Top-Down and Bottom-Up Approaches to Environmental Governance in China: Evidence from the River Chief System (RCS)
Abstract
:1. Introduction
2. Institutional Background and Theoretical Framework
2.1. Institutional Background of China’s Environmental Governance
“The implementation and enforcement of environmental mandates at the local level is partly hindered by the fragmented and ambiguous allocation of environmental responsibilities. Usually, numerous government agencies are responsible for the implementation of a single environmental issue but sometimes without a clear division of labor, which in practice ultimately leads to a lack of accountability (Ran, 2013). For example, more than five departments have a role to play in energy efficiency implementation at subnational levels: the local Development and Reform Commission (DRC), the Economic Commission, the Construction Department, the Transportation Department, and the Environmental Protection Bureau (EPB).”
2.2. A Theoretical Account of the Influence of the RCS on the Abatement of Water Pollution
3. Research Hypotheses
4. Model Settings, Data Sources, and Variable Descriptions
4.1. Model Settings and Variable Descriptions
4.2. Data Sources
5. Empirical Findings
5.1. Effects of the RCS on Water Pollution Governance
5.2. Trade-Off between Economic Growth Maintenance and Environmental Betterment
5.3. Policy Coordination Across Jurisdictions
5.4. Effect of RCS on Regional Innovation
6. Robustness Checks
6.1. Parallel Trend Test: Counterfactual Method
6.2. Reexamination of the Results Using Data from the State-Controlled Monitoring Sites for Water Quality
6.3. Reaffirming the Main Results Using the Synthetic Control Method
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Wastewater Discharge per Unit of GDP (Natural Log) | ||
---|---|---|
(1) | (2) | |
Baidu Index | −0.049 *** (0.013) | −0.037 * (0.020) |
GDP | −1.055 *** (0.159) | |
Population | −0.091 (0.275) | |
GDP_2 | −0.224 (0.246) | |
IA | 0.297 *** (0.044) | |
Constant | −6.120 *** (0.292) | 12.873 *** (2.350) |
Time Effect | YES | YES |
City Effect | YES | YES |
Sample Size | 1211 | 1211 |
R-Squared | 0.854 | 0.879 |
References
- Gao, N.; Liang, P.H. Fresh cadres bring fresh air? Personnel turnover, institutions, and china’s water pollutions. Rev. Dev. Econ. 2016, 20, 48–61. [Google Scholar] [CrossRef]
- World Bank. Cost of Pollution in China: Economic Estimates of Physical Damages; World Bank: Washington, DC, USA, 2007; pp. 1–151. [Google Scholar]
- Cai, H.B.; Chen, Y.Y.; Gong, Q. Polluting thy neighbor: Unintended consequences of China’s pollution reduction mandates. J. Environ. Econ. Manag. 2016, 76, 86–104. [Google Scholar] [CrossRef]
- Ebenstein, A. The consequences of industrialization: Evidence from water pollution and digestive cancers in China. Rev. Econ. Stat. 2012, 94, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Kahn, M.E.; Sun, W.; Luo, D. Incentivizing China’s urban mayors to mitigate pollution externalities: The role of the central government and public environmentalism. Reg. Sci. Urban Econ. 2014, 47, 61–71. [Google Scholar] [CrossRef]
- Chien, S.S.; Hong, D.L. River leaders in china: Party-state hierarchy and transboundary governance. Political Geogr. 2018, 62, 58–67. [Google Scholar] [CrossRef]
- She, Y.Y.; Liu, Y.B.; Jiang, L.; Yuan, H. Is china’s river chief policy effective? Evidence from a quasi-natural experiment in Yangtze River economic belt, China. J. Clean. Prod. 2019, 220, 919–930. [Google Scholar] [CrossRef]
- Yi, H.; Suo, L.; Shen, R.; Zhang, J.; Ramaswami, A.; Feiock, R. Regional government and institutional collective action for environmental sustainability. Public Adm. Rev. 2018, 78, 556–566. [Google Scholar] [CrossRef]
- Fiorino, D.J. The New Environmental Regulation; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Homsy, G.C.; Liu, Z.L.; Warner, M.E. Multilevel governance: Framing the integration of top-down and bottom-up policymaking. Int. J. Public Adm. 2019, 42, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Liu, M.; Yang, D.L.; Xue, J. Of time, leadership, and governance: Elite incentives and stability maintenance in China. Governance 2018, 31, 239–257. [Google Scholar] [CrossRef]
- Ang, Y.Y. Counting cadres: A comparative view of the size of China’s public employment. China Q. 2012, 211, 676–696. [Google Scholar] [CrossRef]
- Kahn, M.E.; Li, P.; Zhao, D.X. Water pollution progress at borders: The role of changes in china’s political promotion incentives. Am. Econ. J. Econ. Policy 2015, 7, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Kostka, G.; Mol, A.P.J. Implementation and participation in China’s local environmental politics: Challenges and innovations. J. Environ. Policy Plan. 2013, 15, 3–16. [Google Scholar] [CrossRef]
- Ghanem, D.; Zhang, J.J. Effortless perfection: Do Chinese cities manipulate air pollution data? J. Environ. Econ. Manag. 2014, 68, 203–225. [Google Scholar] [CrossRef]
- Scheberle, D. Federalism and Environmental Policy: Trist and the Politics of Implementation; Georgetown University Press: Washington, DC, USA, 2004. [Google Scholar]
- Leach, M. Pathways to sustainability in the forest? Misunderstood dynamics and the negotiation of knowledge, power and policy. Environ. Plan. A 2008, 40, 1783–1795. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T. The politics of waste incineration in Beijing: The limits of a top-down approach? J. Environ. Policy Plan. 2013, 15, 109–128. [Google Scholar] [CrossRef]
- Andersson, K.; Gibson, C. Decentralized governance and environmental change: Local institutional moderation of deforestation in Bolivia. J. Policy Anal. Manag. 2006, 26, 99–123. [Google Scholar] [CrossRef]
- Newig, J.; Fritsch, O. Environmental Governance: Participatory, multi-level-and effective? Environ. Policy Gov. 2009, 19, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Oates, W.E. An essay on fiscal federalism. J. Econ. Lit. 1999, 37, 1120–1149. [Google Scholar] [CrossRef] [Green Version]
- Grey, F. Corporate lobbying for environmental protection. J. Environ. Econ. Manag. 2018, 90, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Riker, W. Federalism: Origins, Operation, Significance; Little Brown and Co.: Boston, MA, USA, 1964. [Google Scholar]
- Sjoberg, E. An empirical study of federal law versus local environmental enforcement. J. Environ. Econ. Manag. 2016, 76, 14–31. [Google Scholar] [CrossRef]
- Huang, X.; Kim, S. When top-down meets bottom-up: Local adoption of social policy reform in China. Governance 2019, 33, 1–22. [Google Scholar] [CrossRef]
- Koontz, T.M.; Newig, J. From planning to implementation: Top-down and bottom-up approaches for collaborative watershed management. Policy Stud. J. 2014, 42, 416–442. [Google Scholar] [CrossRef]
- Chan, H.S. Cadre Personnel Management in China: The Nomenklatura System, 1990–1998. China Q. 2014, 179, 703–734. [Google Scholar] [CrossRef]
- Harrison, T.; Kostka, G. Balancing priorities, aligning interests: Developing mitigation capacity in china and India. Comp. Political Stud. 2014, 47, 450–480. [Google Scholar] [CrossRef]
- Xu, C. The fundamental institutions of china’s reforms and development. J. Econ. Lit. 2011, 49, 1076–1151. [Google Scholar] [CrossRef]
- Kostka, G.; Nahm, J. Central-local relations: Recentralization and environmental governance in china. China Q. 2017, 231, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Zhou, L.A. Political turnover and economic performance: The incentive role of personal control in china. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Mol, A.P.; Carter, N.T. China’s environmental governance in transition. Environ. Politics 2006, 15, 149–170. [Google Scholar] [CrossRef]
- Liu, N.; Tang, S.; Zhan, X.; Lo, C. Political commitment, policy ambiguity and corporate environment practices. Policy Stud. J. 2018, 46, 190–214. [Google Scholar] [CrossRef]
- Ran, R. Perverse incentive structure and policy implementation gap in china’s local environmental politics. J. Environ. Policy Plan. 2013, 15, 17–39. [Google Scholar] [CrossRef]
- Tan, Y. Transparency without democracy: The unexpected effects of China’s environmental disclosure policy. Governance 2014, 27, 37–62. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, C. Four gaps in china’s new environmental law. Nature 2015, 517, 433–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Zhang, L.Y. Local environmental enforcement constrained by central-local relations in china. Environ. Policy Gov. 2014, 24, 216–232. [Google Scholar] [CrossRef]
- Van Rooij, B.; Stern, R.E.; Fürst, K. The authoritarian logic of regulatory pluralism, understanding china’s new environmental actors. Regul. Gov. 2016, 10, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, B.; Lo, C.W.H. Fragile convergence, understanding variation in the enforcement of china’s industrial pollution law. Law Policy 2010, 32, 14–37. [Google Scholar] [CrossRef]
- Thornton, P. The advance of the party: Transformation or takeover of urban grassroots society? China Q. 2013, 213, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Langbein, L. Performance management, high-powered incentives, and environmental policies in China. Int. Public Manag. J. 2015, 18, 346–385. [Google Scholar] [CrossRef]
- Eaton, S.; Kostka, G. Authoritarian environmentalism undermined? Local leaders’ time horizons and environmental policy implementation in china. China Q. 2014, 218, 359–380. [Google Scholar] [CrossRef] [Green Version]
- Tsang, S.; Kolk, A. The evolution of Chinese policies and governance structures on environment, energy and climate. Environ. Policy Gov. 2010, 20, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Lieberthal, K. Governing China: From Revolution through Reform; New York Press: New York, NY, USA, 2004. [Google Scholar]
- Kostka, G. Barriers to the Implementation of Environmental Policies at the Local Level in China; World Bank Policy Research Working Paper, No. WPS 7016; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Bhave, A.G.; Mishra, A.; Raghuwanshi, N.S. A combined bottom-up and top-down approach for assessment of climate change adaptation options. J. Hydrol. 2014, 518, 150–161. [Google Scholar] [CrossRef]
- Girard, C.; Pulido-Velazquez, M.; Rinaudo, J.D.; Pagé, C.; Caballero, Y. Integrating top–down and bottom–up approaches to design global change adaptation at the river basin scale. Glob. Environ. Chang. 2015, 34, 132–146. [Google Scholar] [CrossRef]
- Kostka, G. Command without control: The case of china’s environmental target system. Regul. Gov. 2016, 10, 58–74. [Google Scholar] [CrossRef]
- Liu, D. Advocacy channels and political resource dependence in authoritarianism: Nongovernmental organization and environmental policies in China. Governance 2020, 33, 323–342. [Google Scholar] [CrossRef]
- Dai, L.P. A new perspective on water governance in China: Captain of river. Water Int. 2015, 40, 87–99. [Google Scholar] [CrossRef]
- Kostka, G.; Zhang, C.M. Tightening the grip: Environmental governance under xi Jinping. Environ. Politics 2018, 27, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Feiock, R.; Stream, C. Environmental protection versus economic development: A false trade-off? Public Adm. Rev. 2001, 61, 313–321. [Google Scholar] [CrossRef]
- Hawkins, C.V.; Kwon, S.W.; Bae, J. Balance between local economic development and environmental sustainability: A multi-level governance perspective. Int. J. Public Adm. 2016, 39, 803–811. [Google Scholar] [CrossRef]
- Chen, T.; Kung, J.K.-S. Do land revenue windfalls create a political resource curse? Evidence from China. J. Dev. Econ. 2016, 123, 86–126. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Zhang, C. Interjurisdictional competition and intracity fiscal disparity across Chinese prefectural cities. Governance 2017, 30, 365–385. [Google Scholar] [CrossRef]
- Sigman, H. Decentralization and environmental quality: An international analysis of water pollution levels and variation. Land Econ. 2013, 90, 114–130. [Google Scholar] [CrossRef]
- Brueckner, J.K. Strategic interaction among local governments: An overview of empirical studies. Int. Reg. Sci. Rev. 2003, 26, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.D. Theories of tax competition. Natl. Tax J. 1999, 52, 269–304. [Google Scholar]
- Porter, M.E.; Linde, V. Toward a new conception of environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Millimet, D. Empirical methods for political economy analyses of environmental policy. Encycl. Energy Nat. Resour. Environ. Econ. 2013, 3, 250–260. [Google Scholar]
- Bai, C.E.; Lu, J.Y.; Tao, Z. Property rights protection and access to bank loans. Econ. Transit. 2006, 14, 611–628. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Meng, L.S.; Wang, Q.; Zhou, L.A. Political connections, financing and firm performance: Evidence from Chinese private firms. J. Dev. Econ. 2008, 87, 283–299. [Google Scholar] [CrossRef]
- Ferrara, E.L.; Chong, A.; Duryea, S. Soap operas and fertility: Evidence from Brazil. Am. Econ. Rev. 2012, 4, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jin, G.Z.; Kumar, N.; Shi, G. Gaming in air pollution data? Lessons from China. BE J. Econ. Anal. Policy 2012, 12, 1–43. [Google Scholar] [CrossRef]
- Abaiie, A.; Gardeazabal, J. The economic costs of conflict: A case study of the Basque country. Am. Econ. Rev. 2003, 93, 112–132. [Google Scholar]
- Abaiie, A.; Diamond, A.; Hainmueller, J. Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. J. Am. Stat. Assoc. 2010, 105, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, F.; Yin, H.; Zhang, B. Money talks: The environmental impact of China’s green policy. J. Policy Anal. Manag. 2019, 38, 653–680. [Google Scholar] [CrossRef]
- Teets, J. The power of policy networks in authoritarian regimes: Changing environmental policy in China. Governance 2018, 31, 125–141. [Google Scholar] [CrossRef]
- Singleton, R.A.; Straits, B.C. Approaches to Social Research, 5th ed.; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Cashore, B. Legitimacy and the privatization of environmental governance: How non-state market-driven (NSMD) governance systems gain rule-making authority. Governance 2002, 15, 503–529. [Google Scholar] [CrossRef]
- Robins, G.; Bates, L.; Pattison, P. Network governance and environmental management: Conflict and cooperation. Public Adm. 2011, 89, 1293–1313. [Google Scholar] [CrossRef]
- Eaton, S.; Kostka, G. What makes for good and bad neighbors? An emerging research agenda in the study of Chinese environmental politics. Environ. Politics 2018, 27, 782–803. [Google Scholar] [CrossRef]
Variable Name | Definition |
---|---|
Panel A: Macrolevel Data Categories—Key Environmental Protection Cities | |
River | River Chief System Implementation Status |
Wastewater Discharge | Logarithm of Industrial Wastewater Discharge per Unit of GDP |
GDP | Regional Gross Product Logarithm |
Population | Total Regional Population Logarithm |
GDP_2 | Secondary Industry Proportion Logarithm |
Industrial Agglomeration (IA) | Degree of Industrial Agglomeration Logarithm |
Investment | Proportion of Investment in Sewage Governance to Financial Expenditure |
Patent | Total Number of Patents per 10,000 People |
Invention Patent | Total Number of Invention Patents per 10,000 People |
Utility Model Patent | Total Number of Utility Model Patents per 10,000 People |
Industrial Design Patent | Total Number of Industrial Design Patents per 10,000 People |
Panel B: Data Categories Obtained from State-Controlled Monitoring Sites for Water Quality | |
Chemical Oxygen Demand (COD) | COD Content |
AD | Ammonia Nitrogen Content |
KMno4 | Potassium Permanganate Content |
Volatile Phenol | Volatile Phenol Content |
Hg | Mercury Content |
DO | Dissolved Oxygen Content |
Panel C: Data Categories Obtained from the Chinese Private Enterprise Survey | |
Penalty | Enterprise Environmental Protection Penalties Logarithm (log (Penalty+1)) |
Research and Development (R&D) | Enterprise Research and Development Input Logarithm (log (R&D+1)) |
Variable Name | Observations | Mean | Standard Deviation(s) | Minimum | Maximum |
---|---|---|---|---|---|
River | 1232 | 0.112 | 0.316 | 0 | 1 |
Wastewater Discharge (log) | 1211 | −7.598 | 0.916 | −11.517 | −4.637 |
GDP (log) | 1232 | 16.485 | 1.027 | 13.086 | 19.278 |
Population (log) | 1232 | 6.015 | 0.730 | 3.393 | 8.124 |
GDP_2 (log) | 1232 | 3.921 | 0.224 | 2.984 | 4.511 |
Industrial Agglomeration (log) | 1212 | −3.359 | 1.152 | −6.501 | 0.080 |
Investment | 863 | 0.007 | 0.010 | 0 | 0.099 |
Patent | 763 | 8.153 | 19.995 | 0.091 | 209.812 |
Invention Patent | 763 | 2.610 | 7.956 | 0.010 | 92.236 |
Utility Model Patent | 763 | 2.971 | 5.796 | 0.043 | 66.989 |
Industrial Design Patent | 763 | 2.572 | 8.328 | 0 | 115.174 |
COD | 1318 | 4.652 | 8.961 | 0.40 | 177.0 |
AD | 1271 | 2.124 | 4.903 | 0.01 | 38.70 |
KMno4 | 1322 | 5.754 | 9.913 | 0.70 | 195.4 |
Volatile phenol | 1227 | 0.005 | 0.014 | 0 | 0.203 |
Hg | 1209 | 0.040 | 0.142 | 0 | 3.080 |
DO | 1341 | 7.187 | 1.996 | 0.50 | 14.70 |
Penalty (log (penalty+1)) | 6220 | 2.737 | 4.426 | 0 | 19.114 |
R&D (log (R&D+1)) | 6132 | 1.205 | 2.130 | 0 | 10.597 |
Water Pollution Governance Investment Proportion | Enterprise Payments of Environmental Pollution Fees (Natural logarithm) | Wastewater Discharge per unit of GDP (Natural logarithm) | |
---|---|---|---|
(1) | (2) | (3) | |
River | 0.003 *** (0.001) | 1.629 *** (0.248) | −0.112 ** (0.0471) |
GDP | 0.010 ** (0.004) | −0.218 (1.943) | −1.082 *** (0.157) |
Population | −0.001 (0.0053) | −0.133 (2.596) | −0.330 (0.198) |
GDP_2 | −0.004 (0.004) | −8.038 ** (3.459) | −0.263 (0.245) |
IA | −0.0004 (0.0014) | −0.149 (0.285) | 0.296 *** (0.0438) |
Constant | −0.131 ** (0.055) | 42.519 (33.430) | 14.10 *** (2.167) |
Time Effect | YES | YES | YES |
City Effect | YES | YES | YES |
Sample Size | 863 | 6103 | 1211 |
R-Squared | 0.496 | 0.121 | 0.879 |
Waste Water Discharge per Unit of GDP (Natural Logarithm) | |||||
---|---|---|---|---|---|
Low Pressure to Maintain Growth | High Pressure to Maintain Growth | Top Quarter Cities with Highest Pressure | Full-Provincial Implementation | Unilateral Implementation | |
(1) | (2) | (3) | (4) | (5) | |
River | −0.130 ** (0.0650) | −0.119 * (0.0608) | −0.047 (0.073) | −0.166 *** (0.0530) | 0.0604 (0.0585) |
GDP | −1.224 *** (0.190) | −0.859 *** (0.232) | −0.890 *** (0.310) | −1.156 *** (0.289) | −0.985 *** (0.177) |
Population | 1.292 *** (0.333) | −1.075 *** (0.292) | 0.189 (0.568) | 9.060 *** (1.292) | −0.6178 ** (0.1896) |
GDP_2 | −0.333 (0.222) | 0.0344 (0.500) | 0.682 (0.748) | 2.409 *** (0.329) | −0.469 * (0.282) |
IA | 0.297 *** (0.0444) | 0.360 *** (0.0670) | 0.439 *** (0.097) | 0.384 *** (0.0543) | 0.302 *** (0.0485) |
Constant | 6.936 * (3.598) | 13.99 *** (3.127) | 4.856 (5.044) | −49.80 *** (7.074) | 15.877 *** (2.229) |
Time Effect | YES | YES | YES | YES | YES |
City Effect | YES | YES | YES | YES | YES |
Sample Size | 637 | 574 | 299 | 267 | 944 |
R-Squared | 0.887 | 0.878 | 0.856 | 0.885 | 0.892 |
Enterprise R&D Inputs (Natural Log) | Total Number of Patents | Total Number of Invention Patents | Total Number of Utility Model Patents | Total Number of Design Patents | |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
River | 0.374 *** (0.092) | 13.26 ** (5.945) | 3.012 ** (1.427) | 2.508 * (1.287) | 7.741 ** (3.700) |
GDP | −0.127 (0.843) | −3.708 (5.210) | −0.479 (2.219) | −3.820 ** (1.641) | 0.591 (2.320) |
Population | −0.0812 (0.7187) | 26.95 *** (8.762) | 10.56 ** (4.669) | 11.89 *** (3.159) | 4.499 ** (1.889) |
GDP_2 | −2.788 ** (1.038) | −52.83 *** (11.64) | −20.14 *** (4.678) | −14.40 *** (2.461) | −18.29 *** (6.605) |
IA | 0.142 * (0.073) | −1.975 * (1.097) | −0.508 * (0.303) | −0.649 ** (0.295) | −0.818 (0.625) |
Constant | 15.770 (12.019) | 100.3 (61.12) | 23.18 (27.56) | 47.05 ** (21.51) | 30.02 (25.57) |
Time Effect | YES | YES | YES | YES | YES |
City Effect | YES | YES | YES | YES | YES |
Sample Size | 6015 | 759 | 759 | 759 | 759 |
R-Square | 0.118 | 0.797 | 0.856 | 0.820 | 0.623 |
Waste Water Discharge per Unit of GDP (Natural Log) | |||
---|---|---|---|
One Year Prior | Two Year Prior | Three Year Prior | |
(1) | (2) | (3) | |
River | −0.0655 (0.0472) | −0.00678 (0.0472) | 0.0722 (0.0484) |
GDP | −1.077 *** (0.157) | −1.073 *** (0.158) | −1.068 *** (0.158) |
Population | −0.325 (0.197) | −0.324 * (0.196) | −0.333 * (0.195) |
GDP_2 | −0.262 (0.247) | −0.241 (0.248) | −0.197 (0.251) |
IA | 0.295 *** (0.0441) | 0.292 *** (0.0443) | 0.291 *** (0.0443) |
Constant | 13.96 *** (2.179) | 13.76 *** (2.187) | 13.50 *** (2.192) |
Time Effect | YES | YES | YES |
City Effect | YES | YES | YES |
Sample Size | 1211 | 1211 | 1211 |
R-Squared | 0.879 | 0.879 | 0.879 |
COD Content | Ammonia Nitrogen Content | Potassium Permanganate Content | Volatile Phenol Content | Mercury Content | Dissolved Oxygen Content | |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
River | −5.326 *** (1.366) | −0.678 ** (0.297) | −7.708 *** (1.358) | −0.009 *** (0.002) | −0.089 (0.056) | 1.105 *** (0.207) |
GDP | 2.822 * (1.646) | −0.830 (1.280) | −0.652 (1.574) | −0.002 (0.004) | 0.041 (0.038) | −0.268 (0.334) |
Population | 3.672 (5.364) | −0.130 (1.554) | 5.289 (3.696) | −0.002 (0.011) | −0.003 (0.171) | −0.856 (0.853) |
GDP_2 | −3.530 (2.865) | 0.251 (0.568) | −3.794 (2.537) | 0.007** (0.003) | 0.002 (0.070) | 0.0756 (0.321) |
IA | 1.071 * (0.603) | 0.542 ** (0.244) | 1.158 * (0.606) | 0.0002 (0.002) | 0.014 (0.010) | −0.111 (0.102) |
Constant | −5.326 *** (1.366) | −0.678 ** (0.297) | −7.708 *** (1.358) | −0.009 *** (0.002) | −0.089 (0.056) | 1.105 *** (0.207) |
Time Effect | YES | YES | YES | YES | YES | YES |
Monitoring Site Effect | YES | YES | YES | YES | YES | YES |
Sample Size | 1318 | 1271 | 1322 | 1227 | 1209 | 1341 |
R-Squared | 0.694 | 0.884 | 0.698 | 0.645 | 0.476 | 0.858 |
City Weight of Synthetic Wuxi and Suzhou | ||||||||
---|---|---|---|---|---|---|---|---|
City Name | Wuxi | Suzhou | City Name | Wuxi | Suzhou | City Name | Wuxi | Suzhou |
Anyang | 0 | 0.008 | Lanzhou | 0 | 0.006 | Wuhu | 0 | 0.008 |
Baotou | 0 | 0.004 | Linfen | 0 | 0.01 | Wuhan | 0 | 0.006 |
Baoding | 0 | 0.008 | Liuzhou | 0.054 | 0.112 | Xi’an | 0 | 0.01 |
Baoji | 0 | 0.008 | Luoyang | 0 | 0.006 | Xining | 0 | 0.015 |
Beihai | 0 | 0.012 | Luzhou | 0.094 | 0.013 | Xianyang | 0 | 0.008 |
Beijing | 0 | 0.003 | Ma’anshan | 0 | 0.007 | Xiangtan | 0.054 | 0.01 |
Changde | 0.001 | 0.011 | Mianyang | 0 | 0.009 | Yanan | 0 | 0.005 |
Chongqing | 0 | 0.01 | Mudanjiang | 0 | 0.012 | Yangquan | 0 | 0.006 |
Changchun | 0 | 0.007 | Nanchang | 0 | 0.008 | Yibin | 0 | 0.009 |
Changsha | 0 | 0.004 | Nanning | 0 | 0.008 | Yichang | 0 | 0.01 |
Changzhi | 0 | 0.008 | Panzhihua | 0 | 0.005 | Yinchuan | 0 | 0.011 |
Chengdu | 0.058 | 0.008 | Pingdingshan | 0 | 0.007 | Yueyang | 0 | 0.009 |
Chifeng | 0 | 0.006 | Qinhuangdao | 0 | 0.008 | Zaozhuang | 0 | 0.008 |
Daqing | 0 | 0.006 | Qingdao | 0 | 0.005 | Zhanjiang | 0 | 0.007 |
Datong | 0 | 0.007 | Rizhao | 0 | 0.01 | Zhangjiajie | 0 | 0.007 |
Guilin | 0 | 0.007 | Sanya | 0 | 0.007 | Zhengzhou | 0 | 0.007 |
Guiyang | 0 | 0.006 | Shantou | 0.482 | 0.008 | Zhongshan | 0 | 0.008 |
Haikou | 0 | 0.003 | Shanghai | 0 | 0.005 | Zhuhai | 0 | 0.007 |
Huhhot | 0 | 0.011 | Shaoguan | 0.257 | 0.025 | Zhuzhou | 0 | 0.008 |
Jilin | 0 | 0.327 | Shizuishan | 0 | 0.006 | Zhunyi | 0 | 0.005 |
Jining | 0 | 0.006 | Tai’an | 0 | 0.005 | Urumqi | 0 | 0.007 |
Jiaozuo | 0 | 0.009 | Taiyuan | 0 | 0.005 | Karamay | 0 | 0.005 |
Jinchang | 0 | 0.006 | Tangshan | 0 | 0.008 | |||
Jingzhou | 0 | 0.011 | Tongchuan | 0 | 0.005 | |||
Jiujiang | 0 | 0.008 | Weihai | 0 | 0.004 | |||
Kaifeng | 0 | 0.007 | Weifang | 0 | 0.007 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, J.; Zhang, K.; Wen, B.; Lu, Y. Top-Down and Bottom-Up Approaches to Environmental Governance in China: Evidence from the River Chief System (RCS). Int. J. Environ. Res. Public Health 2020, 17, 7058. https://doi.org/10.3390/ijerph17197058
Ouyang J, Zhang K, Wen B, Lu Y. Top-Down and Bottom-Up Approaches to Environmental Governance in China: Evidence from the River Chief System (RCS). International Journal of Environmental Research and Public Health. 2020; 17(19):7058. https://doi.org/10.3390/ijerph17197058
Chicago/Turabian StyleOuyang, Jie, Kezhong Zhang, Bo Wen, and Yuanping Lu. 2020. "Top-Down and Bottom-Up Approaches to Environmental Governance in China: Evidence from the River Chief System (RCS)" International Journal of Environmental Research and Public Health 17, no. 19: 7058. https://doi.org/10.3390/ijerph17197058
APA StyleOuyang, J., Zhang, K., Wen, B., & Lu, Y. (2020). Top-Down and Bottom-Up Approaches to Environmental Governance in China: Evidence from the River Chief System (RCS). International Journal of Environmental Research and Public Health, 17(19), 7058. https://doi.org/10.3390/ijerph17197058