The Feasibility and Preliminary Efficacy of an eHealth Lifestyle Program in Women with Recent Gestational Diabetes Mellitus: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Study Groups
2.3.1. High Personalisation Group
- Managing my risk: outlined the risk factors for developing diabetes and actions that can reduce risk.
- My Plan: participants were emailed personalised feedback reports on their dietary intake and physical activity (generated from the Australian Eating Survey [27] and Godin Leisure-time Exercise Questionnaire [28,29]) compared to national nutrition and exercise guidelines. This section guided participants through using their personal reports to set weight, diet and exercise-related goals and to develop strategies for self-monitoring and managing relapses.
- Eating: information and links to resources to promote healthy eating, such as portion size guidelines, energy density, meal planning, reading food labels, recipes and eating when breastfeeding.
- Physical Activity: information and links to resources to promote being more active, including different types of physical activity, benefits of being physically active, suggestions for being active with their family and exercising safely.
- Wellbeing: information and resources on social support, stress management and sleep.
2.3.2. Low Personalisation Group
2.3.3. Waitlist Control Group
2.4. Preliminary Efficacy
2.4.1. Anthropometric Measures
2.4.2. Biochemistry Measures
2.4.3. Cardiovascular Measures
2.4.4. Diet Quality
2.4.5. Physical Activity Level
2.4.6. Self-Efficacy and Quality of Life
2.5. Acceptability (Secondary Outcome)
2.6. Demographic Characteristics, Pregnancy/GDM History and Health Conditions
2.7. Statistical Analysis
3. Results
3.1. Recruitment and Retention
3.2. Participants
3.3. Preliminary Efficacy
3.4. Acceptability
3.4.1. Australian Eating Survey and Physical Activity reports
3.4.2. “Body Balance Beyond” Website (High and Low Personalisation Groups)
3.4.3. Telehealth Video Coaching Sessions (Months 1–3, High Personalisation Group Only)
3.4.4. Text Message Support (Months 3–6, High Personalisation Group Only)
3.4.5. “Body Balance Beyond” Program Overall (High Personalisation Group Only)
4. Discussion
4.1. Recruitment and Retention
4.2. Preliminary Efficacy
4.3. Acceptability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.; Danaei, G.; Bixby, H.; Cowan, M.; Ali, M.; Taddei, C.; et al. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- White, J.V.; Broadhurst, C.B. Applying the American Diabetes Association’s nutrition recommendations to health care institutions. Clin. Diabetes 2004, 22, 37–38. [Google Scholar] [CrossRef] [Green Version]
- Australian Institute of Health and Welfare. Diabetes in Pregnancy: Its Impact on Australian Women and Their Babies; AIHW: Canberra, Australia, 2010. [Google Scholar]
- Carolan, M.; Davey, M.-A.; Biro, M.A.; Kealy, M. Maternal age, ethnicity and gestational diabetes mellitus. Midwifery 2012, 28, 778–783. [Google Scholar] [CrossRef]
- Carolan, M. Gestational diabetes mellitus among women born in South East Asia: A review of the evidence. Midwifery 2013, 29, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Anna, V.; Van Der Ploeg, H.P.; Cheung, N.W.; Huxley, R.R.; Bauman, A.E. sociodemographic correlates of the increasing trend in prevalence of gestational diabetes mellitus in a large population of women between 1995 and 2005. Diabetes Care 2008, 31, 2288–2293. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, A. Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care 2007, 30, S141–S146. [Google Scholar] [CrossRef] [Green Version]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef]
- Brown, J.; Alwan, N.A.; West, J.; Brown, S.; McKinlay, C.J.; Farrar, D.; Crowther, C.A. Lifestyle interventions for the treatment of women with gestational diabetes. Cochrane Database Syst. Rev. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Rayanagoudar, G.; Moore, M.; Zamora, J.; Hanson, P.; Huda, M.S.; Hitman, G.A.; Thangaratinam, S. Postpartum care of women with gestational diabetes: Survey of healthcare professionals. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 194, 236–240. [Google Scholar] [CrossRef]
- Chasan-Taber, L. Lifestyle interventions to reduce risk of diabetes among women with prior gestational diabetes mellitus. Best Pr. Res. Clin. Obstet. Gynaecol. 2014, 29, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Ratner, R.E.; Christophi, C.A.; Metzger, B.E.; Dabelea, D.; Bennett, P.H.; Pi-Sunyer, X.; Fowler, S.; Kahn, S.E. Diabetes Prevention Program Research Group Prevention of diabetes in women with a history of gestational diabetes: Effects of metformin and lifestyle interventions. J. Clin. Endocrinol. Metab. 2008, 93, 4774–4779. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, J.-L.; Whittemore, R.; Whitaker, E. Postpartum lifestyle interventions to prevent type 2 diabetes among women with history of gestational diabetes: A systematic review of randomized clinical trials. J. Women’s Heal. 2016, 25, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Peacock, A.; Bogossian, F.; Wilkinson, S.A.; Gibbons, K.S.; Kim, C.; McIntyre, H.D. A randomised controlled trial to delay or prevent type 2 diabetes after gestational diabetes: Walking for exercise and nutrition to prevent diabetes for you. Int. J. Endocrinol. 2015, 2015, 423717. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, B.; Razurel, C. Determinants of postpartum physical activity, dietary habits and weight loss after gestational diabetes mellitus. J. Nurs. Manag. 2012, 21, 58–69. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, S.; Dunbar, J.A.; Versace, V.L.; Janus, E.; Best, J.D.; Carter, R.; Oats, J.J.N.; Skinner, T.; Ackland, M.; Phillips, P.A.; et al. Mothers after Gestational Diabetes in Australia (MAGDA): A randomised controlled trial of a postnatal diabetes prevention program. PLoS Med. 2016, 13, e1002092. [Google Scholar] [CrossRef] [Green Version]
- Rollo, M.; Aguiar, E.J.; Williams, R.L.; Wynne, K.; Kriss, M.; Callister, R.; Collins, C.E. eHealth technologies to support nutrition and physical activity behaviors in diabetes self-management. Diabetes Metab. Syndr. Obes. Targets Ther. 2016, 9, 381–390. [Google Scholar] [CrossRef] [Green Version]
- McKinley, M.C.; Allen-Walker, V.; McGirr, C.; Rooney, C.; Woodside, J.V. Weight loss after pregnancy: Challenges and opportunities. Nutr. Res. Rev. 2018, 31, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Tan, A.; Madden, S.; Hill, B. Health professionals’ and postpartum women’s perspectives on digital health interventions for lifestyle management in the postpartum period: A systematic review of qualitative studies. Front. Endocrinol. 2019, 10, 767. [Google Scholar] [CrossRef] [Green Version]
- Sherifali, D.; Nerenberg, K.A.; Wilson, S.; Semeniuk, K.; Ali, M.U.; Redman, L.M.; Adamo, K.B.; Evans, W.; Toro-Ramos, T. The Effectiveness of eHealth technologies on weight management in pregnant and postpartum women: Systematic review and meta-analysis. J. Med Internet Res. 2017, 19, e337. [Google Scholar] [CrossRef]
- Jelsma, J.G.M.; Van Poppel, M.N.M.; Smith, B.J.; Cinnadaio, N.; Bauman, A.; Tapsell, L.; Cheung, N.W.; Van Der Ploeg, H.P. Changing psychosocial determinants of physical activity and diet in women with a history of gestational diabetes mellitus. Diabetes Metab. Res. Rev. 2017, 34, e2942. [Google Scholar] [CrossRef]
- Kim, C.; Draska, M.; Hess, M.L.; Wilson, E.J.; Richardson, C.R. A web-based pedometer programme in women with a recent history of gestational diabetes. Diabet. Med. 2012, 29, 278–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhardt, J.A.; Van Der Ploeg, H.P.; Grzegrzulka, R.; Timperley, J.G. lmplementing lifestyle change through phone-based motivational interviewing in rural-based women with previous gestational diabetes mellitus. Heal. Promot. J. Aust. 2012, 23, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Carolan, M.; Steele, C.; Krenzin, G. Development and initial testing of a GDM information website for multi-ethnic women with GDM. BMC Pregnancy Childbirth 2015, 15, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement. Obstet. Gynecol. 2010, 115, 1063–1070. [Google Scholar] [CrossRef]
- Billingham, S.A.; Whitehead, A.L.; Julious, S.A. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Med Res. Methodol. 2013, 13, 104. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Rollo, M.; Hutchesson, M.J.; Burrows, T.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clin. Nutr. 2014, 33, 906–914. [Google Scholar] [CrossRef]
- Courneya, K.; Jones, L.W.; Rhodes, R.E.; Blanchard, C.M. Effects of different combinations of intensity categories on self-reported exercise. Res. Q. Exerc. Sport 2004, 75, 429–433. [Google Scholar] [CrossRef]
- Godin, G.; Shephard, R.J. A simple method to assess exercise behavior in the community. Can. J. Appl. Sport Sci. J. Can. Sci. Appl. Sport 1985, 10, 141–146. [Google Scholar]
- Vincze, L.; Rollo, M.E.; Hutchesson, M.J.; Callister, R.; Collins, C.E. VITAL change for mums: A feasibility study investigating tailored nutrition and exercise care delivered by video-consultations for women 3–12 months postpartum. J. Hum. Nutr. Diet. 2018, 31, 337–348. [Google Scholar] [CrossRef]
- Vincze, L.; Rollo, M.; Hutchesson, M.J.; Callister, R.; Thompson, D.I.; Collins, C.E. Postpartum women’s perspectives of engaging with a dietitian and exercise physiologist via video consultations for weight management: A qualitative evaluation. Healthcare 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Michie, S.; Van Stralen, M.M.; West, R. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implement. Sci. 2011, 6, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamman, R.F.; Wing, R.R.; Edelstein, S.L.; Lachin, J.M.; Bray, G.A.; Delahanty, L.; Hoskin, M.; Kriska, A.M.; Mayer-Davis, E.J.; Pi-Sunyer, X.; et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 2006, 29, 2102–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, J.C.; Matthews, D.R.; Hermans, M. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, T.; Tam, S.-M. Measuring client servicing in the Australian Bureau of Statistics (ABS)–A balanced scorecard approach. Stat. J. United Nations Econ. Comm. Eur. 2004, 21, 7–16. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand (FSANZ). AUSNUT 1999–Australian Food and Nutrient Database for Estimation of Dietary Intake; ACT FSANZ: Canberra, Australia, 1999. [Google Scholar]
- Collins, C.E.; Burrows, T.L.; Rollo, M.; Boggess, M.M.; Watson, J.; Guest, M.; Duncanson, K.; Pezdirc, K.; Hutchesson, M.J. The comparative validity and reproducibility of a diet quality index for adults: The Australian recommended food score. Nutrients 2015, 7, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Ashton, L.M.; Haslam, R.L.; Wood, L.G.; Schumacher, T.; Burrows, T.L.; Rollo, M.; Pezdirc, K.; Callister, R.; Collins, C.E. Comparison of Australian Recommended Food Score (ARFS) and plasma carotenoid concentrations: A validation study in adults. Nutrition 2017, 9, 888. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Dietary Guidelines; ACT National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Ames, G.E.; Heckman, M.G.; Grothe, K.B.; Clark, M.M. Eating self-efficacy: Development of a short-form WEL. Eat. Behav. 2012, 13, 375–378. [Google Scholar] [CrossRef]
- Ames, G.E.; Heckman, M.; Diehl, N.N.; Grothe, K.; Clark, M.M. Further statistical and clinical validity for the Weight Efficacy Lifestyle Questionnaire-Short Form. Eat. Behav. 2015, 18, 115–119. [Google Scholar] [CrossRef]
- Resnick, B.; Jenkins, L.S. Testing the reliability and validity of the self-efficacy for exercise scale. Nurs. Res. 2000, 49, 154–159. [Google Scholar] [CrossRef]
- Richardson, J.; Peacock, S.; Hawthorne, G.; Iezzi, A.; Elsworth, G.R.; Day, N.A. Construction of the descriptive system for the assessment of quality of life AQoL-6D utility instrument. Heal. Qual. Life Outcomes 2012, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J. Psychometric Validity and Multi Attribute (MAU) Instruments; Monash University: Melbourne, Australia, 2010. [Google Scholar]
- Blackburn, G. Effect of degree of weight loss on health benefits. Obes. Res. 1995, 3, 211s–216s. [Google Scholar] [CrossRef] [PubMed]
- Group HPTR. The hypertension prevention trial: Three-year effects of dietary changes on blood pressure. Arch. Intern. Med. 1990, 150, 153–162. [Google Scholar] [CrossRef]
- Wilkinson, S.A.; Lim, S.; Upham, S.; Pennington, A.; O’Reilly, S.; Asproloupos, D.; Simmons, D.; Dunbar, J.A. Who’s responsible for the care of women during and after a pregnancy affected by gestational diabetes? Med. J. Aust. 2014, 201, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, A.; Callaway, L.; McIntyre, H.D.; Mitchell, B. Diagnosing and providing initial management for patients with gestational diabetes: What is the General Practitioner’s experience? Diabetes Res. Clin. Pract. 2020, 166. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.W.; Smith, B.J.; Van Der Ploeg, H.P.; Cinnadaio, N.; Bauman, A. A pilot structured behavioural intervention trial to increase physical activity among women with recent gestational diabetes. Diabetes Res. Clin. Pract. 2011, 92, e27–e29. [Google Scholar] [CrossRef]
- Douketis, J.D.; Macie, C.; Thabane, L.; Williamson, D.F. Systematic review of long-term weight loss studies in obese adults: Clinical significance and applicability to clinical practice. Int. J. Obes. 2005, 29, 1153–1167. [Google Scholar] [CrossRef] [Green Version]
- Burner, E.; Menchine, M.; Taylor, E.; Arora, S. Gender differences in diabetes self-management: A mixed-methods analysis of a mobile health intervention for inner-city latino patients. J. Diabetes Sci. Technol. 2013, 7, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Nundy, S.; Mishra, A.; Hogan, P.; Lee, S.M.; Solomon, M.C.; Peek, M.E. How do mobile phone diabetes programs drive behavior change? Evidence from a mixed methods observational cohort study. Diabetes Educ. 2014, 40, 806–819. [Google Scholar] [CrossRef]
- Zulfiqar, T.; Lithander, F.E.; Banwell, C.; Young, R.; Boisseau, L.; Ingle, M.; Nolan, C.J. Barriers to a healthy lifestyle post gestational-diabetes: An Australian qualitative study. Women Birth 2017, 30, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Dennison, R.A.; Ward, R.J.; Griffin, S.J.; Usher-Smith, J.A. Women’s views on lifestyle changes to reduce the risk of developing type 2 diabetes after gestational diabetes: A systematic review, qualitative synthesis and recommendations for practice. Diabet. Med. J. Br. Diabet. Assoc. 2019, 36, 702–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
High Personalisation | Low Personalisation | Waitlist Control | |
---|---|---|---|
(n = 15) | (n = 13) | (n = 14) | |
Sociodemographic Characteristics | |||
Age | 34.0 ± 4.5 | 32.8 ± 3.6 | 33.6 ± 3.8 |
Country of birth | |||
Australia | 93.3 (14) | 100 (13) | 92.9 (13) |
Highest qualification completed | |||
School certificate (year 10 or equivalent) | 6.7 (1) | 0 | 14.3 (2) |
Certificate/diploma/trade | 26.7 (4) | 30.8 (4) | 35.7 (5) |
University degree | 60.0 (9) | 69.2 (9) | 50 (7) |
Marital status | |||
Married/de facto | 93.3 (14) | 100 (13) | 100 (14) |
Never married | 6.7 (1) | 0 | 0 |
Household income | |||
<$1000 weekly | 6.7 (1) | 0 | 7.1 (1) |
$1000–$1999 weekly | 46.7 (7) | 38.5 (5) | 35.7 (5) |
>$2000 weekly | 33.3 (5) | 53.8 (7) | 57.1 (8) |
Do not know/decline to answer | 13.3 (2) | 7.7 (1) | 0 |
Ability to manage on current income | |||
Difficult some of the time | 46.7 (7) | 15.4 (2) | 35.7 (5) |
Not too bad/easy | 53.4 (8) | 84.6 (11) | 64.3 (9) |
Current smoker (less than once per week) | 0 | 7.7 (1) | 0 |
Pregnancy and GDM History | |||
Parity | 2.1 ± 1.2 | 1.6 ± 1.0 | 1.7 ± 0.6 |
Months since first GDM diagnosis | 14.4 ± 10.1 | 11.6 ± 5.6 | 12.2 ± 4.9 |
GDM Management | |||
Diet | 93.3 (14) | 92.3 (12) | 71.4 (10) |
Exercise | 40.0 (6) | 46.2 (6) | 28.6 (4) |
Tablets | 0 | 7.7 (1) | 0 |
Insulin | 66.7 (10) | 46.2 (6) | 64.3 (9) |
Other Health Conditions | |||
Pre-eclampsia | 20.0 (3) | 23.1 (3) | 7.1 (1) |
PCOS | 20.0 (3) | 23.1 (3) | 7.1 (1) |
Low thyroid hormone levels | 6.7 (1) | 0 | 7.1 (1) |
Other condition: cholestasis of pregnancy | 0 | 7.7 (1) | 0 |
Anthropometry | |||
Height (m) | 1.66 ± 0.10 | 1.62 ± 0.10 | 1.65 ± 5.60 |
Weight (kg) | 91.1 ± 15.9 | 89.3 ± 12.5 | 83.8 ± 10.7 |
BMI (kg/m2) | 32.8 ± 4.1 | 33.9 ± 3.6 | 31.1 ± 4.8 |
BMI category, % (n) | |||
Overweight | 26.7 (4) | 23.1 (3) | 28.6 (4) |
Obese | 73.3 (11) | 76.9 (10) | 57.1 (8) |
Waist circumference (cm) | 101.5 ± 12.2 | 103.0 ± 10.6 | 96.3 ± 8.1 |
Body fat mass (kg) | 35.7 ± 9.6 | 39.1 ± 10.2 | 40.4 ± 11.2 |
Skeletal muscle mass (kg) | 26.7 ± 3.2 | 27.3 ± 2.9 | 28.1 ± 3.8 |
Biochemistry | |||
HbA1c % | 5.1 ± 0.3 | 5.1 ± 0.4 | 5.1 ± 0.3 |
Fasting blood glucose (mmol/L) | 4.8 ± 0.3 | 4.7 ± 0.5 | 4.9 ± 0.4 |
Fasting insulin (mU/L) | 7.8 ± 3.0 | 10.3 ± 5.0 | 6.1 ± 2.6 |
HOMA2-IR | 1.0 ± 0.4 | 1.3 ± 0.6 | 0.8 ± 0.3 |
QUICKI | 0.36 ± 0.02 | 0.35 ± 0.03 | 0.37 ± 0.03 |
LDL cholesterol (mmol/L) | 3.4 ± 1.2 | 3.2 ± 0.7 | 3.7 ± 1.0 |
HDL cholesterol (mmol/L) | 1.4 ± 0.3 | 1.3 ± 0.3 | 1.5 ± 0.3 |
Total cholesterol/HDL ratio | 3.8 ± 0.8 | 4.2 ± 1.1 | 4.1 ± 1.2 |
Triglycerides (mmol/L) | 1.1 ± 0.4 | 1.2 ± 0.7 | 1.2 ± 0.5 |
Cardiovascular Measures | |||
Systolic blood pressure (mmHg) | 104.4 ± 8.2 | 109.4 ± 9.4 | 106.4 ± 10.2 |
Diastolic blood pressure (mmHg) | 67.5 ± 6.1 | 69.3 ± 5.6 | 68.6 ± 7.3 |
Dietary Intake | |||
ARFS total score (maximum 73) | 34.7 ± 6.4 | 39.0 ± 10.3 | 34.2 ± 7.0 |
% energy: core foods | 57.4 ± 11.1 | 62.9 ± 7.0 | 60.9 ± 12.6 |
% energy: non-core foods | 42.6 ± 11.1 | 37.1 ± 7.0 | 39.1 ± 12.6 |
% energy: protein | 18.7 ± 2.8 | 21.3 ± 3.0 | 18.6 ± 3.2 |
% energy: carbohydrate | 45.7 ± 4.7 | 39.7 ± 4.2 | 43.9 ± 6.6 |
% energy: fats | 35.1 ± 3.6 | 38.8 ± 3.7 | 33.6 ± 14.4 |
% energy: saturated fats | 15.5 ± 2.4 | 17.4 ± 2.6 | 14.1 ± 1.8 |
% energy: alcohol | 1.3 ± 2.2 | 1.0 ± 1.6 | 4.1 ± 5.0 |
Physical Activity | |||
MVPA (minutes/week) | 74.3 ± 87.1 | 144.2 ± 114.4 | 130.0 ± 116.7 |
Resistance training frequency | |||
None | 86.7 (13) | 69.2 (9) | 57.1 (8) |
1–2 times per week | 6.7 (1) | 23.1 (3) | 7.1 (1) |
3 or more times per week | 6.7 (1) | 7.7 (1) | 35.7 (5) |
Pelvic floor exercise frequency | |||
None | 53.3 (8) | 69.2 (0) | 42.9 (6) |
1–2 times per week | 13.3 (2) | 15.4 (2) | 35.7 (5) |
3 or more times per week | 20.0 (5) | 15.4 (2) | 21.4 (3) |
Self-Efficacy and Quality of Life | |||
WEL-SF (maximum 90) | 43.9 ± 19.7 | 51.5 ± 16.5 | 46.6 ± 14.4 |
Self-Efficacy for Exercise score (maximum 11) | 5.9 ± 1.9 | 5.8 ± 2.2 | 6.0 ± 2.5 |
AQoL-6D utility score (maximum 1.0) | 0.76 ± 0.11 | 0.78 ± 0.11 | 0.80 ± 0.20 |
Change from Baseline, Mean (95% CI) a | Difference between Groups, Mean (95% CI) b | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Outcome | Month | High Personalisation | Low Personalisation | Waitlist Control | High Personalisation vs. Waitlist Control | Low Personalisation vs. Waitlist Control | High vs. Low Personalisation | |
n = 15 | n = 13 | n = 14 | ||||||
Weight (kg) c | 3 | −1.30 (−0.50, 3.10) | −0.91 (−3.15, 1.32) | 1.11 (−1.08, 3.29) | −2.41 (−5.24, 0.42) | −2.02 (−5.15, 1.11) | −0.39 (−3.26, 2.48) | 0.391 |
6 | −1.60 (−3.50, 0.31) | −0.90 (−3.36, 1.57) | 0.75 (−1.27, 2.78) | −2.35 (−5.13, 0.43) | −1.65 (−4.84, 1.54) | −0.70 (−3.81, 0.43) | ||
HbA1c (%) | 3 | 0.02 (−0.07, 0.11) | 0.04 (−0.08, 0.15) | 0.09 (−0.02, 0.20) | −0.07 (−0.21, 0.07) | −0.05 (−0.21, 0.10) | −0.01 (−0.15, 0.13) | 0.673 |
6 | 0.06 (−0.03, 0.16) | 0.02 (−0.10, 0.14) | 0.11 (0.01, 0.21) | −0.05 (−0.19, 0.09) | −0.09 (−0.25, 0.07) | 0.04 (−0.11, 0.20) | ||
Total cholesterol (mmol/L) | 3 | −0.34 (−0.74, 0.06) | −0.37 (−0.86, 0.12) | −0.02 (−0.50, 0.47) | −0.32 (−0.95, 0.31) | −0.35 (−1.04, 0.34) | 0.03 (−0.61, 0.67) | 0.769 |
6 | −0.30 (−0.72, 0.13) | −0.38 (−0.92, 0.16) | −0.34 (−0.79, 0.11) | 0.04 (−0.58, 0.66) | −0.04 (−0.74, 0.67) | 0.08 (−0.61, 0.77) | ||
HDL cholesterol (mmol/L) | 3 | −0.09 (−0.19, 0.02) | 0.02 (−0.11, 0.15) | 0.03 (−0.10, 0.16) | −0.12 (−0.28, 0.05) | −0.01 (−0.19, 0.17) | −0.10 (−0.27, 0.06) | 0.028 |
6 | −0.11 (−0.22, 0.01) | −0.06 (−0.20, 0.08) | −0.25 (−0.37, −0.13) | 0.14 (−0.02, 0.31) | 0.19 (0.01, 0.38) | −0.05 (−0.23, 0.13) | ||
Triglycerides (mmol/L) d | 3 | −0.02 (−0.20, 0.15) | 0.01 (−0.21, 0.22) | −0.07 (−0.28, 0.14) | 0.04 (−0.23, 0.32) | 0.08 (−0.23, 0.38) | −0.03 (−0.31, 0.25) | 0.091 |
6 | −0.14 (−0.33, 0.04) | −0.01 (−0.25, 0.23) | 0.18 (−0.02, 0.37) | −0.06 (−0.23, 0.11) | −0.14 (−0.32, 0.06) | 0.07 (−0.11, 0.26) | ||
ARFS (maximum 73) | 3 | 0.87 (−2.24, 3.98) | −1.08 (−4.91, 2.74) | −1.90 (−5.50, 1.71) | 2.77 (−2.03, 7.57) | 0.81 (−4.48, 6.11) | 1.95 (−3.01, 6.92) | 0.274 |
6 | 1.79 (−1.41, 4.99) | 2.89 (−1.10, 6.89) | −2.00 (−5.48, 1.47) | 3.79 (−0.97, 8.55) | 4.89 (−0.44, 10.23) | −1.11 (−6.26, 4.05) | ||
% energy: core d | 3 | 10.48 (5.00, 15.96) | 6.11 (−0.45, 12.68) | 0.72 (−5.76, 7.19) | 9.73 (1.26, 18.20) | 4.87 (−4.36, 14.10) | 4.86 (−3.68, 13.40) | 0.143 |
6 | 8.51 (1.31, 15.71) | 8.51 (1.31, 15.71) | 3.12 (−2.91, 9.14) | 9.29 (0.96, 17.62) | 4.99 (−4.41, 14.39) | 4.30 (−4.92, 13.53) | ||
% energy: non-core d | 3 | −10.48 (−5.00, −15.96) | −6.11 (−12.68, 0.45) | −0.72 (−7.19, 5.76) | −9.73 (−18.20, −1.26) | −4.87 (−14.10, 4.36) | −4.86 (−13.40, 3.68) | 0.143 |
6 | −8.51 (−1.31, −15.71) | −8.51 (−15.71, 1.31) | −3.12 (−9.14, 2.91) | −9.29 (−17.62, −0.96) | −4.99 (−14.39, 4.41) | −4.30 (−13.53, 4.92) | ||
MVPA (min/week) d | 3 | 60.17 (−10.67, 131.01) | −21.68 (−108.05, 64.69) | −21.30 (−107.25, 64.65) | 82.06 (−173.44, 337.56) | 11.32 (−264.43, 287.08) | 70.74 (−186.78, 328.26) | 0.158 |
6 | 182 (−35, 400) | −78 (−360, 230) | −42 (−269, 232) | 244 (−8, 496) | 52 (−228, 333) | 191 (−84, 467) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rollo, M.E.; Baldwin, J.N.; Hutchesson, M.; Aguiar, E.J.; Wynne, K.; Young, A.; Callister, R.; Haslam, R.; Collins, C.E. The Feasibility and Preliminary Efficacy of an eHealth Lifestyle Program in Women with Recent Gestational Diabetes Mellitus: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 7115. https://doi.org/10.3390/ijerph17197115
Rollo ME, Baldwin JN, Hutchesson M, Aguiar EJ, Wynne K, Young A, Callister R, Haslam R, Collins CE. The Feasibility and Preliminary Efficacy of an eHealth Lifestyle Program in Women with Recent Gestational Diabetes Mellitus: A Pilot Study. International Journal of Environmental Research and Public Health. 2020; 17(19):7115. https://doi.org/10.3390/ijerph17197115
Chicago/Turabian StyleRollo, Megan E., Jennifer N. Baldwin, Melinda Hutchesson, Elroy J. Aguiar, Katie Wynne, Ashley Young, Robin Callister, Rebecca Haslam, and Clare E. Collins. 2020. "The Feasibility and Preliminary Efficacy of an eHealth Lifestyle Program in Women with Recent Gestational Diabetes Mellitus: A Pilot Study" International Journal of Environmental Research and Public Health 17, no. 19: 7115. https://doi.org/10.3390/ijerph17197115
APA StyleRollo, M. E., Baldwin, J. N., Hutchesson, M., Aguiar, E. J., Wynne, K., Young, A., Callister, R., Haslam, R., & Collins, C. E. (2020). The Feasibility and Preliminary Efficacy of an eHealth Lifestyle Program in Women with Recent Gestational Diabetes Mellitus: A Pilot Study. International Journal of Environmental Research and Public Health, 17(19), 7115. https://doi.org/10.3390/ijerph17197115