Classical Biomarker and Quantitative Extended Diamondoid Analysis Fingerprints for Crude Oils from Deepwater Developments in Block 17, Lower Congo Basin, Angola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Settings
2.2. Sampling, Chemical Analysis and QEDA
3. Results and Discussion
3.1. Bulk Geochemical Data
3.2. In-Reservoir Biodegradation
3.3. Precursor Organic Matter and Depositional Environments
3.4. Thermal Maturity
3.5. Geochemical Correlations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amendoeira, R.; Soares-Branco, M. Angola: The Oil and Gas Law Review, 5th ed.; Strong, C.B., Ed.; Law Business Research Ltd.: London, UK, 2017. [Google Scholar]
- International Monetary Fund. Article IV Consultation Staff Report; IMF Country Report No. 18/156; IMF: Washington, DC, USA, 2018; pp. 4–6. [Google Scholar]
- Leite Da Costa, J.; Schirmer, T.W.; Laws, B.R. Lower Congo Basin, Deep-water Exploration Province, Offshore West Africa. In Petroleum Provinces of the Twenty-First Century: AAPG Memoir 74; Downey, M.W., Morgan, W.A., Threet, J.C., Eds.; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2001; pp. 517–530. [Google Scholar]
- Brownfield, M.E.; Charpentier, R.R. Geology and Total Petroleum Systems of the West-Central Coastal Province (7203); West Africa: U.S. Geological Survey Bulletin, Government Printing Office: Washington, DC, USA, 2006.
- Schoellkopf, N.B.; Patteron, B.A. Petroleum Systems in Offshore Cabinda, Angola. In Petroleum Systems of South Atlantic Margins; Mello, M.R., Katz, B.J., Eds.; AAPG Memoir: Anadarko Basin, OK, USA, 2000; Volume 73, pp. 361–376. [Google Scholar]
- Burwood, R. Angola: Source rock control for Lower Congo Coastal and Kwanza Basin petroleum systems. Geol. Soc. Lond. Spec. Publ. 1999, 153, 181–194. [Google Scholar] [CrossRef]
- Orsolini, P.; Scheevel, J.R.; Jeronimo, P.; Barletta, V. Regional evaluation of the pre-salt system of Cabinda, Angola. In Rio ’98—Petroleum Geology in a Changing World; Mello, M.R., Yilmaz, P.O., Eds.; AAPG Memoir: Rio de Janeiro, Brazil, 1998; p. 358. [Google Scholar]
- Raposo, A.; Inkollu, M. Tertiary reservoirs in Congo-Kwanza-Namibe Basins. In Rio ’98—Petroleum Geology in a Changing World; Mello, M.R., Yilmaz, P.O., Eds.; AAPG Memoir: Rio de Janeiro, Brazil, 1998; pp. 668–669. [Google Scholar]
- Cramez, C.; Jackson, M.P.A. Superposed deformation straddling the continental-oceanic transition in deep-water Angola. Mar. Petrol. Geol. 2000, 17, 1095–1109. [Google Scholar] [CrossRef] [Green Version]
- Nürnberg, D.; Müller, R.D. The tectonic evolution of the South Atlantic Ocean from Late Jurassic to present. Tectonophysics 1991, 191, 27–53. [Google Scholar] [CrossRef]
- Anka, Z.; Séranne, M.; López, M.; Scheck-Wenderoth, M.; Savoye, B. The long-term evolution of the Congo deep-sea fan: A basin-wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project). Tectonophysics 2009, 470, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Moulin, M.; Aslanian, D.; Olivet, J.L.; Contrucci, I.; Matias, L.; Géli, L.; Klingehoefer, F.; Nouzé, H.; Réhault, J.P.; Unternehr, P. Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaiAngo project). Geophys. J. Int. 2005, 162, 793–810. [Google Scholar] [CrossRef]
- Anderson, J.E.; Cartwright, J.; Drysdall, S.J.; Vivian, N. Controls on turbidite sand deposition during gravity-driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola. Mar. Petrol. Geol. 2000, 17, 1165–1203. [Google Scholar] [CrossRef]
- Brice, S.E.; Cochran, M.D.; Pardo, G.; Edwards, A.D. Tectonics and sedimentation of the south Atlantic rift sequence: Cabinda, Angola. In Studies in Continental Margin Geology; Watkins, J.S., Drake, C.L., Eds.; AAPG Memoir: Anadarko Basin, OK, USA, 1982; Volume 34, pp. 5–18. [Google Scholar]
- Valle, P.J.; Gjelberg, J.G.; Helland-Hansen, W. Tectonostratigraphic development in the eastern Lower Congo Basin, offshore Angola, West Africa. Mar. Petrol. Geol. 2001, 18, 909–927. [Google Scholar] [CrossRef]
- Gay, A.; López, M.; Cochonat, P.; Levaché, D.; Sermondadaz, G.; Séranne, M. Evidences of early to late fluid migration from an upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin. Mar. Petrol. Geol. 2006, 23, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Jansen, J.H.F.; Giresse, P.; Moguedet, G. Structural and sedimentary geology of the Congo and southern Gabon continental shelf; a seismic and acoustic reflection survey. Neth. J. Sea Res. 1984, 17, 364–384. [Google Scholar] [CrossRef]
- Guiraud, R.; Maurin, J.C. Early Cretaceous rifts of Western and Central Africa: An overview. Tectonophysics 1992, 213, 153–168. [Google Scholar] [CrossRef]
- Karner, G.D.; Driscoll, N.W. Tectonic setting of the Marnes-Noires/Falcao source rocks of the Congo and Angolan continental margins. AAPG Bull. 1998, 82, 1928. [Google Scholar]
- Marton, L.G.; Tari, G.C.; Lehmann, C.T. Evolution of the Angola passive margin, West Africa, with emphasis on post-salt structural styles. In Atlantic Rifts and Continental Margins; Moriak, W., Talwani, M., Eds.; American Geophysical Union: Washington, DC, USA, 2000; pp. 129–149. [Google Scholar]
- Karner, G.D.; Driscoll, N.W.; Barker, D.H.N. Syn-rift region subsidence across the West African continental margin; the role of lower plate ductile extension. In Petroleum Geology of Africa; New Themes and Developing Technologies; Arthur, R., MacGregor, D.S., Cameron, N.R., Eds.; Geological Society of London Special Publication: Bath, UK, 2003; Volume 207, pp. 105–129. [Google Scholar]
- Karner, G.D.; Driscoll, N.W.; McGinnis, J.P.; Brumbaugh, W.D.; Cameron, N.R. Tectonic significance of syn-rift sediment packages across the Gabon-Cabinda continental margin. Mar. Petrol. Geol. 1997, 14, 973–1000. [Google Scholar] [CrossRef]
- Viera, A.F.; Rosso, M.; Pereira, D.M.; Tudisca, E.P. First Commercial Pre-Salt Oil Discovery in Onshore Cabinda (Angola), after more than three decades. In Proceedings of the 12th PESGB/HGS Conference on Africa E&P, London, UK, 11–12 September 2013. [Google Scholar]
- Stark, D.M. Well evaluation conference, Angola. In Proceedings of the Petroleum Geology, Schlumberger Conference Proceedings, Paris, France, 1991; pp. 1–95. [Google Scholar]
- Séranne, M.; Anka, Z. South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins. J. Afr. Earth. Sci. 2005, 43, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Spathopoulos, F. An insight on salt tectonics in the Angola Basin, South Atlantic. Geol. Soc. Lond. Spec. Publ. 1996, 100, 153–174. [Google Scholar] [CrossRef]
- Lavier, L.L.; Steckler, M.S.; Brigaud, F. Climatic and tectonic control on the Cenozoic evolution of the West African margin. Mar. Geol. 2001, 178, 63–80. [Google Scholar] [CrossRef]
- Anka, Z.; Séranne, M. Reconnaissance study of the ancient Zaire (Congo) deep-sea fan. Mar. Geol. 2004, 209, 223–244. [Google Scholar] [CrossRef]
- ASTM Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method); ASTM International: West Conshohocken, PA, USA, 2006.
- Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- De la Cruz, C.; Márquez, N.; Escobar, M.; Segovia, S. An improved chromatographic method for the separation of saturated hydrocarbons, aromatic hydrocarbons, resins and asphaltenes from heavy crude oils. In Proceedings of the 213th American Chemical Society National Meeting, San Francisco, CA, USA, 13–17 April 1997; pp. 416–418. [Google Scholar]
- Dahl, J.E.; Moldowan, J.M.; Peters, K.E.; Claypool, G.E.; Rooney, M.A.; Michael, G.E.; Mello, M.R.; Kohnen, M.L. Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 1999, 399, 54–57. [Google Scholar] [CrossRef]
- Pytlak, L.; Kowalski, A.; Gross, D.; Sachsenhofer, R.F. Composition of diamondoids in oil samples from the alpine foreland basin, austria: Potential as indices of source rock facies, maturity and biodegradation. J. Petrol. Geol. 2017, 40, 153–171. [Google Scholar] [CrossRef]
- Summons, R.E.; Hope, J.M.; Swart, R.; Walter, M.R. Origin of Nama Basin bitumen seeps: Petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana. Org. Geochem. 2008, 39, 589–608. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Dahl, J.; Zinniker, D.; Barbanti, S.M. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. J. Petrol. Sci. Eng. 2015, 126, 87–96. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Springer: New York, NY, USA, 1984; p. 699. [Google Scholar]
- Hakimi, M.H.; Abdullaha, W.H.; Shalabya, M.R. Organic geochemical characteristics of crude oils from the Masila Basin, eastern Yemen. Org. Geochem. 2011, 42, 465–476. [Google Scholar] [CrossRef]
- Milner, C.D.W.; Rogers, M.A.; Evans, C.R. Petroleum transformations in reservoirs. J. Geochem. Explor. 1977, 7, 101–153. [Google Scholar] [CrossRef]
- Head, I.M.; Jones, D.M.; Larter, S.R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003, 426, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Bennet, B.; Fustic, M.; Farrimond, P.; Huang, H.; Larter, S.R. 25-Norhopanes: Formation during biodegradation of petroleum in the subsurface. Org. Geochem. 2006, 37, 787–797. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: New York, NY, USA; Englewood Cliffs, NJ, USA, 1993; p. 363. [Google Scholar]
- Larter, S.R.; Huang, H.; Adams, J.; Bennet, B.; Snowdon, L.R. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils. Org. Geochem. 2012, 45, 66–76. [Google Scholar] [CrossRef]
- Larter, S.R.; Wilhelms, A.; Head, I.; Koopmans, M.; Aplin, A.; di Primio, R.; Zwach, C.; Erdmann, M.; Telnaes, N. The controls on the composition of biodegraded oils in the deep subsurface—Part 1: Biodegradation rates in petroleum reservoirs. Org. Geochem. 2003, 34, 601–613. [Google Scholar] [CrossRef]
- Larter, S.R.; Huang, H.; Adams, J.J.; Bennet, B.; Jokanola, O.; Oldenburg, T.B.P.; Jones, M.; Head, I.M.; Riediger, C.L.; Fowler, M.G. The controls on the composition of biodegraded oils in the deep subsurface. Part II—Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. AAPG Bull. 2006, 90, 921–938. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.; Moldowan, J. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History; Cambridge University Press: Cambridge, UK, 2005; p. 1132. [Google Scholar]
- Kotarba, M.J.; Clayton, J.L. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. Int. J. Coal. Geol. 2003, 55, 73–94. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I.P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Palaeoreconstruction by biological markers. Geochim. Cosmochim. Acta 1981, 45, 783–794. [Google Scholar] [CrossRef]
- Rullkötter, J.; Spiro, B.; Nissenbaum, A. Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben, Dead Sea, Israel. Geochim. Cosmochim. Acta 1985, 49, 1357–1370. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Application of steranes, terpanes and monoaromatic to the maturation, migration and source of crude oils. Geochim. Cosmochim. Acta 1978, 42, 77–95. [Google Scholar] [CrossRef]
- Grantham, P.J.; Wakefield, L.L. Variations in the sterane carbon number distributions of marine source rocks derived crude oils through geological time. Org. Geochem. 1988, 12, 61–73. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Dahl, J.; Huizinga, B.J.; Fago, F.J.; Hickey, L.J.; Peackman, T.M.; Taylor, D.W. The molecular fossil record of oleanane and its relation to angiosperms. Science 1994, 265, 768–771. [Google Scholar] [CrossRef] [Green Version]
- Hughes, W.B. Use of thiophenic organosulphur compounds in characterizing of oils derived from carbonate versus siliciclastic sources. In Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks; Palacas, G., Ed.; AAPG Studies in Geology: Anadarko Basin, OK, USA, 1984; Volume 18, pp. 181–196. [Google Scholar]
- Mackenzie, A.S.; Patience, R.L.; Maxwell, J.R. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Cosmochim. Acta 1980, 44, 1709–1721. [Google Scholar] [CrossRef]
- Hunt, J.M. Petroleum Geochemistry and Geology; Freeman and Company: San Francisco, CA, USA, 1996; p. 617. [Google Scholar]
- Mackenzie, A.S. Applications of biological markers in petroleum geochemistry. In Advances in Petrological Geochemistry; Brooks, S.J., Welte, D., Eds.; Academic Press: London, UK, 1984; pp. 115–214. [Google Scholar]
- Radke, M.; Leythaeuser, D.; Teichmüller, M. Relationship between rank and composition of aromatic hydrocarbons from coals of different origin. Org. Geochem. 1984, 6, 423–430. [Google Scholar] [CrossRef]
- Radke, M.; Welte, D.H. The methylphenantrene index (MPI): A maturity parameter based on aromatic hydrocarbons. In Advances in Organic Geochemistry; Bjoroy, M., Albrecht, C., Cornford, C., de Groot, K., Eglinton, G., Galimov, E., Leythaeuser, D., Pelet, R., Rullkötter, J., Speers, G., Eds.; John Wiley and Sons: New York, NY, USA, 1983; pp. 504–512. [Google Scholar]
- Cassani, F.; Gallango, O.; Talukdar, S.; Vallejos, C.; Ehrmann, U. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. Org. Geochem. 1988, 13, 73–80. [Google Scholar] [CrossRef]
- Gallego, J.R.; Ortiz, J.E.; Sierra, C.; Torres, T.; Llamas, J.F. Multivariate study of trace element distribution in the geological record of Roñanzas peat bog (Asturias, North Spain): Paleoenvironmental evolution and human activities over the last 8000 ca yr BP. Sci. Tot. Environ. 2013, 454–455, 16–29. [Google Scholar] [CrossRef]
- Everitt, B.S. Cluster Analysis. In Multivariate Statistics; Edward, A., Ed.; Oxford University Press: London, UK, 1993; pp. 42–50. [Google Scholar]
- Grice, K.; Alexander, R.; Kagi, R.I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils. Org. Geochem. 2000, 31, 67–73. [Google Scholar] [CrossRef]
- Moldowan, M.; Moldowan, S.; Blanco-Velandia, V.; Blanco-Velandia, Y.; Orejuela-Parra, C.; Bott, G.; Dahl, J. Llanos Basin: Unraveling Its Complex Petroleum Systems with Advanced Geochemical Technologies. AAPG Annual Convention and Exhibition. Search Discov. 2015, 1–29. [Google Scholar]
Well | Reservoir | API | SAT | ARO | POL |
---|---|---|---|---|---|
Horténsia | Upper Malembo | 20.2 | 60 | 26 | 14 |
Dália | Upper Malembo | 21.4 | 61 | 25 | 14 |
Rosa | Upper Malembo | 21.0 | 59 | 27 | 14 |
Tulipa | Lower Malembo | 35.1 | 69 | 21 | 10 |
Acácia | Lower Malembo | 35.8 | 70 | 21 | 9 |
Orquídea | Lower Malembo | 36.3 | 69 | 22 | 9 |
Sample | %27ST | %28ST | %29ST | Ts/Tm | Ph/nC18 | Pr/Ph | 29/30H | 31R/30H | 26/25T | 24/23T | ST/30H | DBT/P | Dia/ST |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Horténsia | 35 | 32 | 33 | 1.38 | 4.63 | 1.42 | 0.57 | 0.24 | 1.14 | 0.76 | 0.22 | 0.15 | 0.53 |
Dália | 36 | 31 | 33 | 1.33 | 4.20 | 1.51 | 0.53 | 0.23 | 1.12 | 0.75 | 0.24 | 0.13 | 0.51 |
Rosa | 35 | 31 | 34 | 1.21 | 4.35 | 1.68 | 0.59 | 0.20 | 1.12 | 0.76 | 0.20 | 0.11 | 0.51 |
Tulipa | 35 | 31 | 34 | 1.41 | 1.30 | 1.20 | 0.51 | 0.21 | 1.14 | 0.72 | 0.23 | 0.13 | 0.53 |
Acácia | 35 | 32 | 33 | 1.34 | 1.24 | 1.30 | 0.58 | 0.22 | 1.13 | 0.73 | 0.23 | 0.12 | 0.52 |
Orquídea | 36 | 31 | 33 | 1.27 | 1.19 | 1.43 | 0.55 | 0.22 | 1.15 | 0.74 | 0.21 | 0.14 | 0.52 |
Sample | %ββ | Rc1 | TA | Rc2 | MPI-1 | Rc3 |
---|---|---|---|---|---|---|
Horténsia | 56 | 0.63 | 0.33 | 0.63 | 0.92 | 0.95 |
Dália | 57 | 0.64 | 0.32 | 0.62 | 0.90 | 0.94 |
Rosa | 55 | 0.60 | 0.33 | 0.63 | 0.92 | 0.95 |
Tulipa | 56 | 0.61 | 0.34 | 0.65 | 0.91 | 0.95 |
Acácia | 56 | 0.61 | 0.32 | 0.62 | 0.91 | 0.95 |
Orquídea | 57 | 0.63 | 0.35 | 0.66 | 0.93 | 0.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boente, C.; Márquez, G.; Marín, P.; Romero, E.; Rodrigues, C.; Guzmán, M.A. Classical Biomarker and Quantitative Extended Diamondoid Analysis Fingerprints for Crude Oils from Deepwater Developments in Block 17, Lower Congo Basin, Angola. Int. J. Environ. Res. Public Health 2020, 17, 7204. https://doi.org/10.3390/ijerph17197204
Boente C, Márquez G, Marín P, Romero E, Rodrigues C, Guzmán MA. Classical Biomarker and Quantitative Extended Diamondoid Analysis Fingerprints for Crude Oils from Deepwater Developments in Block 17, Lower Congo Basin, Angola. International Journal of Environmental Research and Public Health. 2020; 17(19):7204. https://doi.org/10.3390/ijerph17197204
Chicago/Turabian StyleBoente, Carlos, Gonzalo Márquez, Patricia Marín, Emilio Romero, Cristina Rodrigues, and Marco Antonio Guzmán. 2020. "Classical Biomarker and Quantitative Extended Diamondoid Analysis Fingerprints for Crude Oils from Deepwater Developments in Block 17, Lower Congo Basin, Angola" International Journal of Environmental Research and Public Health 17, no. 19: 7204. https://doi.org/10.3390/ijerph17197204
APA StyleBoente, C., Márquez, G., Marín, P., Romero, E., Rodrigues, C., & Guzmán, M. A. (2020). Classical Biomarker and Quantitative Extended Diamondoid Analysis Fingerprints for Crude Oils from Deepwater Developments in Block 17, Lower Congo Basin, Angola. International Journal of Environmental Research and Public Health, 17(19), 7204. https://doi.org/10.3390/ijerph17197204