Impact of Short Foot Muscle Exercises on Quality of Movement and Flexibility in Amateur Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Procedures
2.3. Research Tools
- (1)
- Deep squat;
- (2)
- Hurdle step;
- (3)
- In-line lunge;
- (4)
- Shoulder mobility;
- (5)
- Active straight leg raise;
- (6)
- Trunk stability push-up;
- (7)
- Rotary stability.
- (1)
- the rectus femoris muscle was tested in prone position with maximal knee joint flexion; the distance between the lateral malleolus and the table was measured;
- (2)
- the iliopsoas muscle was evaluated using the Thomas test; the distance between the midpoint on the patella lateral edge and the table was measured;
- (3)
- the tensor fasciae latae muscle was assessed in side-lying position with maximal extension, external rotation, and adduction of the hip joint; the distance between the lateral malleolus and the table was measured;
- (4)
- the piriformis muscles (external rotation muscles) were tested in the prone position with maximal internal rotation of the hip joints, and the knee flexed to 90°, the distance between the right and left medial malleoli was measured;
- (5)
- the adductor muscles were evaluated in the supine position with maximal hip adduction and knee extension; the distance between the right and left femoral medial epicondyles was measured;
- (6)
- the quadratus lumborum muscle was assessed in standing position; the displacement in hand finger position between standing relaxed position and maximal side trunk flexion was measured.
2.4. Statistical Analysis
3. Results
3.1. Functional Movement Screen Test
3.2. Functional Tests of Major Muscle Groups
4. Discussion
4.1. Myofascial System
4.2. The Plantar Foot as an Element of the Sensorimotor System
4.3. Muscle Flexibility and Movement Patterns
4.4. Short Foot Muscles
4.5. Study Limitation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cook, G.; Burton, L.; Hogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 1. Int. J. Sports Phys. Ther. 2006, 1, 62–72. [Google Scholar]
- Cook, G.; Burton, L.; Hogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 2. N. Am. J. Sports Phys. Ther. 2006, 1, 132–139. [Google Scholar] [PubMed]
- Mokha, G.M.; Sprague, P.; Rodriguez, R.; Gatens, D.R. Functional movement pattern training improves mechanics in a female runner with external snapping hip syndrome. Int. J. Athl. Ther. Train. 2015, 20, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Harradine, P.; Bevan, L.; Carter, N. An overview of podiatric biomechanics theory and its relation to selected gait dysfunction. Physiotherapy 2006, 92, 122–127. [Google Scholar] [CrossRef]
- Ferber, R.; Hreljac, A.; Kendall, K.D. Suspected mechanisms in the cause of overuse running injuries: A clinical review. Sports Health 2009, 1, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Hintermann, B.; Nigg, B.M. Pronation in Runners: Implications for Injuries. Sports Med. 1998, 26, 169–176. [Google Scholar] [CrossRef]
- Fiolkowski, P.; Brunt, D.; Bishop, M.; Woo, R.; Horodyski, M. Intrinsic pedal musculature support of the medial longitudinal arch: An electromyography study. J. Foot Ankle Surg. 2003, 42, 327–333. [Google Scholar] [CrossRef]
- Abe, T.; Tayashiki, K.; Nakatani, M.; Watanabe, H. Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults. J. Phys. Ther. Sci. 2016, 28, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Thiebaud, R.S.; Loenneke, J.P.; Mitsukawa, N. Association between toe grasping strength and accelerometer-determined physical activity in middle-aged and older women. J. Phys. Ther. Sci. 2015, 27, 1893–1897. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Sakuraba, K. Strength training for the intrinsic flexor muscles of the foot: Effects on muscle strength, the foot arch, and dynamic parameters before and after the training. J. Phys. Ther. Sci. 2014, 26, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Sulowska, I.; Oleksy, Ł.; Mika, A.; Bylina, D.; Sołtan, J. The influence of plantar short foot muscle exercises on foot posture and fundamental movement patterns in long-distance runners, a non-randomized, non-blinded clinical trial. PLoS ONE 2016, 11, e0157917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harty, J.; Soffe, K.; O’Toole, G.; Stephens, M.M. The role of hamstring tightness in plantar fasciitis. Foot Ankle Int. 2005, 26, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Irving, D.B.; Cook, J.L.; Menz, H.B. Factors associated with chronic plantar heel pain: A systematic review. J. Sci. Med. Sport 2006, 9, 11–22. [Google Scholar] [CrossRef]
- Bolívar, Y.A.; Munuera, P.V.; Padillo, J.P. Relationship between tightness of the posterior muscles of the lower limb and plantar fasciitis. Foot Ankle Int. 2013, 34, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; DiGiovanni, B. Association between plantar fasciitis and isolated contracture of the gastrocnemius. Foot Ankle Int. 2011, 32, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Myers, T. Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists; Churchill Livingstone Elsevier: London, UK, 2014. [Google Scholar]
- Ostiak, W.; Kaczmarek-Maciejewska, M.; Kasprzak, P. Foot and shin in terms of Anatomy Trains. J. Orthop Trauma Surg. Relat. Res. 2011, 5, 38–46. [Google Scholar]
- Schleip, R. Fascial plasticity—A new neurobiological explanation: Part I. J. Bodyw. Mov. Ther. 2003, 7, 11–19. [Google Scholar] [CrossRef]
- McKeon, P.O.; Wikstrom, E.A. Sensory-targeted ankle rehabilitation strategies for chronic ankle instability. Med. Sci. Sports Exerc. 2016, 48, 776–784. [Google Scholar] [CrossRef] [Green Version]
- LeClaire, J.E.; Wikstrom, E.A. Massage for postural control in individuals with chronic ankle instability. Athl. Train Sports Health Care 2012, 4, 213–219. [Google Scholar] [CrossRef]
- McKeon, P.O.; Stein, A.J.; Ingersoll, C.D.; Hertel, J. Altered plantar-receptor stimulation impairs postural control in those with chronic ankle instability. J. Sport Rehabil. 2012, 21, 1–6. [Google Scholar] [CrossRef]
- McKeon, P.O.; Booi, M.J.; Branam, B.; Johnson, D.L.; Mattacola, C.G. Lateral ankle ligament anesthesia significantly alters single limb postural control. Gait Posture 2010, 32, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Grieve, R.; Goodwin, F.; Alfaki, M.; Bourton, A.J.; Jeffries, C.; Scott, H. The immediate effect of bilateral self myofascial release on the plantar surface of the feet on hamstring and lumbar spine flexibility: A pilot randomised controlled trial. J. Bodyw. Mov. Ther. 2015, 19, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Grabow, L.; Young, J.D.; Byrne, J.M.; Granacher, U.; Behm, D.G. Unilateral rolling of the foot did not affect non-local range of motion or balance. J. Sports Sci. Med. 2017, 16, 209–218. [Google Scholar]
- Goldmann, J.P.; Sanno, M.; Willwacher, S.; Heinrich, K.; Brüggemann, G.P. The potential of toe flexor muscles to enhance performance. J. Sports Sci. 2013, 31, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Grieve, R.; Cranston, A.; Henderson, A.; John, R.; Malone, G.; Mayall, C. The immediate effect of triceps surae myofascial trigger point therapy on restricted active ankle joint dorsiflexion in recreational runners: A crossover randomised controlled trial. J. Bodyw. Mov. Ther. 2013, 17, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Roylance, D.S.; George, J.D.; Hammer, A.M.; Rencher, N.; Gellingham, G.W.; Hager, R.L.; Myrer, W.J. Evaluating acute changes in joint range-of-motion using self-myofascial release, postural alignment exercises, and static stretches. Int. J. Exerc. Sci. 2013, 6, 310–319. [Google Scholar]
- Sullivan, K.M.; Silvey, D.B.; Button, D.C.; Behm, D.G. Roller-massage application to the hamstrings increases sit-and reach range of motion within five to ten seconds without performance impairments. Int. J. Sports Phys. Ther. 2013, 8, 228–236. [Google Scholar]
- Elphinston, J. Stability, Sport and Performance Movement: Great Technique without Injury; Lotus Publishing: Chichester, UK, 2008. [Google Scholar]
- Jones, A.M. Running economy is negatively related to sit-and-reach test performance in international-standard distance runners. Int. J. Sports Med. 2002, 23, 40–43. [Google Scholar] [CrossRef]
- Nikolaidis, P.P.; Rosemann, T.; Knechtle, B. Force-velocity characteristics, muscle strength, and flexibility in female recreational marathon runners. Front. Physiol. 2018, 9, 1563. [Google Scholar] [CrossRef]
- Chen, C.H.; Nosaka, K.; Chen, H.L.; Lin, M.J.; Tseng, K.W.; Chen, T.C. Effects of flexibility training on eccentric exercise-induced muscle damage. Med. Sci. Sports Exerc. 2011, 43, 491–500. [Google Scholar] [CrossRef]
- Del Coso, J.; Moreno, V.; Gutiérrez-Hellín, J.; Baltazar-Martins, G.; Ruíz-Moreno, C.; Aguilar-Navarro, M.; Lara, B.; Lucía, A. ACTN3 R577X genotype and exercise phenotypes in recreational marathon runners. Genes 2019, 10, 413. [Google Scholar] [CrossRef] [Green Version]
- Fredericson, M.; Moore, T. Muscular balance, core stability, and injury prevention for middle- and long-distance runners. Phys. Med. Rehabil. Clin. N. Am. 2005, 16, 669–689. [Google Scholar] [CrossRef]
- Andersen, J.J. The State of Running 2019. Available online: https://racemedicine.org/the-state-of-running-2019 (accessed on 15 April 2020).
- Liebenson, C. Rehabilitation of the Spine: A Practitioner’s Manual; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Page, P.; Frank, C.C.; Lardner, R. Structural and Functional Approaches to Muscle Imbalances: Assessment and Treatment of Muscle Imbalance: The Janda Approach; Human Kinetics: Champaign, IL, USA, 2010. [Google Scholar]
- Smith, C.A.; Chimera, N.J.; Wright, N.J.; Warren, M. Interrater and intrarater reliability of the functional movement screen. J. Strength Cond. Res. 2013, 27, 982–987. [Google Scholar] [CrossRef] [Green Version]
- Chaitow, L. Muscle Energy Techniques; Elsevier Health Sciences: London, UK, 2013. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Sulowska, I.; Mika, A.; Oleksy, Ł.; Stolarczyk, A. The influence of plantar short foot muscle exercises on the lower extremity muscle strength and power in proximal segments of the kinematic chain in long-distance runners. BioMed Res. Int. 2019. [Google Scholar] [CrossRef]
- MacDonald, G.Z.; Penney, M.D.; Mullaley, M.E.; Cuconato, A.L.; Drake, C.D.; Behm, D.G.; Button, D.C. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J. Strength Cond. Res. 2013, 27, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Halperin, I.; Aboodarda, S.J.; Button, D.C.; Andersen, L.L.; Behm, D.G. Roller massager improves range of motion of plantar flexor muscles without subsequent decreases in force parameters. Int. J. Sports Phys. Ther. 2014, 9, 92–102. [Google Scholar]
- Hyong, I.; Kang, J. The immediate effects of passive hamstring stretching exercises on the cervical spine range of motion and balance. J. Phys. Ther. Sci. 2013, 25, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Wikstrom, E.A.; Song, K.; Lea, A.; Brown, N. Comparative effectiveness of plantar-massage techniques on postural control in those with chronic ankle instability. J. Athl. Train 2017, 52, 629–635. [Google Scholar] [CrossRef]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, Part II: The role of proprioception in motor control and functional joint stability. J. Athl. Train 2002, 37, 80–84. [Google Scholar]
- Gordon, R.; Bloxham, S. A systematic review of the effects of exercise and physical activity on non-specific chronic low back pain. Healthcare 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group 1 (n = 48) Mean ± SD | Group 2 (n = 32) Mean ± SD | |
---|---|---|
Age | 32.48 ± 6.81 | 33.41 ± 7.76 |
Males | 31 | 26 |
Females | 17 | 6 |
High [cm] | 174.94 ± 8.73 | 177.69 ± 7.89 |
Body mass [kg] | 69.81 ± 9.68 | 71.00 ± 10.55 |
Total distance covered per week [km] | 42.19 ± 18.54 | 48.13 ± 17.67 |
Outcome Measure | Group 1 Me ± IQR/2 (SEM) | pa | ES a | Group 2 Me ± IQR/2 (SEM) | pa | ES a | pb | ES b | |
---|---|---|---|---|---|---|---|---|---|
Deep Squat | B | 2 ± 0.5 (0.06) | 0.005 | 0.289 | 2 ± 0.5 (0.09) | 0.317 | 0.125 | 0.514 | 0.073 |
6W | 2 ± 0.5 (0.07) | 2 ± 0.5 (0.09) | 0.294 | 0.117 | |||||
Hurdle Step R | B | 2 ± 0.5 (0.07) | 0.0001 | 0.354 | 2 ± 0.5 (0.08) | 1.000 | 0.000 | 0.113 | 0.177 |
6W | 3 ± 0.5 (0.06) | 2 ± 0.5 (0.08) | 0.0001 | 0.417 | |||||
Hurdle Step L | B | 3 ± 0.5 (0.07) | 0.002 | 0.311 | 2 ± 0 (0.07) | 0.096 | 0.208 | 0.003 | 0.333 |
6W | 3 ± 0.25 (0.06) | 2 ± 0.5 (0.06) | 0.0001 | 0.402 | |||||
In-line Lunge R | B | 2.5 ± 0.5(0.07) | 0.0001 | 0.456 | 2 ± 0 (0.07) | 1.000 | 0.000 | 0.019 | 0.262 |
6W | 3 ± 0 (0.04) | 2 ± 0.25 (0.08) | 0.0001 | 0.655 | |||||
In-line Lunge L | B | 2 ± 0.5 (0.07) | 0.001 | 0.351 | 2 ± 0 (0.08) | 0.096 | 0.208 | 0.004 | 0.319 |
6W | 3 ± 0 (0.05) | 2 ± 0.5 (0.08) | 0.0001 | 0.505 | |||||
Shoulder Mobility R | B | 3 ± 0 (0.05) | 0.102 | 0.167 | 3 ± 0 (0.06) | 0.317 | 0.125 | 0.896 | 0.015 |
6W | 3 ± 0 (0.02) | 3 ± 0 (0.04) | 0.340 | 0.107 | |||||
Shoulder Mobility L | B | 3 ± 0 (0.06) | 0.008 | 0.270 | 3 ± 0 (0.06) | 1.000 | 0.000 | 0.408 | 0.093 |
6W | 3 ± 0 (0.04) | 3 ± 0 (0.06) | 0.493 | 0.077 | |||||
ASLR R | B | 3 ± 0.5 (0.06) | 0.002 | 0.311 | 2.5 ± 0.5 (0.10) | 0.005 | 0.354 | 0.167 | 0.155 |
6W | 3 ± 0 (0.04) | 3 ± 0.5 (0.08) | 0.081 | 0.195 | |||||
ASLR L | B | 3 ± 0.5 (0.06) | 0.008 | 0.273 | 3 ± 0.5 (0.10) | 0.020 | 0.292 | 0.266 | 0.124 |
6W | 3 ± 0 (0.05) | 3 ± 0.5 (0.08) | 0.140 | 0.165 | |||||
TSPU | B | 2 ± 0.5 (0.11) | 0.071 | 0.184 | 2 ± 1 (0.16) | 0.083 | 0.217 | 0.181 | 0.150 |
6W | 3 ± 0.75 (0.12) | 2 ± 1 (0.16) | 0.118 | 0.175 | |||||
Rotary stability R | B | 2 ± 0 (0.05) | 0.0001 | 0.357 | 2 ± 0 (0.0) | 1.000 | 0.000 | 0.109 | 0.179 |
6W | 2 ± 0.5 (0.07) | 2 ± 0 (0.0) | 0.0001 | 0.453 | |||||
Rotary stability L | B | 2 ± 0 (0.05) | 0.005 | 0.290 | 2 ± 0 (0.0) | 1.000 | 0.000 | 0.055 | 0.251 |
6W | 2 ± 0.5 (0.07) | 2 ± 0 (0.0) | 0.0001 | 0.437 | |||||
Composite score | B | 17 ± 1.5 (0.23) | 0.0001 | 0.522 | 16 ± 1.5 (0.31) | 0.027 | 0.277 | 0.019 | 0.262 |
6W | 18 ± 1.5 (0.24) | 16 ± 1.25 (0.31) | 0.0001 | 0.486 |
Outcome Measure | Group 1 Mean ± SD (SEM) | pa | ES a | Group 2 Mean ± SD (SEM) | pa | ESa | pb | ES b | |
---|---|---|---|---|---|---|---|---|---|
Piriformis (external rotation muscles) [cm] | B | 60.3 ± 0.4 (1.50) | 0.005 | 0.391 | 60.1 ± 9.0 (1.60) | 0.001 | 0.647 | 0.947 | 0.008 |
6W | 62.4 ± 10.3 (1.49) | 58.0 ± 8.5 (1.51) | 0.060 | 0.236 | |||||
Iliopsoas L [cm] | B | 9.3 ± 5.4 (0.78) | 0.0001 | 0.608 | 6.5 ± 4.0 (0.70) | 0.217 | 0.221 | 0.070 | 0.289 |
6W | 6.5 ± 4.8 (0.69) | 7.0 ± 3.9 (0.70) | 0.653 | 0.052 | |||||
Iliopsoas R [cm] | B | 8.9 ± 5.1 (0.73) | 0.0001 | 0.486 | 6.2 ± 3.5 (0.62) | 0.275 | 0.196 | 0.007 | 0.299 |
6W | 6.7 ± 4.7 (0.68) | 6.7 ± 3.6 (0.64) | 0.974 | 0.004 | |||||
Tensor fasciae latae L [cm] | B | 15.8 ± 7.0 (1.01) | 0.0001 | 0.743 | 18.3 ± 9.1 (1.61) | 0.149 | 0.257 | 0.202 | 0.172 |
6W | 20.8 ± 7.0 (1.02) | 17.2 ± 6.5 (1.15) | 0.061 | 0.272 | |||||
Tensor fasciae latae R [cm | B | 16.7 ± 6.8 (0.98) | 0.0001 | 0.730 | 18.5 ± 9.0 (1.60) | 0.488 | 0.125 | 0.338 | 0.131 |
6W | 22.2 ± 6.3 (0.91) | 18.1 ± 6.7 (1.20) | 0.080 | 0.327 | |||||
Rectus femoris L [cm] | B | 24.9 ± 4.0 (0.58) | 0.0001 | 0.563 | 27.2 ± 3.4 (0.61) | 0.290 | 0.190 | 0.009 | 0.299 |
6W | 23.5 ± 3.4 (0.50) | 27.5 ± 3.2 (0.51) | 0.0001 | 0.535 | |||||
Rectus femoris R [cm] | B | 24.7 ± 3.8 (0.54) | 0.0001 | 0.519 | 27.1 ± 3.5 (0.59) | 0.110 | 0.338 | 0.005 | 0.323 |
6W | 23.6 ± 3.4 (0.50) | 27.6 ± 3.3 (0.60) | 0.0001 | 0.525 | |||||
Adductor muscles [cm] | B | 65.1 ± 7.1 (1.03) | 0.0001 | 0.488 | 72.2 ± 13.1 (2.32) | 0.056 | 0.350 | 0.008 | 0.390 |
6W | 67.3 ± 7.1 (1.03) | 70.5 ± 10.5 (1.85) | 0.139 | 0.208 | |||||
Quadratus lumborum L [cm] | B | 21.8 ± 3.5 (0.50) | 0.002 | 0.427 | 19.0 ± 3.5 (0.62) | 0.909 | 0.021 | 0.001 | 0.384 |
6W | 23.1 ± 3.8 (0.54) | 19.0 ± 3.2 (0.56) | 0.0001 | 0.512 | |||||
Quadratus lumborum R [cm] | B | 22.8 ± 3.4 (0.49) | 0.003 | 0.409 | 19.3 ± 3.6 (0.63) | 1.000 | 0.000 | 0.0001 | 0.411 |
6W | 23.4 ± 3.1 (0.46) | 19.3 ± 3.3 (0.59) | 0.0001 | 0.559 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulowska-Daszyk, I.; Mika, A.; Oleksy, Ł. Impact of Short Foot Muscle Exercises on Quality of Movement and Flexibility in Amateur Runners. Int. J. Environ. Res. Public Health 2020, 17, 6534. https://doi.org/10.3390/ijerph17186534
Sulowska-Daszyk I, Mika A, Oleksy Ł. Impact of Short Foot Muscle Exercises on Quality of Movement and Flexibility in Amateur Runners. International Journal of Environmental Research and Public Health. 2020; 17(18):6534. https://doi.org/10.3390/ijerph17186534
Chicago/Turabian StyleSulowska-Daszyk, Iwona, Anna Mika, and Łukasz Oleksy. 2020. "Impact of Short Foot Muscle Exercises on Quality of Movement and Flexibility in Amateur Runners" International Journal of Environmental Research and Public Health 17, no. 18: 6534. https://doi.org/10.3390/ijerph17186534
APA StyleSulowska-Daszyk, I., Mika, A., & Oleksy, Ł. (2020). Impact of Short Foot Muscle Exercises on Quality of Movement and Flexibility in Amateur Runners. International Journal of Environmental Research and Public Health, 17(18), 6534. https://doi.org/10.3390/ijerph17186534