How to Improve Compliance with Protective Health Measures during the COVID-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms
Abstract
:1. Introduction
1.1. Perceived Efficacy and Compliance
1.2. The Mediating Role of Self-Efficacy
1.3. The Moderating Role of Risk Perception
1.4. The Moderating Role of Civic Engagement
1.5. The Role of Age, Education, and Personality Dysfunction
1.6. Predictive Models
2. Materials and Methods
2.1. Procedures
2.2. Measures
2.2.1. Behavioral Compliance
2.2.2. Perceived Efficacy
2.2.3. Self-Efficacy
2.2.4. Risk Perception
2.2.5. Civic Engagement
2.2.6. Personality Dysfunction
2.3. Participants
3. Statistical Analysis
4. Results
4.1. Paired Sample t-Test
4.2. Mediation Model
4.3. Moderated Mediation Model
4.4. Machine Learning
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- van der Weerd, W.; Timmermans, D.R.M.; Beaujean, D.J.M.A.; Oudhoff, J.P.; Van Steenbergen, J. Monitoring the level of government trust, risk perception and intention of the general public to adopt protective measures during the influenza A (H1N1) pandemic in the Netherlands. BMC Public Health 2011, 11, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poletti, P.; Ajelli, M.; Merler, S. The Effect of Risk Perception on the 2009 H1N1 Pandemic Influenza Dynamics. PLoS ONE 2011, 6, 16460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). 2020. Available online: https://www.who.int/news-room/detail/30-01-2020-statement-on-thesecond-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 9 May 2020).
- Mazza, C.; Ricci, E.; Biondi, S.; Colasanti, M.; Ferracuti, S.; Napoli, C.; Roma, P. A Nationwide Survey of Psychological Distress among Italian People during the COVID-19 Pandemic: Immediate Psychological Responses and Associated Factors. Int. J. Environ. Res. Public Health 2020, 17, 3165. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Marchetti, D.; Mazza, C.; Di Giandomenico, S.; Roma, P.; Verrocchio, M.C. The effect of the COVID-19 lockdown on parents: A call to adopt urgent measures. Psychol. Trauma 2020, 12, S79–S81. [Google Scholar] [CrossRef]
- Mazza, C.; Ricci, E.; Marchetti, D.; Fontanesi, L.; Di Giandomenico, S.; Verrocchio, M.C.; Roma, P. How Personality Relates to Distress in Parents during the Covid-19 Lockdown: The Mediating Role of Child’s Emotional and Behavioral Difficulties and the Moderating Effect of Living with Other People. Int. J. Environ. Res. Public Health 2020, 17, 6236. [Google Scholar] [CrossRef]
- Di Crosta, A.; Palumbo, R.; Marchetti, D.; Ceccato, I.; La Malva, P.; Maiella, R.; Cipi, M.; Roma, P.; Mammarella, N.; Verrocchio, M.C.; et al. Individual Differences, Economic Stability, and Fear of Contagion as Risk Factors for PTSD Symptoms in the COVID-19 Emergency. Front. Psychol. 2020, 11, 567367. [Google Scholar] [CrossRef]
- Becker, M.H. The Health Belief Model and Sick Role Behavior. Health Educ. Monogr. 1974, 2, 409–419. [Google Scholar] [CrossRef]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change1. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef]
- Rogers, R.W. Cognitive and psychological processes in fear appeals and attitude change: A revised theory of protection motivation. In Social Psychophysiology: A Sourcebook; Cacioppo, J.T., Petty, R.E., Eds.; Guilford Press: New York, NY, USA, 1983; pp. 153–176. [Google Scholar]
- Kelly, G.R.; Mamon, J.A.; Scott, J.E. Utility of the health belief model in examining medication compliance among psychiatric outpatients. Soc. Sci. Med. 1987, 25, 1205–1211. [Google Scholar] [CrossRef]
- Brown, S. Measuring perceived benefits and perceived barriers for physical activity. Am. J. Health Behav. 2005, 29, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Mo, P.K.; Wong, C.H.W.; Lam, E.H.K. Can the Health Belief Model and moral responsibility explain influenza vaccination uptake among nurses? J. Adv. Nurs. 2019, 75, 1188–1206. [Google Scholar] [CrossRef] [PubMed]
- Block, L.G.; Keller, P.A. When to accentuate the negative: The effects of perceived efficacy and message framing on intentions to perform a health-related behavior. J. Mark. Res. 1995, 32, 192–203. [Google Scholar] [CrossRef]
- Rubin, G.J.; Amlôt, R.; Page, L.; Wessely, S. Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: Cross sectional telephone survey. BMJ 2009, 339, b2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaeipandari, H.; Mirkhalili, S.M.; Sharifabad, M.A.M.; Ayatollahi, J.; Fallahzadeh, H. Study of H1N1 Influenza Preventive Behaviors Predictors Based on Health Belief Model in Jiroft People. Qom Univ. Med. Sci. J. 2018, 12, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Pollak, Y.; Dayan, H.; Shoham, R.; Berger, I. Predictors of non-adherence to public health instructions during the COVID-19 pandemic. Psychiatry Clin. Neurosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-efficacy. In Encyclopedia of Human Behavior; Ramachaudran, V.S., Ed.; Academic Press: New York, NY, USA, 1994; Volume 4, pp. 71–81. [Google Scholar]
- Schunk, D.H.; Carbonari, J.P. Self-efficacy models. In Behavioral Health: A Handbook of Health Enhancement and Disease Prevention; Matarazzo, J.D., Miller, J.H., Weiss, S., Eds.; Wiley: New York, NY, USA, 1984; pp. 230–247. [Google Scholar]
- Stretcher, V.; DeVellis, M.; Becker, M.; Rosenstock, I. Self-efficacy and the health belief model. Health. Educ. Q. 1986, 13, 73–92. [Google Scholar]
- Siela, D.; Wieseke, A.W. Stress, Self-Efficacy, and Health. In Handbook of Stress, Coping, and Health: Implications for Nursing Research, Theory, and Practice; Rice, V.H., Ed.; SAGE: Los Angeles, CA, USA, 2011. [Google Scholar]
- Cho, H.; Lee, J.-S. The influence of self-efficacy, subjective norms, and risk perception on behavioral intentions related to the H1N1 flu pandemic: A comparison between Korea and the US. Asian J. Soc. Psychol. 2015, 18, 311–324. [Google Scholar] [CrossRef]
- Schwarzer, R. Self-efficacy in the adoption and maintenance of health behaviors: Theoretical approaches and a new model. In Self-Efficacy: Thought Control of Action; Schwarzer, R., Ed.; Hemisphere: Washington, DC, USA, 1992; pp. 217–242. [Google Scholar]
- Schwarzer, R.; Renner, B. Social-cognitive predictors of health behavior: Action self-efficacy and coping self-efficacy. Health Psychol. 2000, 19, 487–495. [Google Scholar] [CrossRef]
- Brewer, N.T.; Chapman, G.B.; Gibbons, F.X.; Gerrard, M.; McCaul, K.D.; Weinstein, N.D. Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination. Health Psychol. 2007, 26, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Bults, M.; Beaujean, D.J.M.A.; De Zwart, O.; Kok, G.; Van Empelen, P.; Van Steenbergen, J.; Richardus, J.H.; Voeten, H.A. Perceived risk, anxiety, and behavioural responses of the general public during the early phase of the Influenza A (H1N1) pandemic in the Netherlands: Results of three consecutive online surveys. BMC Public Health 2011, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Katz, R.; May, L.; Sanza, M.; Johnston, L.; Petinaux, B. H1N1 Preventive Health Behaviors in a University Setting. J. Am. Coll. Health 2012, 60, 46–56. [Google Scholar] [CrossRef]
- Lau, J.T.; Griffiths, S.; Choi, K.-C.; Lin, C. Prevalence of preventive behaviors and associated factors during early phase of the H1N1 influenza epidemic. Am. J. Infect. Control. 2010, 38, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Rimal, R.N.; Real, K. Perceived Risk and Efficacy Beliefs as Motivators of Change. Hum. Commun. Res. 2003, 29, 370–399. [Google Scholar] [CrossRef]
- Bourque, L.B.; Regan, R.; Kelley, M.M.; Wood, M.M.; Kano, M.; Mileti, D.S. An Examination of the Effect of Perceived Risk on Preparedness Behavior. Environ. Behav. 2012, 45, 615–649. [Google Scholar] [CrossRef]
- Doolittle, A.; Faul, A.C. Civic Engagement Scale. SAGE Open 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Kwok, K.O.; Li, K.K.; Chan, H.H.H.; Yi, Y.Y.; Tang, A.; Wei, W.I.; Wong, S.Y.S. Community Responses during Early Phase of COVID-19 Epidemic, Hong Kong. Emerg. Infect. Dis. 2020, 26, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Li, J.B.; Yang, A.; Dou, K.; Wang, L.X.; Zhang, M.C.; Lin, X. Chinese public’s knowledge, perceived severity, and perceived controllability of the COVID-19 and their associations with emotional and behavioural reactions, social participation, and precautionary behaviour: A national survey. PsyArXiv 2020. [Google Scholar] [CrossRef]
- Leung, L. User-generated content on the internet: An examination of gratifications, civic engagement and psychological empowerment. New Media Soc. 2009, 11, 1327–1347. [Google Scholar] [CrossRef]
- Choi, B.R.; Kim, M. Donation via Mobile Applications: A Study of the Factors Affecting Mobile Donation Application Use. Int. J. Hum. Comput. Interact. 2016, 32, 967–974. [Google Scholar] [CrossRef]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef]
- Bish, A.; Michie, S. Demographic and attitudinal determinants of protective behaviours during a pandemic: A review. Br. J. Health Psychol. 2010, 15, 797–824. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.F.; Banimustafa, A.; Alessa, Y.M.; Almutairi, S.B.; Almaleh, Y. Public Trust and Compliance with the Precautionary Measures Against COVID-19 Employed by Authorities in Saudi Arabia. Risk Manag. Healthc. Policy 2020, 13, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Brouard, S.; Vasilopoulos, P.; Becher, M. Sociodemographic and Psychological Correlates of Compliance with the COVID-19 Public Health Measures in France. Can. J. Political Sci. 2020, 53, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Solomou, I.; Constantinidou, F. Prevalence and Predictors of Anxiety and Depression Symptoms during the COVID-19 Pandemic and Compliance with Precautionary Measures: Age and Sex Matter. Int. J. Environ. Res. Public Health 2020, 17, 4924. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Ioannou, M.C.; Mogg, K.; Bradley, B.P. Vigilance for threat: Effects of anxiety and defensiveness. Pers. Individ. Differ. 2004, 36, 1879–1891. [Google Scholar] [CrossRef]
- Oathes, D.J.; Squillante, C.M.; Ray, W.J.; Nitschke, J.B. The Impact of Worry on Attention to Threat. PLoS ONE 2010, 5, e13411. [Google Scholar] [CrossRef] [Green Version]
- Harkness, A.R.; Reynolds, S.M.; Lilienfeld, S.O. A Review of Systems for Psychology and Psychiatry: Adaptive Systems, Personality Psychopathology Five (PSY–5), and theDSM–5. J. Pers. Assess. 2013, 96, 121–139. [Google Scholar] [CrossRef]
- Zajenkowski, M.; Jonason, P.K.; Leniarska, M.; Kozakiewicz, Z. Who complies with the restrictions to reduce the spread of COVID-19?: Personality and perceptions of the COVID-19 situation. Pers. Individ. Differ. 2020, 166, 110199. [Google Scholar] [CrossRef]
- Miguel, F.K.; Machado, G.M.; Pianowski, G.; Carvalho, L.D.F. Compliance with containment measures to the COVID-19 pandemic over time: Do antisocial traits matter? Pers. Individ. Differ. 2020, 168, 110346. [Google Scholar] [CrossRef]
- Yarkoni, T.; Westfall, J. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect. Psychol. Sci. 2017, 12, 1100–1122. [Google Scholar] [CrossRef]
- Dwyer, D.; Falkai, P.; Koutsouleris, N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu. Rev. Clin. Psychol. 2018, 14, 91–118. [Google Scholar] [CrossRef]
- Mazza, C.; Orrù, G.; Burla, F.; Monaro, M.; Ferracuti, S.; Colasanti, M.; Roma, P. Indicators to distinguish symptom accentuators from symptom producers in individuals with a diagnosed adjustment disorder: A pilot study on inconsistency subtypes using SIMS and MMPI-2-RF. PLoS ONE 2019, 14, e0227113. [Google Scholar] [CrossRef] [Green Version]
- Mazza, C.; Monaro, M.; Orrù, G.; Burla, F.; Colasanti, M.; Ferracuti, S.; Roma, P. Introducing machine learning to detect personality faking-good in a male sample: A new model based on MMPI-2-RF scales and reaction times. Front Psychiatry 2019, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Mazza, C.; Monaro, M.; Burla, F.; Colasanti, M.; Orrù, G.; Ferracuti, S.; Roma, P. Use of mouse-tracking software to detect faking-good behavior on personality questionnaires: An explorative study. Sci Rep 2020, 10, 4835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orrù, G.; Monaro, M.; Conversano, C.; Gemignani, A.; Sartori, G. Machine Learning in Psychometrics and Psychological Research. Front. Psychol. 2020, 10, 2970. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Cowling, B.J.; Lam, W.W.T.; Ng, D.M.; Fielding, R. Anxiety, worry and cognitive risk estimate in relation to protective behaviors during the 2009 influenza A/H1N1 pandemic in Hong Kong: Ten cross-sectional surveys. BMC Infect. Dis. 2014, 14, 169. [Google Scholar] [CrossRef] [Green Version]
- Krueger, R.F.; Derringer, J.; Markon, K.E.; Watson, D.; Skodol, A.E. The Personality Inventory for DSM-5—Brief Form (PID-5-BF)—Adult; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hayes, A.F. Partial, conditional, and moderated moderated mediation: Quantification, inference, and interpretation. Commun. Monogr. 2017, 85, 4–40. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2013; p. 507. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Dwork, C.; Feldman, V.; Hardt, M.; Pitassi, T.; Reingold, O.; Roth, A. The reusable holdout: Preserving validity in adaptive data analysis. Science 2015, 349, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Kohavi, R. (Ed.) A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 2, pp. 1137–1143. [Google Scholar]
- Le Cessie, S.; Van Houwelingen, H.C. Ridge Estimators in Logistic Regression. Appl. Stat. 1992, 41, 191–201. [Google Scholar] [CrossRef]
- Keerthi, S.; Shevade, S.K.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Comput. 2001, 13, 637–649. [Google Scholar] [CrossRef]
- John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–20 August 1995; pp. 338–345. [Google Scholar]
- Breiman, L. Random forest. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Japkowicz, N. (Ed.) The class imbalance problem: Significance and strategies. In Proceedings of the 2000 International Conference on Artificial Intelligence (IC-AI), Las Vegas, NV, USA, 28 June–1 July 2000; pp. 111–117. [Google Scholar]
- Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study1. Intell. Data Anal. 2002, 6, 429–449. [Google Scholar] [CrossRef]
- Barati, M.; Bashirian, S.; Jenabi, E.; Khazaei, S.; Karimi-Shahanjarini, A.; Zareian, S.; Rezapur-Shahkolai, F.; Moeini, B. Factors associated with preventive behaviours of COVID-19 among hospital staff in Iran in 2020: An application of the Protection Motivation Theory. J. Hosp. Infect. 2020, 105, 430–433. [Google Scholar] [CrossRef]
- Kebede, Y.; Yitayih, Y.; Birhanu, Z.; Mekonen, S.; Ambelu, A. Knowledge, perceptions and preventive practices towards COVID-19 early in the outbreak among Jimma university medical center visitors, Southwest Ethiopia. PLoS ONE 2020, 15, e0233744. [Google Scholar] [CrossRef]
- Nivette, A.; Ribeaud, D.; Murray, A.; Steinhoff, A.; Bechtiger, L.; Hepp, U.; Shanahan, L.; Eisner, M. Non-compliance with COVID-19-related public health measures among young adults in Switzerland: Insights from a longitudinal cohort study. Soc. Sci. Med. 2020, 268, 113370. [Google Scholar] [CrossRef]
- Ibuka, Y.; Chapman, G.B.; Meyers, L.A.; Li, M.; Galvani, A.P. The dynamics of risk perceptions and precautionary behavior in response to 2009 (H1N1) pandemic influenza. BMC Infect. Dis. 2010, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Roma, P.; Pompili, M.; Lester, D.; Girardi, P.; Ferracuti, S. Incremental conditions of isolation as a predictor of suicide in prisoners. Forensic Sci. Int. 2013, 233, e1–e2. [Google Scholar] [CrossRef]
Dimensions | M | SD | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
1. Compliance | 41.66 | 6.20 | - | |||
2. Perceived efficacy | 44.82 | 6.17 | 0.742 ** | - | ||
3. Self-efficacy | 12.55 | 1.71 | 0.332 ** | 0.198 ** | - | |
4. Perceived risk | 18.56 | 3.18 | 0.129 ** | 0.218 ** | −0.077 ** | - |
5. Civic attitudes | 42.33 | 8.52 | 0.191 ** | 0.176 ** | 0.243 ** | 0.118 ** |
Safety Measures | Perceived Efficacy N = 2766 M (SD) | Compliance N = 2766 M (SD) | t | p | Cohen’s d |
---|---|---|---|---|---|
1. Avoid hugs | 3.94 (1.1) | 3.76 (1.2) | 9.006 | <0.001 | 0.171 |
2. Avoid handshakes | 4.50 (0.8) | 4.48 (0.8) | 1.253 | 0.210 | 0.024 |
3. Keep one meter away from others | 4.42 (0.9) | 4.10 (1) | 17.653 | <0.001 | 0.336 |
4. Avoid drinking from bottles and glasses used by others | 4.65 (0.6) | 4.54 (0.8) | 9.978 | <0.001 | 0.190 |
5. Avoid crowded places | 4.67(0.6) | 4.56 (0.7) | 10.708 | <0.001 | 0.204 |
6. Disinfect hands at home | 4.28 (0.9) | 4.09 (1) | 12.304 | <0.001 | 0.234 |
7. Disinfect hands outside | 4.63 (0.7) | 4.31 (0.9) | 22.219 | <0.001 | 0.423 |
8. Avoid touching face with hands | 4.50 (0.8) | 3.23 (1.2) | 58.744 | <0.001 | 1.117 |
9. Cough or sneeze into a tissue or elbow | 4.63 (0.7) | 4.24 (0.9) | 26.660 | <0.001 | 0.507 |
10. Stay at home | 4.60 (0.7) | 4.34 (0.9) | 17.617 | <0.001 | 0.335 |
Predictors | β | t | p | 95% CI | |
---|---|---|---|---|---|
LL | UL | ||||
Model 1 (DV: Self-efficacy) | |||||
Covariates | |||||
Age | −0.00 | −0.25 | 0.800 | −0.005 | 0.004 |
Education | −0.12 | −2.88 | 0.004 | −0.205 | −0.039 |
Personality dysfunction | −0.03 | −8.25 | <0.001 | −0.031 | −0.019 |
Independent variable | |||||
PE | 0.05 | 10.23 | <0.001 | 0.043 | 0.063 |
R2 = 0.06 | |||||
F(4, 2761) = 46.69 *** | |||||
Model 2 (DV: Compliance) | |||||
Covariates | |||||
Age | 0.04 | 6.49 | <0.001 | 0.026 | 0.049 |
Education | −0.27 | −2.68 | 0.008 | −0.467 | −0.072 |
Personality dysfunction | −0.04 | −5.75 | <0.001 | −0.057 | −0.028 |
Independent variables | |||||
SE | 0.65 | 14.38 | <0.001 | 0.561 | 0.738 |
PE | 0.72 | 57.44 | <0.001 | 0.691 | 0.740 |
R2 = 0.60 | |||||
F(5, 2760) = 826.83 *** |
Predictors | β | t | p | 95% CI | |
---|---|---|---|---|---|
LL | UL | ||||
Model 1 (DV: Self-efficacy) | |||||
Covariates | |||||
Age | −0.00 | −1.29 | 0.198 | −0.008 | 0.002 |
Education | −0.12 | −2.89 | 0.004 | −0.201 | −0.038 |
Personality dysfunction | −0.02 | −7.45 | <0.001 | −0.028 | −0.016 |
Independent variables | |||||
PE | 0.07 | 2.50 | 0.013 | 0.015 | 0.126 |
Risk perception | −0.08 | −1.34 | 0.179 | −0.206 | −0.038 |
PE x Risk perception | 0.00 | 0.001 | 0.846 | −0.002 | 0.003 |
CE attitudes | 0.07 | 3.15 | 0.002 | 0.027 | 0.117 |
PE x CE attitudes | −0.00 | −1.23 | 0.217 | −0.002 | 0.000 |
R2 = 0.12 | |||||
F(8, 2757) = 48.08 *** | |||||
Model 2 (DV: Compliance) | |||||
Covariates | |||||
Age | 0.04 | 6.53 | <0.001 | 0.027 | 0.050 |
Education | −0.25 | −2.51 | 0.012 | −0.453 | −0.056 |
Personality dysfunction | −0.04 | −5.44 | <0.001 | −0.056 | −0.025 |
Independent variables | |||||
SE | 0.52 | 1.69 | 0.092 | −0.085 | 1.132 |
PE | 0.34 | 4.74 | <0.001 | 0.196 | 0.473 |
SE x Risk perception | −0.00 | −0.14 | 0.885 | −0.029 | 0.025 |
SE x CE attitudes | 0.01 | 0.80 | 0.422 | −0.005 | 0.013 |
Risk perception | −0.53 | −2.52 | 0.012 | −0.952 | −0.119 |
PE x Risk perception | 0.01 | 3.56 | <0.001 | 0.005 | 0.019 |
CE attitudes | −0.23 | −3.09 | 0.002 | −0.370 | −0.083 |
PE x CE attitudes | 0.01 | 3.34 | 0.001 | 0.002 | 0.007 |
R2 = 0.61 | |||||
F(11, 2754) = 382.97 *** |
Algorithm | Accuracy | ROC Area | Class | Precision | Recall | F-Measure |
---|---|---|---|---|---|---|
Logistic | 88.07% | 0.941 | High compliance | 0.990 | 0.882 | 0.933 |
Low compliance | 0.325 | 0.861 | 0.904 | |||
SVM | 88.89% | 0.871 | High compliance | 0.990 | 0.880 | 0.932 |
Low compliance | 0.322 | 0.861 | 0.468 | |||
Random forest | 95.71% | 0.938 | High compliance | 0.976 | 0.979 | 0.977 |
Low compliance | 0.662 | 0.628 | 0.644 | |||
Naive Bayes | 94.35% | 0.929 | High compliance | 0.978 | 0.916 | 0.970 |
Low compliance | 0.534 | 0.679 | 0.598 |
Algorithm | Accuracy | ROC Area | Class | Precision | Recall | F-Measure |
---|---|---|---|---|---|---|
Logistic | 86.62% | 0.918 | High compliance | 0.983 | 0.873 | 0.942 |
Low compliance | 0.283 | 0.765 | 0.413 | |||
SVM | 87.34% | 0.823 | High compliance | 0.983 | 0.881 | 0.929 |
Low compliance | 0.295 | 0.765 | 0.426 | |||
Random forest | 94.39% | 0.901 | High compliance | 0.964 | 0.977 | 0.970 |
Low compliance | 0.556 | 0.441 | 0.492 | |||
Naive Bayes | 94.03% | 0.875 | High compliance | 0.969 | 0.967 | 0.968 |
Low compliance | 0.514 | 0.529 | 0.522 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roma, P.; Monaro, M.; Muzi, L.; Colasanti, M.; Ricci, E.; Biondi, S.; Napoli, C.; Ferracuti, S.; Mazza, C. How to Improve Compliance with Protective Health Measures during the COVID-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms. Int. J. Environ. Res. Public Health 2020, 17, 7252. https://doi.org/10.3390/ijerph17197252
Roma P, Monaro M, Muzi L, Colasanti M, Ricci E, Biondi S, Napoli C, Ferracuti S, Mazza C. How to Improve Compliance with Protective Health Measures during the COVID-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms. International Journal of Environmental Research and Public Health. 2020; 17(19):7252. https://doi.org/10.3390/ijerph17197252
Chicago/Turabian StyleRoma, Paolo, Merylin Monaro, Laura Muzi, Marco Colasanti, Eleonora Ricci, Silvia Biondi, Christian Napoli, Stefano Ferracuti, and Cristina Mazza. 2020. "How to Improve Compliance with Protective Health Measures during the COVID-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms" International Journal of Environmental Research and Public Health 17, no. 19: 7252. https://doi.org/10.3390/ijerph17197252
APA StyleRoma, P., Monaro, M., Muzi, L., Colasanti, M., Ricci, E., Biondi, S., Napoli, C., Ferracuti, S., & Mazza, C. (2020). How to Improve Compliance with Protective Health Measures during the COVID-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms. International Journal of Environmental Research and Public Health, 17(19), 7252. https://doi.org/10.3390/ijerph17197252