hydrocarbon hydroxylase activity in human placenta and threatened preterm delivery. J. Expo. Anal. Environ. Epidemiol. 1993, 3, 187–189. [Google Scholar]
- Hatch, M.C.; Warburton, D.; Santella, R.M. Polycyclic aromatic hydrocarbon-DNA adducts in spontaneously aborted fetal tissue. Carcinogenesis 1990, 11, 1673–1775. [Google Scholar] [CrossRef]
- Madhavan, N.D.; Najdu, K. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women. Hum. Exp. Toxicol. 1995, 14, 503–506. [Google Scholar] [CrossRef]
- Arnould, J.P.; Verhoest, P.; Bach, V.; Libert, J.P.; Belegaud, J. Detection of benzo[a]pyrene—DNA adducts in human placenta and umbilical cord blood. Hum. Exp. Toxicol. 1997, 16, 716–721. [Google Scholar] [CrossRef]
- Guyda, H.J. Metabolic effects of growth factors and polycyclic aromatic hydrocarbons on cultured human placental cells of early and late gestation. J. Clin. Endocrinol. Metab. 1991, 72, 718–723. [Google Scholar] [CrossRef]
- Zhang, I.; Connor, E.E.; Chegini, N.; Shiverick, K.T. Modulation by benzo[a]pyrene of epidermal growth factor receptors, cell proliferation, and secretion of human chorionic gonadotropin in human placental lines. Biochem. Pharmacol. 1995, 50, 1171–1180. [Google Scholar] [PubMed]
- Barker, D.J. Adult consequences of fetal growth restriction. Clin. Obs. Gynecol. 2006, 49, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Epstein, H.; Dejmek, J.; Subrt, P.; Vitnerova, N.; Sram, R.J. Trace metals and pregnancy outcome in the Czech Republic. Environ. Epidemiol. Toxicol. 2000, 2, 13–19. [Google Scholar]
- Šrám, R.J.; Binková, B.; Rössner, P.; Rubeš, J.; Topinka, J.; Dejmek, J. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat. Res. 1999, 428, 203–215. [Google Scholar] [CrossRef]
- Rubes, J.; Selevan, S.G.; Evenson, D.P.; Zudova, D.; Vozdova, M.; Zudova, Z.; Perreault, S.D. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum. Reprod. 2005, 20, 2776–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selevan, S.G.; Borkovec, L.; Slott, V.L.; Zudová, Z.; Rubes, J.; Evenson, D.P.; Perreault, S.D. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ. Health Perspect. 2000, 108, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Rubes, J.; Rybar, R.; Prinosilova, P.; Veznik, Z.; Chvatalova, I.; Solansky, I.; Sram, R.J. Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat. Res. 2010, 683, 9–15. [Google Scholar] [CrossRef]
- Choi, H.; Harrison, R.; Komulainen, H.; Delgado Saborit, J.M. Polycyclic aromatic hydrocarbons. In WHO Guidelines for Indoor Air Quality. Selected Pollutants; World Health Organization Europe, WHO Regional Office for Europe: Copenhagen, Denmark, 2010; pp. 289–345. [Google Scholar]
- Gebhart, J.A.; Dytrych, Z.; Tyl, J.; Sram, R.J. On the incidence of minimal brain dysfunction syndrome in children. Ceskoslov. Psychiat. 1990, 86, 1–6. (In Czech) [Google Scholar]
- Singh, J. Neonatal development altered by maternal sulphur dioxide exposure. Neurotoxicology 1989, 10, 523–527. [Google Scholar]
- Otto, D.; Skalik, I.; Kenneth Hudnell, H.; House, D.; Sram, R.J. Neurobehavioral effects of exposure to environmental pollutants in Czech children. In Teplice Program—Impact of Air Pollution on Human Health; Sram, R.J., Ed.; Academia: Prague, Czech Republic, 2001; pp. 217–242. [Google Scholar]
- Baker, E.; Letz, R.; Fidler, A.; Shalat, S.; Plantamura, D.; Lyndon, M. A computer-based neurobehavioral evaluation system for occupational and environmental epidemiology: Methodology and validation studies. Neurotoxicol. Teratol. 1985, 7, 369–377. [Google Scholar]
- Perera, F.P.; Rauh, V.; Whyatt, R.M.; Tsai, W.Y.; Tang, D.; Diaz, D.; Kinney, P. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner/city children. Env. Health Perspect. 2006, 114, 1287–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, F.P.; Li, Z.; Whyatt, R.; Hoepner, L.; Wang, S.; Camann, D.; Rauh, V. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009, 124, e195–e202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, F.P.; Tang, D.; Wang, S.; Vishnevetsky, J.; Zhang, B.; Diaz, D.; Rauh, V. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect. 2012, 120, 921–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, B.S.; Rauh, V.A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Perera, F. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 2015, 72, 531–540. [Google Scholar] [CrossRef]
- Edwards, S.C.; Jedrychowski, W.; Butscher, M.; Camann, D.; Kieltyka, A.; Mroz, E.; Perera, F. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children intelligence at 5 years of age in a prospective cohort study in Poland. Environ. Health Perspect. 2010, 118, 1326–1331. [Google Scholar] [CrossRef]
- Jedrychowski, W.A.; Perera, F.P.; Camann, D.; Spengler, J.; Butscher, M.; Mroz, E.; Sowa, A. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ. Sci. Pollut. Res. 2015, 22, 3631–3639. [Google Scholar] [CrossRef] [Green Version]
- Perera, F.; Li, T.Y.; Zhou, Z.J.; Yuan, T.; Chen, Y.H.; Qu, L.; Tang, D. Benefits of reducing prenatal exposure to coal-burning pollutants to children’s neurodevelopment in China. Environ. Health Perspect. 2008, 116, 1396–1400. [Google Scholar] [CrossRef]
- WHO Statistical Information System, Czech Republic. Available online: http://www.who.int/countries/cze/en (accessed on 26 August 2020).
- Cífková, R.; Škodová, Z.; Bruthans, J.; Adámková, V.; Jozífová, M.; Galovcová, M.; Lánská, V. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/8. Czech MONICA and Czech post MONICA. Atherosclerosis 2010, 211, 676–681. [Google Scholar] [CrossRef]
- Fihel, A.; Pechholdova, M. Between ‘pioneers’ of the cardiovascular revolution and its ‘late followers’: Mortality changes in the Czech Republic and Poland since 1968. Eur. J. Popul. 2017, 33, 651–678. [Google Scholar] [CrossRef] [Green Version]
- Mackenbach, J.P.; Karanikolos, M.; Beral, J.M.; Mckee, M. Why did life expectancy in Central and Eastern Europe suddenly improve in the 1990s? An analysis by cause of death. Scand. J. Public Health 2015, 43, 796–801. [Google Scholar] [CrossRef]
- Kotesovec, F.; Skorkovsky, J. Comparison of mortality in North-Western Bohemia in two periods of high and low air pollution. Air. Pollut. Prot. 2007, 20, 19–23. (In Czech) [Google Scholar]
- Dejmek, J.; Solansky, I.; Podrazilova, K.; Sram, R.J. The exposure of non-smoking and smoking mothers to environmental tobacco smoke during different gestational phases and fetal growth. Environ. Health Perspect. 2002, 110, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sram, R.J.; Binkova, B.; Dostal, M.; Merkerova-Dostalova, M.; Libalova, H.; Milcova, A.; Topinka, J. Health impact of air pollution to children. Int. J. Hyg. Environ. Health 2013, 216, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Rossnerova, A.; Tulupova, E.; Tabashidze, N.; Schmuczerova, J.; Dostal, M.; Rossner, P., Jr.; Sram, R.J. Factors affecting 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat. Res. 2013, 741–742, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sram, R.J.; Rössner, P., Jr.; Rössnerová, A.; Dostál, M.; Milcová, A.; Svecová, V.; Velemínský, M., Jr. Impact of air pollution to genome of newborns: ISEE Conference Abstracts. Cent. Eur. J. Public Health 2016, 2016, S40–S44. Available online: https://ehp.niehs.nih.gov/doi/10.1289/isee.2016.4303 (accessed on 15 June 2020). [CrossRef] [PubMed] [Green Version]
- Ambroz, A.; Vlkova, V.; Rossner, P., Jr.; Rossnerova, A.; Svecova, V.; Milcova, A.; Sram, R.J. Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns. Int. J. Hyg. Env. Health 2016, 219, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Honkova, K.; Rossnerova, A.; Pavlikova, J.; Svecova, V.; Klema, J.; Topinka, J.; Sram, R.J. Gene expression profiling in healthy newborns from diverse localities of the Czech Republic. Environ. Mol. Mutagen. 2018, 59, 401–415. [Google Scholar] [CrossRef]
- Urbancova, K.; Lankova, D.; Rossner, P.; Rossnerova, A.; Svecova, V.; Tomaniova, M.; Pulkrabova, J. Evaluation of 11 polycyclic aromatic hydrocarbon metabolites in urine of Czech moths and newborns. Sci. Total Environ. 2017, 577, 212–219. [Google Scholar] [CrossRef]
Indicators of Air Pollution | February–March 1992 | May–July 1992 | January–March 1993 | May–August 1993 | November 1993–March 1994 | |||
---|---|---|---|---|---|---|---|---|
Teplice | Teplice | Teplice | Prachatice | Teplice | Prachatice | Teplice | Prachatice | |
SO2, µg/m3 | 135 ± 20 | 31.1 ± 4.7 | 153 ± 23 | 29.0 ± 4.4 | 4.4 ± 0.7 | |||
PM2.5, µg/m3 | 68.0 ± 1.9 | 36.5 ± 1.2 | 122 ± 3.1 | 44.0 ± 0.8 | 28.7 ± 1.2 | 17.9 ± 0.4 | 51.1 ± 2.8 | |
B[a]P, ng/m3 | 8.0 ± 0.4 | 4.7 ± 2.4 | 0.5 ± 0.4 | 0.1 ± 0.05 | 5.5 ± 0.3 | 3.4 ± 0.5 |
Sampling | |||||
---|---|---|---|---|---|
November 1992 | October 1993 | November 1993 | January 1994 | February 1994 | |
PM2.5 µg/m3 | 53.5 ± 30.5 | 52.8 ± 39.4 | 106 ± 49.9 | 33.3 ± 14.1 | 39.3 ± 46.8 |
c-PAHs ng/m3 | 12.2 ± 5.6 | 14.5 ± 6.4 | 42.2 ± 19.9 | 21.3 ± 18.5 | 15.1 ± 6.0 |
B[a]P ng/m3 | 3.0 ± 1.3 | 2.8 ± 12.6 | 7.5 ± 3.6 * | 3.8 ± 4.0 | 2.0 ± 1.1 |
DNA adducts/108 nucleotides | 5.73 ± 0.90 | 4.64 ± 1.95 | 6.81 ± 1.81 | 4.37 ± 2.05 | 3.96 ± 0.80 |
Month | PM10: 40 to <50 µg/m3 | PM10 > 50 µg/m3 | ||||
---|---|---|---|---|---|---|
AOR | CI | p-Value | AOR | CI | p-Value | |
1 | 1.62 | (1.07–2.50) | 0.02 | 2.64 | (1.48–4.71) | 0.001 |
2 | 1.09 | (0.72–1.63) | 0.69 | 1.01 | (0.60–1.69) | 0.98 |
3 | 1.02 | (0.68–1.54) | 0.93 | 0.87 | (0.51–1.47) | 0.59 |
4 | 1.27 | (0.85–1.90) | 0.25 | 0.93 | (0.55–1.58) | 0.78 |
5 | 0.92 | (0.62–1.36) | 0.66 | 0.82 | (0.48–1.39) | 0.46 |
6 | 0.95 | (0.65–1.39) | 0.77 | 0.74 | (0.42–1.30) | 0.29 |
7 | 0.83 | (0.57–1.21) | 0.33 | 0.83 | (0.49–1.42) | 0.50 |
8 | 1.22 | (0.83–1.79) | 0.31 | 1.16 | (0.66–2.03) | 0.61 |
9 | 1.03 | (0.70–1.52) | 0.88 | 1.25 | (0.73–2.12) | 0.42 |
Cohort | Teplice | Prachatice |
---|---|---|
2nd grade | 26.6 | 12.9 |
4th grade | 27.3 | 13.0 |
7th grade | 25.6 | 13.1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sram, R.J. Impact of Air Pollution on the Health of the Population in Parts of the Czech Republic. Int. J. Environ. Res. Public Health 2020, 17, 6454. https://doi.org/10.3390/ijerph17186454
Sram RJ. Impact of Air Pollution on the Health of the Population in Parts of the Czech Republic. International Journal of Environmental Research and Public Health. 2020; 17(18):6454. https://doi.org/10.3390/ijerph17186454
Chicago/Turabian StyleSram, Radim J. 2020. "Impact of Air Pollution on the Health of the Population in Parts of the Czech Republic" International Journal of Environmental Research and Public Health 17, no. 18: 6454. https://doi.org/10.3390/ijerph17186454