The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Correction of the Thermophysical Properties of Clothing
2.1.1. Correction of Thermal Insulation
2.1.2. Correction of Evaporative Resistance
2.1.3. Predicted Dynamic Clothing Insulation and Evaporative Resistance
2.2. Exposure Assessment of the PHS Model
2.3. Statistical Analysis
3. Results
3.1. Predicted Dynamic Thermophysical Properties of Clothing
3.1.1. Clothing Dynamic Thermal Insulation
3.1.2. Clothing Dynamic Evaporative Resistance
3.2. Predicted Heat Strain
3.2.1. Rectal Temperature
3.2.2. Water Loss
3.2.3. Maximum Allowable Exposure Time
4. Discussion
4.1. Dynamic Thermophysical Properties of Clothing
4.2. Heat Strain Predicted by the PHS Model
5. Conclusions
- (1)
- The clothing dynamic insulation values calculated by ISO 9920 correction formulas are larger than those obtained by ISO 7933 corrections when Icl > 0.4 clo. However, when Icl ≤ 0.4 clo, the calculation results of the dynamic clothing insulation vary contrarily.
- (2)
- The discrepancy between the dynamic clothing insulation values calculated by ISO 7933 and ISO 9920 corrections becomes large with the increase of air velocity and walking speed when Icl > 0.4 clo, but it is opposite when Icl ≤ 0.4 clo.
- (3)
- The dynamic evaporative resistance values calculated by ISO 9920 corrections are always larger than those obtained by ISO 7933 corrections.
- (4)
- The clothing dynamic insulation values calculated by the Lu’s corrections are between those obtained by ISO 7933 and ISO 9920. The rectal temperature predicted by the PHS model with Lu’s corrections is good, but the prediction accuracy of the water loss decreases.
- (5)
- According to the comparison between the different prediction values of three clothing corrections with experimental data, ISO 9920 corrections with the addition of the walking speed input parameter can be used for NC for hot environment and high clothing insulation. For the rest of the NC conditions, ISO 7933 correction formulas should still be used. For clothing SC, ISO 7933 corrections with the addition of the walking speed input parameter can improve the prediction accuracy of the PHS model. For LC, it is suggested that ISO 7933 corrections are the best for the PHS model.
Author Contributions
Funding
Conflicts of Interest
References
- Gao, C.; Kuklane, K.; Östergren, P.O.; Kjellstrom, T. Occupational heat stress assessment and protective strategies in the context of climate change. Int. J. Biometeorol. 2017, 62, 359–371. [Google Scholar] [CrossRef] [PubMed]
- ISO 7933. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress using Calculation of the Predicted Heat Strain; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- Malchaire, J.; Piette, A.; Kampmann, B.; Mehnert, P.; Gebhardt, H.; Havenith, G.; Den Hartog, E.; Holmer, I.; Parsons, K.; Alfano, G.; et al. Development and validation of the predicted heat strain model. Ann. Occup. Hyg. 2001, 45, 123–135. [Google Scholar] [CrossRef]
- Holmér, I.; Nilsson, H.O.; Havenith, G.; Parsons, K.C. Clothing convective heat exchange—Proposal for improved prediction in standards and models. Ann. Occup. Hyg. 1999, 43, 329–337. [Google Scholar] [CrossRef]
- Wang, F.; Kuklane, K.; Gao, C.; Holmér, I. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments? Physiol. Meas. 2010, 32, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, C.; Kuklane, K.; Holmér, I. Effects of various protective clothing and thermal environments on heat strain of unacclimated men: The PHS (predicted heat strain) model revisited. Ind. Health 2013, 51, 266–274. [Google Scholar] [CrossRef]
- Havenith, G.; Nilsson, H.O. Correction of clothing insulation for movement and wind effects, a meta-analysis. Eur. J. Appl. Physiol. 2005, 92, 636–640. [Google Scholar] [CrossRef]
- ISO 9920. Ergonomics of the Thermal Environment—Estimation of the Thermal Insulation and Evaporative Resistance of a Clothing Ensemble; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Alfano, F.R.D.; Palella, B.I.; Riccio, G.; Malchaire, J. On the Effect of Thermophysical Properties of Clothing on the Heat Strain Predicted by PHS Model. Ann. Occup. Hyg. 2015, 60, 231–251. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, F.; Wan, X.; Song, G.; Shi, W.; Zhang, C. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: Effects of wind and body movement on total insulation. Int. J. Biometeorol. 2015, 59, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Ronald, E. Long Performance Assessment of Predicted Heat Strain in High Heat Stress Exposures. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2011. [Google Scholar]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfano, F.R.D.; Palella, B.I.; Riccio, G. The role of measurement accuracy on the heat stress assessment according to ISO 7933: 2004. Environ. Toxicol. 2007, 11, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Psikuta, A.; Allegrini, J.; Koelblen, B.; Bogdan, A.; Annaheim, S.; Martínez, N.; Derome, D.; Carmeliet, J.; Rossi, R.M. Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research—A review. Renew. Sustain. Energy Rev. 2017, 78, 1315–1330. [Google Scholar] [CrossRef]
- Lazaro, P.; Momayez, M. Validation of the Predicted Heat Strain Model in Hot Underground Mines. Mining. Met. Explor. 2019, 36, 1213–1219. [Google Scholar] [CrossRef]
- Ueno, S.; Sawada, S.; Bernard, T.E. Modifications to predicted heat strain (PHS)(ISO 7933). In Proceedings of the 13th International Conference on Environmental Ergonomics, Boston, MA, USA, 2–7 August 2007; pp. 2–7. [Google Scholar]
- Kuklane, K.; Toma, R.; Lucas, R.A. Insulation and Evaporative Resistance of Clothing for Sugarcane Harvesters and Chemical Sprayers, and Their Application in PHS Model-Based Exposure Predictions. Int. J. Environ. Res. Public Health 2020, 17, 3074. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Li, B.; Li, Y.; Xu, M.; Yao, R. Modification of the Predicted Heat Strain (PHS) model in predicting human thermal responses for Chinese workers in hot environments. Build. Environ. 2019, 165, 106349. [Google Scholar] [CrossRef]
ISO 7933 | ISO 9920 | |
---|---|---|
Corr,tot | ||
Corr,a | ||
Ranges | 0 ≤ var ≤ 3 m/s, 0 ≤ vw ≤ 1.5 m/s | 0.15 ≤ var ≤ 3.5 m/s, 0 ≤ vw ≤ 1.2 m/s |
ISO 9920 | |
---|---|
Corr,tot | |
Ranges | 0.4 ≤ var ≤ 18 m/s, 0 ≤ vw ≤ 1.2 m/s, 1 ≤ pr ≤ 1000 L/m2s |
Approach | Algorithm | Equation | Range |
---|---|---|---|
Coefficient | ISO 7933 | 0 ≤ var ≤ 3 m/s | |
0 ≤ vw ≤ 1.5 m/s | |||
Interpolation | ISO 9920 | 0 ≤ var ≤ 3 m/s | |
0 ≤ vw ≤ 1.5 m/s | |||
Coefficient | Lu | 0.15 ≤ var ≤ 5.2 m/s | |
0 ≤ vw ≤ 1.2 m/s |
Algorithm | Equation |
---|---|
ISO 7933 | |
ISO 9920 |
Clothing Type | Icl | Rcl | imt | Ta | Pw | va | vw | Met | Time |
---|---|---|---|---|---|---|---|---|---|
(clo) | (m2·kPa/W2) | (nd) | (°C) | (kPa) | (m/s) | (m/s) | (W/m2) | (min) | |
LC | 0.48 | 0.0198 | 0.49 | 30 | 2.0 | 0.33 | 1.25 | 163 | 70 |
NC-1 | 0.63 | 0.0257 | 0.43 | 20 | 2.0 | 0.33 | 1.25 | 169 | 70 |
NC-2 | 0.63 | 0.0257 | 0.43 | 40 | 2.2 | 0.33 | 1.25 | 171 | 70 |
NC-3 | 1.08 | 0.0421 | 0.36 | 20 | 2.0 | 0.33 | 1.25 | 163 | 70 |
NC-4 | 1.08 | 0.0421 | 0.37 | 40 | 3.3 | 0.33 | 1.25 | 155 | 70 |
NC-5 | 1.11 | 0.0745 | 0.21 | 20 | 2.0 | 0.33 | 1.25 | 167 | 70 |
NC-6 | 1.11 | 0.0745 | 0.21 | 30 | 2.0 | 0.33 | 1.25 | 175 | 70 |
SC-1 | 2.01 | 0.1224 | 0.2 | 30 | 2.0 | 0.33 | 1.25 | 190 | 70 |
SC-2 | 2.01 | 0.1224 | 0.2 | 40 | 2.2 | 0.33 | 1.25 | 190 | 70 |
Time | NC-4 | SC-2 | LC | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experiment | ISO 7933 | ISO7933-vw | ISO 9920 | ISO9920-vw | Experiment | ISO 7933 | ISO7933-vw | ISO 9920 | ISO9920-vw | Experiment | ISO 7933 | ISO7933-vw | ISO 9920 | ISO9920-vw | Lu | Lu-vw | |
Dlimtre 1 | 50 | 40 | 70 | 35 | 52 | 45 | 25 | 37 | 23 | 24 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
Dlimloss95 2 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
Maximum time | 50 | 40 | 70 | 35 | 52 | 45 | 25 | 37 | 23 | 24 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Li, J. The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model. Int. J. Environ. Res. Public Health 2020, 17, 6475. https://doi.org/10.3390/ijerph17186475
Huang Q, Li J. The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model. International Journal of Environmental Research and Public Health. 2020; 17(18):6475. https://doi.org/10.3390/ijerph17186475
Chicago/Turabian StyleHuang, Qianqian, and Jun Li. 2020. "The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model" International Journal of Environmental Research and Public Health 17, no. 18: 6475. https://doi.org/10.3390/ijerph17186475
APA StyleHuang, Q., & Li, J. (2020). The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model. International Journal of Environmental Research and Public Health, 17(18), 6475. https://doi.org/10.3390/ijerph17186475