Effective Doses of Ionizing Radiation during Therapeutic Peat Mud Treatment from a Deposit in the Knyszyn Forest (Northeastern Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposit Location and Characteristics
2.2. Samples
2.3. Measurement Method
2.4. Method for Estimating Dose
- A—Surface activity in Bq cm−2,
- T—exposure time in hours,
- β—conversion ratio Sv h−1 to Bq cm−2 [21].
- H—equivalent dose,
- w—skin weighting factor 0.01,
- s—fraction of the surface of immersed skin.
3. Results
Skin Dose and Effective Dose Calculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Stevenson, F.J. Soil Organic Matter Interactions with Trace Elements; Martimus Nijhof: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Schnitzer, M. Humic Substances: Chemistry and reactions. Dev. Soil Sci. 1978, 8, 1–64. [Google Scholar]
- Senesi, N. Metal-humic substance complexes in the environment. In Molecular and Mechanistic Aspects by Multiple Spectroscopic Approach; Levis: Boca Raton, FL, USA, 1992. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reaction; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Nero, A.V.; Schweher, M.B.; Nazaroff, W.W.; Revzan, K.L. Distribution of Airborne Radon-222 Concentrations in USA Homes. Science 1986, 234, 992–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaccini, R.; Piccolo, A.; Haberhauer, G.; Stemmer, M.; Gerzabek, M.H. Decomposition of maize straw in different European soils as revealed by DRIFT spectra of soil particle fractions. Geoderma 2001, 99, 245–260. [Google Scholar] [CrossRef]
- Kononova, M.M. Soil organic matter. In Its Nature, Its Role in Soil Formation and Soil Fertility; Pergamon Press: Oxford, UK, 1961. [Google Scholar]
- Pena-Mendez, E.M.; Havel, J.; Patocka, J. Humic substances-compounds of still unknown structure: Application in agriculture, industry, environment and biomedicine. J. Appl. Biomed. 2005, 3, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Schulten, H.R.; Schnitzer, M. Chemical model structures for soil organic matter and soils. Soil Sci. 1997, 162, 115–130. [Google Scholar] [CrossRef]
- Thorn, K.A.; Goldenberg, W.S.; Youngerand, S.J.; Weber, E.J. Humic and Fulvic Acids: Isolation, Structure and Environmental Role; Gaffney, J.S., Marley, N.A., Clark, S.B., Eds.; ACS Symposium: Washington, DC, USA, 1996; p. 209. [Google Scholar]
- Borgman, I.I. Radio-Activity in Russian mud baths. Lancet 1904, 163, 1675. [Google Scholar]
- Bostan, B.; Sen, U.; Gunes, T.; Sahin, S.A.; Sen, C.; Erdem, M.; Erkormaz, U. Comparison of intra-articular hyaluronic acid injections and mud pack therapy in the treatment of knee osteoarthritis. Acta Orthop. Traumatol. Turc. 2010, 44, 42–47. [Google Scholar] [CrossRef]
- Braghetta, A.; DiGiano, F.A.; Ball, W.P. Nanofiltration of natural organic matter: pH and ionic strength effects. J. Environ. Eng. 1997, 123, 628–641. [Google Scholar] [CrossRef]
- Brown, G.K.; MacCarthy, L.J.A. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strength with fulvic acid fraction Schubert’s method. Anal. Chim. Acta 1999, 402, 169–181. [Google Scholar] [CrossRef]
- Kulikova, N.; Stepanova, E.; Koroleva, O. Mitigating activity of humic substances: Direct influence on biota. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. NATO Science Series (Series IV: Earth and Environmental Series); Perminova, I.V., Hatfield, K., Hertkorn, N., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 285–309. [Google Scholar]
- Joone, G.K.; van Rensburg, C.E. An in vitro investigation of the anti-inflammatory properties of potassium humate. Inflammation 2004, 28, 169–174. [Google Scholar] [CrossRef]
- Junek, R.; Morrow, R.; Schoenherr, J.I.; Schubert, R.; Kallmeyer, R.; Phull, S.; Klocking, R. Bimodal effect of humic acid on the LPS -induced TNF-alpha release from differentiated U937 cells. Phytomedicine 2009, 16, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Van Rensburg, C.E.; Naude, P. Potassium humate inhibits complement activation and the production of inflamaatory cytokines in vitro. Inflammation 2009, 32, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Pazdzior, S. Geological Documentation of the Therapeutic Peat Deposit; Community: Suprasl, Poland, 2013. (In Polish) [Google Scholar]
- Currie, L.A. Limits for qualitative detection and quantitative determination. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- Kocher, D.C.; Eckerman, K.F. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface. Health Phys. 1987, 53, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, K.; Mitsunobo, F.; Hanamoto, K.; Mori, S.; Tanizaki, Y.; Sugita, K. Study on biologic effects of radon and thermal therapy on osteoarthritis. J. Pain 2004, 5, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.; Reiner, L.; Pratzel, H.G.; Franke, T.; Resch, L.K. Long-term efficacy of radon spa therapy in rheumatoid arthritis-a randomized sham-controlled study and follow-up. Rheumatology 2000, 39, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.A.; Li, S.K. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain. Int. J. Pharm. 2010, 383, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Kavasi, N.; Somlai, J.G.; Kovacs, T.; Schabo, T.; Varhegyi, A.; Hakl, J. Occupational and patient doses in the therapeutic cave, Tapolca (Hungary). Radiat. Prot. Dosim. 2003, 106, 263–266. [Google Scholar] [CrossRef]
- Somlai, J.; Torma, A.; Dobrovari, P.; Kavasi, N.; Nagy, K.; Kovacs, T. Contribution of Rn-222, Ra-226, U-234 and U-238 radionuclides to the occupational and patient exposure in Heviz-spas in Hungary. J. Radioanal. Nucl. Chem. 2007, 272, 101–106. [Google Scholar] [CrossRef]
- Tempfer, H.; Hofmann, W.; Schober, A.; Lettner, H.; Dinu, A.L. Deposition of radon progeny on skin surfaces an resulting radiation doses in radon therapy. Radiat. Environ. Biophys. 2010, 49, 249–259. [Google Scholar] [CrossRef]
- Walencik-Lata, A.; Kozlowska, B.; Dorda, J.; Przylibski, T.A. The detailed analysis of natural radionuclides dissolved in spa waters of the Klodzko Valley, Sudety Mountains, Poland. Sci. Total Environ. 2016, 569–570, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Karpińska, M.; Mnich, K.; Kapała, J.; Bielawska, A.; Kulesza, G.; Mnich, S. Radioactivity of peat mud used in therapy. J. Environ. Radioact. 2016, 152, 97–100. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; International Atomic Energy Agency: Vienne, Austria, 1996. [Google Scholar]
- ICRP. Age-Dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients; Pergamon Press: Oxford, UK, 1996. [Google Scholar]
- ICRP. Recommendation of the International Commission on Radiological Protection; ICRP: Ottawa, Canada, 1991. [Google Scholar]
- ICRP. The 2007 Recommendation of the International Commission on Radiological Protection; ICRP: Ottawa, Canada, 2007. [Google Scholar]
- ICRP. Conversion Coefficient for Radiological Protection Quantities for External Radiation Exposure, Annex, G. In Special Considerations for Assessing the Local Skin-Equivalent Dose. Ann; ICRP: Ottawa, ON, Canada, 2010; pp. 247–250. [Google Scholar]
- Karpinska, M.; Mnich, Z.; Kapala, J.; Szpak, A. The evaluation of indoor radon exposure in houses. Pol. J. Environ. Stud. 2009, 18, 1005–1012. [Google Scholar]
- The Regulation of the Minister of Health. Reference Levels for Research and Treatments with the Use of Rentgen’s Radiation; Minister of Health Poland: Warsaw, Poland, 2017. (In Polish)
- Lehrer, S.; Rosenzweig, K.E. Lung Cancer hormesis in high impact states where nuclear testing occurred. Clin. Lung Cancer. 2015, 16, 152–155. [Google Scholar] [CrossRef]
- Rithidech, K.N.; Scott, B.R. Evidence for radiation hormesis after in vitro exposure of human lymphocytes to low doses of ionizing radiation. Dose Response 2008, 6, 252–271. [Google Scholar] [CrossRef] [Green Version]
- Scott, B.R. Low-dosses radiation-induced protective process and implications for risk assessment cancer prevention, and cancer therapy. Dose Response 2007, 5, 131–149. [Google Scholar] [CrossRef]
- Shi, J.; Huber, M.; Wang, T.; Dali, W.; Lin, Z.; Chun-Sheng, Y. Progress in the studies on hormesis of low- dose pollutants. Environ. Dis. 2016, 1, 58–64. [Google Scholar]
- Vaiserman, A.M. Radiation hormesis: Historical perspective and implications for low-dose cancer risk assessment. Dose Response 2010, 8, 172–191. [Google Scholar] [CrossRef]
- Yang, G.; Kong, Q.; Wang, G.; Jin, H.; Zhou, L.; Yu, D.; Niu, C.; Han, W.; Li, W.; Cui, J. Low-dose ionizing radiation induced direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother. Radiopharm. 2014, 29, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Lin, X.; Yu, L.; Li, W.; Qian, D.; Cheng, P.; He, L.; Yang, H.; Zhang, C. Low-dose radiation prevents type 1 diabetes-induced cardiomyopathy via activation of AKT mediated anti-apoptotic and anti-oxidant effects. J. Cell. Mol. Med. 2016, 20, 1352–1366. [Google Scholar] [CrossRef] [Green Version]
- Bogdandi, E.N.; Balogh, A.; Felgyinszki, N.; Szatmari, T.; Persa, E.; Hildebrandt, G.; Safrany, G.; Lumniczky, K. Effects low-dose radiation on the immune system of mice after total-body irradiation. Radiat. Res. 2010, 174, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Ina, Y.; Sakai, K. Activation of immunological network by chronic low-dose irradiation in wild-type mouse strains: Analysis of immune cell populations and surface molecules. Int. J. Radiat. Biol. 2005, 81, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.D.; Ma, S.M.; Liu, S.Z. Effects of 0,075 Gy x-ray irradiation on the expression of IL-10 and IL-12 in mice. Phys. Med. Biol. 2003, 48, 2041–2049. [Google Scholar] [CrossRef] [PubMed]
- Nowosielska, E.M.; Cheda, A.; Wrembel-Wargocka, J.; Janiak, M.K. Anti-neoplastic and immunostimulatory effects of low dose X-ray fractions in mice. Int. J. Radiat. Biol. 2011, 87, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Shankar, B.S.; Sharma, D.; Sainis, K.B. Low dose radiation induced immunomodulation: Effect on macrophages and CD8+ T cells. Int. J. Radiat. Biol. 2005, 81, 801–812. [Google Scholar] [CrossRef]
- Sakai, K.; Nomura, T.; Ina, Y. Enhancement of Bio-Protective Function by Low Dose/Dose-Rate Radiation. Dose Response 2006, 4, 327–332. [Google Scholar] [CrossRef]
- Shankar, B.; Sainis, K.B. Cell cycle regulators modulating con A mitogenesis and apoptosis in low dose radiation-exposed mice. J. Environ. Pathol. Toxicol. Oncol. 2005, 24, 33–43. [Google Scholar] [CrossRef]
Radionuclide | M | AM | GM | SD | LLD |
---|---|---|---|---|---|
Bq kg−1 | |||||
40K | 14 | 24 | 15 | 47 | 0.6–1.1 |
137Cs | 4 | 7 | 4 | 6 | 0.02–0.11 |
208Tl | 1 | 1 | 1 | 1 | 0.03–0.1 |
210Pb | 28 | 33 | 28 | 17 | 0.46–1.1 |
212Bi | 3 | 3 | 3 | 3 | 0.07–0.11 |
212Pb | 2 | 2 | 2 | 2 | 0.05–0.12 |
214Bi | 10 | 11 | 10 | 7 | 0.06–0.15 |
214Pb | 10 | 11 | 10 | 5 | 0.07–0.3 |
226Ra | 50 | 53 | 52 | 13 | 0,38–1.56 |
228Ac | 2 | 2 | 2 | 2 | 0.09–0.21 |
234Th | 40 | 47 | 41 | 25 | 0.61–1.99 |
Radionuclide | H | E (β) | E (γ) |
---|---|---|---|
[nSv] | |||
40K | 891.5 | 8.5 | 41.4 |
137Cs | 40.2 | 0.4 | 1.3 |
208Tl | 87.9 | 0.8 | 1.7 |
210Pb | 0 | 0 | 0.2 |
212Bi | 80.7 | 0.8 | 1.4 |
212Pb | 16.5 | 0.2 | 0.3 |
214Bi | 502.4 | 4.8 | 10 |
214Pb | 77.4 | 0.7 | 2 |
226Ra | 0 | 0 | 1.4 |
228Ac | 98.4 | 0.9 | 1.4 |
234Th | 12.3 | 0.2 | 0 |
Sum | 1807.3 | 17.2 | 61.1 |
Radionuclide | H | E (β) | E (γ) |
---|---|---|---|
[nSv] | |||
40K | 178.3 | 16.9 | 82.9 |
137Cs | 78.8 | 0.75 | 2.5 |
208Tl | 158.1 | 1.5 | 2.9 |
210Pb | 0 | 0 | 0.3 |
212Bi | 152.8 | 1.5 | 2.6 |
212Pb | 30.9 | 0.3 | 0.5 |
214Bi | 945.2 | 9 | 18.9 |
214Pb | 141.4 | 1.3 | 3.7 |
226Ra | 0 | 0 | 2.8 |
228Ac | 189.6 | 1.8 | 2.7 |
234Th | 23.9 | 0.2 | 0 |
Sum | 1899 | 33.3 | 119.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapala, J.; Karpinska, M.; Mnich, S. Effective Doses of Ionizing Radiation during Therapeutic Peat Mud Treatment from a Deposit in the Knyszyn Forest (Northeastern Poland). Int. J. Environ. Res. Public Health 2020, 17, 6819. https://doi.org/10.3390/ijerph17186819
Kapala J, Karpinska M, Mnich S. Effective Doses of Ionizing Radiation during Therapeutic Peat Mud Treatment from a Deposit in the Knyszyn Forest (Northeastern Poland). International Journal of Environmental Research and Public Health. 2020; 17(18):6819. https://doi.org/10.3390/ijerph17186819
Chicago/Turabian StyleKapala, Jacek, Maria Karpinska, and Stanislaw Mnich. 2020. "Effective Doses of Ionizing Radiation during Therapeutic Peat Mud Treatment from a Deposit in the Knyszyn Forest (Northeastern Poland)" International Journal of Environmental Research and Public Health 17, no. 18: 6819. https://doi.org/10.3390/ijerph17186819
APA StyleKapala, J., Karpinska, M., & Mnich, S. (2020). Effective Doses of Ionizing Radiation during Therapeutic Peat Mud Treatment from a Deposit in the Knyszyn Forest (Northeastern Poland). International Journal of Environmental Research and Public Health, 17(18), 6819. https://doi.org/10.3390/ijerph17186819