Back Pain Related with Age, Anthropometric Variables, Sagittal Spinal Curvatures, Hamstring Extensibility, Physical Activity and Health Related Quality of Life in Male and Female High School Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calvo-Muñoz, I.; Kovacs, F.M.; Roqué, M.; Fernández, I.G.; Calvo, J.S. Risk Factors for Low Back Pain in Childhood and Adolescence: A Systematic Review. Clin. J. Pain 2018, 34, 468–484. [Google Scholar] [CrossRef] [PubMed]
- Scarabottolo, C.C.; Pinto, R.Z.; Oliveira, C.B.; Zanuto, E.F.; Cardoso, J.R.; Christofaro, D.G.D. Back and neck pain prevalence and their association with physical inactivity domains in adolescents. Eur. Spine J. 2017, 26, 2274–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoy, D.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Bain, C.; Williams, G.; Smith, E.; Vos, T.; Barendregt, J.; et al. The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 968–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamper, S.J.; Henschke, N.; Hestbaek, L.; Dunn, K.M.; Williams, C.M. Musculoskeletal pain in children and adolescents. Braz. J. Phys. Ther. 2016, 20, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Harreby, M.; Neergaard, K.; Hesselsøe, G.; Kjer, J. Are radiologic changes in the thoracic and lumbar spine of adolescents risk factors for low back pain in adults? A 25-year prospective cohort study of 640 school children. Spine 1995, 20, 2298–2302. [Google Scholar] [CrossRef]
- Hestbaek, L.; Leboeuf-Yde, C.; Kyvik, K.O. Is comorbidity in adolescence a predictor for adult low back pain? A prospective study of a young population. BMC Musculoskelet. Disord. 2006, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Wirth, B.; Potthoff, T.; Rosser, S.; Humphreys, B.K.; De Bruin, E.D. Physical risk factors for adolescent neck and mid back pain: A systematic review. Chiropr. Man. Ther. 2018, 26, 36. [Google Scholar] [CrossRef] [Green Version]
- Briggs, A.M.; Smith, A.J.; Straker, L.M.; Bragge, P. Thoracic spine pain in the general population: Prevalence, incidence and associated factors in children, adolescents and adults. A systematic review. BMC Musculoskelet. Disord. 2009, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Morales, M.; Abuín-Porras, V.; Romero-Morales, C.; de la Cueva-Reguera, M.; De-La-Cruz-Torres, B.; Rodríguez-Costa, I. Implementation of a Classroom Program of Physiotherapy among Spanish Adolescents with Back Pain: A Collaborative Study. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef]
- Panjabi, M.M. The stabilizing system of the spine. Part, I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 1992, 5, 383–389, discussion 397. [Google Scholar] [CrossRef]
- Baliki, M.N.; Geha, P.Y.; Jabakhanji, R.; Harden, N.; Schnitzer, T.J.; Apkarian, A.V. A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis. Mol. Pain 2008, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baliki, M.N.; Geha, P.Y.; Fields, H.L.; Apkarian, A.V. Predicting value of pain and analgesia: Nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 2010, 66, 149–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miñana-Signes, V.; Monfort-Pañego, M. Knowledge on health and back care education related to physical activity and exercise in adolescents. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2016, 25, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Cardon, G.M.; De Clercq, D.L.R.; De Bourdeaudhuij, I.M.M. Back education efficacy in elementary schoolchildren: A 1-year follow-up study. Spine 2002, 27, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Cardon, G.M.; de Clercq, D.L.R.; Geldhof, E.J.A.; Verstraete, S.; de Bourdeaudhuij, I.M.M. Back education in elementary schoolchildren: The effects of adding a physical activity promotion program to a back care program. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2007, 16, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolphens, M.; Cagnie, B.; Danneels, L.; De Clercq, D.; De Bourdeaudhuij, I.; Cardon, G. Long-term effectiveness of a back education programme in elementary schoolchildren: An 8-year follow-up study. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2011, 20, 2134–2142. [Google Scholar] [CrossRef] [Green Version]
- Leboeuf-Yde, C.; Kyvik, K.O. At what age does low back pain become a common problem? A study of 29,424 individuals aged 12-41 years. Spine 1998, 23, 228–234. [Google Scholar] [CrossRef]
- Rodríguez-Oviedo, P.; Santiago-Pérez, M.I.; Pérez-Ríos, M.; Gómez-Fernández, D.; Fernández-Alonso, A.; Carreira-Núñez, I.; García-Pacios, P.; Ruano-Ravina, A. Backpack weight and back pain reduction: Effect of an intervention in adolescents. Pediatr. Res. 2018, 84, 34–40. [Google Scholar] [CrossRef]
- González-Gálvez, N.; Marcos-Pardo, P.J.; Carrasco-Poyatos, M. Functional improvements after a pilates program in adolescents with a history of back pain: A randomised controlled trial. Complement. Ther. Clin. Pract. 2019, 35, 1–7. [Google Scholar] [CrossRef]
- González-Gálvez, N.; Marcos-Pardo, P.J.; Trejo-Alfaro, H.; Vaquero-Cristóbal, R. Effect of 9-month Pilates program on sagittal spinal curvatures and hamstring extensibility in adolescents: Randomised controlled trial. Sci. Rep. 2020, 10, 9977. [Google Scholar] [CrossRef]
- Steenholt, C.B.; Pisinger, V.S.C.; Danquah, I.H.; Tolstrup, J.S. School and class-level variations and patterns of physical activity: A multilevel analysis of Danish high school students. BMC Public Health 2018, 18, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainz de Baranda, P.; Cejudo, A.; Martínez-Romero, M.T.; Aparicio-Sarmiento, A.; Rodríguez-Ferrán, O.; Collazo-Diéguez, M.; Hurtado-Avilés, J.; Andújar, P.; Santonja-Medina, F. Sitting Posture, Sagittal Spinal Curvatures and Back Pain in 8 to 12-Year-Old Children from the Region of Murcia (Spain): ISQUIOS Programme. Int. J. Environ. Res. Public Health 2020, 17, 2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjolie, A.N. Low-back pain in adolescents is associated with poor hip mobility and high body mass index. Scand. J. Med. Sci Sport. 2004, 14, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Harreby, M.; Nygaard, B.; Jessen, T.; Larsen, E.; Storr-Paulsen, A.; Lindahl, A.; Fisker, I.; Laegaard, E. Risk Factors for Low Back Pain in a Cohort of 1389 Danish School Children: An Epidemiologic Study. Eur Spine J. 1999, 8, 444–450. [Google Scholar] [CrossRef]
- Amorim, B.; Simic, A.; Pappas, M.; Zadro, E.; Carrillo, J.R.; Ordoñana, E.; Ferreira, J.R. Is occupational or leisure physical activity associated with low back pain? Insights from a cross-sectional study of 1059 participants. Braz. J. Phys. Ther. 2019, 23, 257–265. [Google Scholar] [CrossRef]
- Husky, M.M.; Ferdous Farin, F.; Compagnone, P.; Fermanian, C.; Kovess-Masfety, V. Chronic back pain and its association with quality of life in a large French population survey. Health Qual. Life Outcomes 2018, 16, 195. [Google Scholar] [CrossRef] [Green Version]
- Grabara, M.; Bieniec, A.; Nawrocka, A. Spinal curvatures of children and adolescents - A cross-sectional study. Biomed. Hum. Kinet. 2017, 9, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Mayorga-Vega, D.; Merino-Marban, R.; Manzano-Lagunas, J.; Blanco, H.; Viciana, J. Effects of a Stretching Development and Maintenance Program on Hamstring Extensibility in Schoolchildren: A Cluster-Randomized Controlled Trial. J. Sports Sci. Med. 2016, 15, 65–74. [Google Scholar]
- Lee, K.T.H.; Lewis, R.W.; Kataoka, S.; Schenke, K.; Vandell, D.L. Out-of-School Time and Behaviors During Adolescence. J. Res. Adolesc. 2018, 28, 284–293. [Google Scholar] [CrossRef]
- Zwierzchowska, A.; Tuz, J.; Grabara, M. Can BAI be better than BMI to estimate the increment of lumbar lordosis for Caucasians population? J. Back Musculoskelet. Rehabil. 2020, 1–7. [Google Scholar] [CrossRef]
- Sweeney, E.A.; Daoud, A.K.; Potter, M.N.; Ritchie, L.; Howell, D.R. Association Between Flexibility and Low Back Pain in Female Adolescent Gymnasts. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2019, 29, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Muyor, J.M.; López-Miñarro, P.A.; Casimiro, A.J. Effect of stretching program in an industrial workplace on hamstring flexibility and sagittal spinal posture of adult women workers: A randomized controlled trial. J. Back Musculoskelet. Rehabil. 2012, 25, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Adamou, G.; Tzilios, G.; Emmanouilidou, M. Reliability of Spinal Range of Motion in Healthy Boys Using a Skin-Surface Device. J. Manip. Physiol. Ther. 2008, 31, 570–576. [Google Scholar] [CrossRef]
- Santonja Medina, F. Exploración Clínica y Radiográfica del Raquis Sagital, sus Correlaciones; Universidad de Murcia: Murcia, Spain, 1993; ISBN 8476844395. [Google Scholar]
- Sainz de Baranda, P.; Cejudo, A.; Moreno-Alcaraz, V.J.; Martinez-Romero, M.T.; Aparicio-Sarmiento, A.; Santonja-Medina, F. Sagittal spinal morphotype assessment in 8 to 15 years old Inline Hockey players. PeerJ 2020, 8, e8229. [Google Scholar] [CrossRef] [Green Version]
- Muyor, J.M.; Vaquero-Cristóbal, R.; Alacid, F.; López-Miñarro, P.A. Criterion-Related Validity of Sit-and-Reach and Toe-Touch Tests as a Measure of Hamstring Extensibility in Athletes. J. Strength Cond. Res. 2014, 28, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Crespo, G.; Rodríguez-Piñero Durán, M.; López-Salguero, A.I.; Zarco-Periñan, M.J.; Ibáñez-Campos, T.; Echevarría-Ruiz de Vargas, C. Back pain among adolescents: Prevalence and associated factors. Rehabilitacion 2009, 43, 72–80. [Google Scholar] [CrossRef]
- Department of Health and Human E Physical Activity Guidelines Advisory Committee; Department of Health and Human E: Washington, DC, USA, 2008.
- World Health Organization Physical Activity: Global Recommendations on Physical Activity for Health Consequences of Physical Inactivity; WHO Region: Ginebra, Spain, 2015; ISBN 978 92 4 159 997 9.
- Cole, T.J.; Donnet, M.L.; Stanfield, J.P. Weight-for-height indices to assess nutritional status—A new index on a slide-rule. Am. J. Clin. Nutr. 1981, 34, 1935–1943. [Google Scholar] [CrossRef]
- Dehghan, M.; Akhtar-Danesh, N.; Merchant, A.T. Childhood obesity, prevalence and prevention. Nutr. J. 2005, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Mederico, M.; Paoli, M.; Zerpa, Y.; Camacho, N.; Cichetti, R.; Molina, Z.; Mora, Y.; Valeri, L. Reference values of waist circumference and waist/hip ratio in children and adolescents of Mérida, Venezuela: Comparison with international references. Endocrinol. Y Nutr. 2013, 60, 235–242. [Google Scholar] [CrossRef]
- Ravens-Sieberer, U.; Auquier, P.; Erhart, M.; Gosch, A.; Rajmil, L.; Bruil, J.; Power, M.; Duer, W.; Cloetta, B.; Czemy, L.; et al. The KIDSCREEN-27 quality of life measure for children and adolescents: Psychometric results from a cross-cultural survey in 13 European countries. Qual. Life Res. 2007, 16, 1347–1356. [Google Scholar] [CrossRef]
- Aymerich, M.; Berra, S.; Guillamón, I.; Herdman, M.; Alonso, J.; Ravens-Sieberer, U.; Rajmil, L. Development of the Spanish version of the KIDSCREEN, a health-related quality of life instrument for children and adolescents. Gac. Sanit. 2005, 19, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Swain, M.S.; Henschke, N.; Kamper, S.J.; Gobina, I.; Ottová-Jordan, V.; Maher, C.G. An international survey of pain in adolescents. BMC Public Health 2014, 14, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, S.E.; Mitchell, M.F. Instructional Variables and Student Knowledge and Conceptions of Fitness. J. Teach. Phys. Educ. 2003, 22, 533–551. [Google Scholar] [CrossRef] [Green Version]
- Froehle, A.W.; Grannis, K.A.; Sherwood, R.J.; Duren, D.L. Relationships Between Age at Menarche, Walking Gait Base of Support, and Stance Phase Frontal Plane Knee Biomechanics in Adolescent Girls. PM R 2017, 9, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Tsigkanos, C.; Gaskell, L.; Smirniotou, A.; Tsigkanos, G. Static and dynamic balance deficiencies in chronic low back pain. J. Back Musculoskelet. Rehabil. 2016, 29, 887–893. [Google Scholar] [CrossRef]
- Kyllönen, E.S.; Heikkinen, J.E.; Väänänen, H.K.; Kurttila-Matero, E.; Wilen-Rosenqvist, G.; Lankinen, K.S.; Vanharanta, J.H. Influence of estrogen-progestin replacement therapy and exercise on lumbar spine mobility and low back symptoms in a healthy early postmenopausal female population: A 2-year randomized controlled trial. Eur. Spine J. 1998, 7, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Shin, G.; D’Souza, C.; Liu, Y.-H. Creep and fatigue development in the low back in static flexion. Spine 2009, 34, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.W.P.; Verhagen, A.P.; van Trijffel, E.; Lucas, C.; Koes, B.W. Spinal mechanical load as a risk factor for low back pain: A systematic review of prospective cohort studies. Spine 2009, 34, E281–E93. [Google Scholar] [CrossRef]
- Solans, M.; Pane, S.; Estrada, M.-D.; Serra-Sutton, V.; Berra, S.; Herdman, M.; Alonso, J.; Rajmil, L. Health-related quality of life measurement in children and adolescents: A systematic review of generic and disease-specific instruments. Value Heal. J. Int. Soc. Pharm. Outcomes Res. 2008, 11, 742–764. [Google Scholar] [CrossRef] [Green Version]
- Macedo, R.B.; Coelho-e-Silva, M.J.; Sousa, N.F.; Valente-dos-Santos, J.; Machado-Rodrigues, A.M.; Cumming, S.P.; Lima, A.V.; Gonçalves, R.S.; Martins, R.A. Quality of life, school backpack weight, and nonspecific low back pain in children and adolescents. J. Pediatr. 2015, 91, 263–269. [Google Scholar] [CrossRef]
- Balagué, F.; Ferrer, M.; Rajmil, L.; Acuña, A.P.; Pellisé, F.; Cedraschi, C. Assessing the association between low back pain, quality of life, and life events as reported by schoolchildren in a population-based study. Eur. J. Pediatr. 2012, 171, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Koh, M.J.; Park, S.Y.; Woo, Y.S.; Kang, S.H.; Park, S.H.; Chun, H.J.; Park, E.J. Assessing the Prevalence of Recurrent Neck and Shoulder Pain in Korean High School Male Students: A Cross-sectional Observational Study. Korean J. Pain 2012, 25, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, T.R.; Mediano, M.F.F.; Sichieri, R.; Cunha, D.B. Is Health-related Quality of Life Decreased in Adolescents With Back Pain? Spine 2018, 43, E822–E829. [Google Scholar] [CrossRef] [PubMed]
- Banikarim, C.; Chacko, M.R.; Kelder, S.H. Prevalence and impact of dysmenorrhea on Hispanic female adolescents. Arch. Pediatr. Adolesc. Med. 2000, 154, 1226–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolip, P. Gender differences in health status during adolescencet a remarkable shift. Int. J. Adolesc. Med. Health 2011, 9, 9–18. [Google Scholar] [CrossRef]
- Chen, H.-M.; Hu, H.-M. Randomized Trial of Modified Stretching Exercise Program for Menstrual Low Back Pain. West. J. Nurs. Res. 2019, 41, 238–257. [Google Scholar] [CrossRef]
- Holtzman, D.A.; Petrocco-Napuli, K.L.; Burke, J.R. Prospective case series on the effects of lumbosacral manipulation on dysmenorrhea. J. Manip. Physiol. Ther. 2008, 31, 237–246. [Google Scholar] [CrossRef]
- Fernandes, J.A.A.; Dos Santos Genebra, C.V.; Maciel, N.M.; Fiorelli, A.; de Conti, M.H.S.; De Vitta , A. Low back pain in schoolchildren: A cross-sectional study ub a western city of Sao Paulo State, Brazil. Acta Ortopédica Bras. 2015, 23, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Balagué, F.; Dutoit, G.; Waldburger, M. Low back pain in schoolchildren. An epidemiological study. Scand. J. Rehabil. Med. 1988, 20, 175–179. [Google Scholar]
- McCook, D.T.; Vicenzino, B.; Hodges, P.W. Activity of deep abdominal muscles increases during submaximal flexion and extension efforts but antagonist co-contraction remains unchanged. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2009, 19, 754–762. [Google Scholar] [CrossRef]
- Jubany, J.; Danneels, L.; Angulo-Barroso, R. The influence of fatigue and chronic low back pain on muscle recruitment patterns following an unexpected external perturbation. BMC Musculoskelet. Disord. 2017, 18, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, C.M.; Rast, F.M.; Ernst, M.J.; Meichtry, A.; Kool, J.; Rissanen, S.M.; Suni, J.H.; Kankaanpää, M. The effect of muscle fatigue and low back pain on lumbar movement variability and complexity. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2017, 33, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, D.; Ballenberger, N.; Ackermann, B.; Zalpour, C. Potential Relevance of Altered Muscle Activity and Fatigue in the Development of Performance-Related Musculoskeletal Injuries in High String Musicians. Med. Probl. Perform. Art. 2018, 33, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Smidt, G.; Herring, T.; Amundsen, L.; Rogers, M.; Russell, A.; Lehmann, T. Assessment of abdominal and back extensor function. A quantitative approach and results for chronic low-back patients. Spine 1983, 8, 211–219. [Google Scholar] [CrossRef]
- Chimera, N.J.; Smith, C.A.; Warren, M. Injury history, sex, and performance on the functional movement screen and Y balance test. J. Athl. Train. 2015, 50, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Tousignant-Laflamme, Y.; Martel, M.O.; Joshi, A.B.; Cook, C.E. Rehabilitation management of low back pain—It’s time to pull it all together! J. Pain Res. 2017, 10, 2373–2385. [Google Scholar] [CrossRef] [Green Version]
- Baliki, M.N.; Apkarian, A.V. Nociception, Pain, Negative Moods, and Behavior Selection. Neuron 2015, 87, 474–491. [Google Scholar] [CrossRef] [Green Version]
- Riberto, M.; Chiappetta, L.M.; Lopes, K.A.; Chiappetta, L.R. A transversal multicenter study assessing functioning, disability and environmental factors with the comprehensive ICF core set for low back pain in Brazil. Eur. J. Phys. Rehabil. Med. 2014, 50, 153–160. [Google Scholar]
- Breen, A.C.; van Tulder, M.W.; Koes, B.W.; Jensen, I.; Reardon, R.; Bronfort, G. Mono-disciplinary or multidisciplinary back pain guidelines? How can we achieve a common message in primary care? Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2006, 15, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Masiero, S.; Carraro, E.; Celia, A.; Sarto, D.; Ermani, M. Prevalence of nonspecific low back pain in schoolchildren aged between 13 and 15 years. Acta Paediatr. 2008, 97, 212–216. [Google Scholar] [CrossRef]
- Balagué, F.; Nordin, M.; Skovron, M.L.; Dutoit, G.; Yee, A.; Waldburger, M. Non-specific low-back pain among schoolchildren: A field survey with analysis of some associated factors. J. Spinal Disord. 1994, 7, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Trompeter, K.; Fett, D.; Platen, P. Prevalence of Back Pain in Sports: A Systematic Review of the Literature. Sports Med. 2017, 47, 1183–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenza, M.C.; Rodríguez-Torres, J.; Cabrera-Martos, I.; Díaz-Pelegrina, A.; Aguilar-Ferrándiz, M.E.; Castellote-Caballero, Y. Results of a Pilates exercise program in patients with chronic non-specific low back pain: A randomized controlled trial. Clin. Rehabil. 2017, 31, 753–760. [Google Scholar] [CrossRef]
- Gomes da Silva, S.; Arida, R.M. Physical activity and brain development. Expert Rev. Neurother. 2015, 15, 1041–1051. [Google Scholar] [CrossRef]
- Lima, L.V.; Abner, T.S.S.; Sluka, K.A. Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. J. Physiol. 2017, 595, 4141–4150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar] [CrossRef]
- Suchert, V.; Isensee, B.; Hansen, J.; Johannsen, M.; Krieger, C.; Müller, K.; Sauer, I.; Weisser, B.; Sargent, J.D.; Hanewinkel, R. “läuft.”--a school-based multi-component program to establish a physically active lifestyle in adolescence: Study protocol for a cluster-randomized controlled trial. Trials 2013, 14, 416. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; O’Sullivan, P.; Straker, L. Classification of sagittal thoraco-lumbo-pelvic alignment of the adolescent spine in standing and its relationship to low back pain. Spine 2008, 33, 2101–2107. [Google Scholar] [CrossRef]
- Korovessis, P.; Koureas, G.; Papazisis, Z. Correlation between backpack weight and way of carrying, sagittal and frontal spinal curvatures, athletic activity, and dorsal and low back pain in schoolchildren and adolescents. J. Spinal Disord. Tech. 2004, 17, 33–40. [Google Scholar] [CrossRef]
- Jones, M.A.; Stratton, G.; Reilly, T.; Unnithan, V.B. Biological risk indicators for recurrent non-specific low back pain in adolescents. Br. J. Sports Med. 2005, 39, 137–140. [Google Scholar] [CrossRef] [Green Version]
Total 100% (n = 273) | MS 49.08% (n = 134) | FS 50.92% (n = 139) | Diff. MS-FS | 95%CI | p | Effect Size d | |
---|---|---|---|---|---|---|---|
Thoracic curvature in standing (°) | 35.3 ± 11.4 | 32.1 ± 10.8 | 38.4 ± 11.1 | −6.3 | −8.9; −3.7 | 0.000 | 0.57 |
Lumbar curvature in standing (°) | −35.3 ± 7.2 | −33.4 ± 7.3 | −37.0 ± 6.6 | 3.6 | 2.0; 5.3 | 0.000 | 0.52 |
Pelvic tilt in standing (°) | 25.0 ± 7.3 | 26.0 ± 8.0 | 24.1 ± 6.4 | 1.9 | 0.2; 3.6 | 0.033 | 0.24 |
Distance in SR (cm) | −8.7 ± 9.4 | −12.8 ± 8.1 | −4.7 ± 8.7 | −8.1 | −19.1; −6.1 | 0.000 | 0.97 |
Pelvic tilt in SR (°) | −13.9 ± 9.4 | −20.4 ± 9.6 | −7.7 ± 12.9 | −12.7 | −15.5; 10.0 | 0.000 | 1.12 |
PSLR (°) | 81.8 ± 14.4 | 74.8 ± 9.2 | 88.6 ± 15.3 | −13.8 | −16.8; −10.8 | 0.000 | 1.09 |
Age | 13.2 ± 1.2 | 13.3 ± 1.3 | 13.1 ± 1.2 | 0.2 | −0.1; 0.6 | 0.099 | 0.20 |
Body mass (kg) | 54.2 ± 12.1 | 55.5 ± 13.0 | 52.9 ± 11.2 | 2.6 | −0.3; 5.5 | 0.078 | 0.21 |
Height (cm) | 161.3 ± 9.4 | 163.2 ± 10.8 | 159.6 ± 7.3 | 3.7 | 1.5; 5.9 | 0.001 | 0.40 |
BMI (kg/m2) | 20.7 ± 3.8 | 20.7 ± 3.9 | 20.7 ± 3.8 | −0.02 | −0.9; 0.9 | 0.974 | 0.00 |
Waist girth (cm) | 72.3 ± 9.9 | 74.9 ± 10.5 | 69.9 ± 8.6 | 5.0 | 2.8; 7.3 | 0.000 | 0.53 |
Hip girth (cm) | 90.3 ± 8.8 | 89.8 ± 9.1 | 90.9 ± 8.6 | −1.1 | −3.2; 1.0 | 0.319 | 0.12 |
W/H ratio | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.1 | 0.5; 0.1 | 0.000 | 0.60 |
General Sample 100% (n = 273) | MS 49.08% (n = 134) | FS 50.92% (n = 139) | r * | p | |
---|---|---|---|---|---|
Thoracic curvature classification | |||||
Hypokyphosis | 8.8(24) | 13.4 (18) | 4.3(6) | 0.241 | 0.000 |
Normal | 71.4(195) | 75.4(101) | 67.6(94) | ||
Hyperkyphosis | 19.8(54) | 11.2(15) | 28.1(39) | ||
Lumbar curvature classification | |||||
Hypolordosis | 2.2(6) | 4.5(6) | 0.0(0) | 0.223 | 0.001 |
Normal | 72.5(198) | 78.4(105) | 66.9(93) | ||
Hyperlordosis | 25.3(69) | 17.2(23) | 33.1(46) | ||
PA practice | |||||
No | 15.7(43) | 10.4(14) | 20.9(29) | -0.143 | 0.018 |
Yes | 84.2(230) | 89.6(120) | 79.1(110) | ||
Practice h PA/week | |||||
0 h | 16.7(43) | 11.3(14) | 21.6(29) | 0.277 | 0.000 |
1-5 h | 49.2(127) | 41.9(52) | 56.0(75) | ||
6-10 h | 27.9(72) | 36.3 (45) | 20.1(27) | ||
+10 h | 6.2(16) | 10.4(13) | 2.2(3) | ||
Leisure-time sedentary behaviors | |||||
≤ 2 h | 74.8(202) | 70.9(95) | 78.7(107) | 0.090 | 0.141 |
>2 h | 25.2(68) | 29.1(39) | 21.3(29) | ||
SP | |||||
No | 83.9(229) | 83.6(112) | 84.2(117) | 0.008 | 0.894 |
Yes | 16.1(44) | 16.4(22) | 15.8(22) | ||
CP | |||||
No | 97.7(255) | 98.4(124) | 97.0(131) | 0.046 | 0.459 |
Yes | 2.3(6) | 1.6(2) | 3.0(4) | ||
TSP | |||||
No | 94.2(246) | 96.8(122) | 91.8(124) | 0.107 | 0.085 |
Yes | 5.7(15) | 3.2(4) | 8.1(11) | ||
LBP | |||||
No | 89.7(234) | 89.7(113) | 89.6(121) | 0.001 | 0.989 |
Yes | 10.3(27) | 10.3(13) | 10.4(14) |
General Sample 100% (n = 273) | MS 49.08% (n = 134) | FS 50.92% (n = 139) | |||||||
---|---|---|---|---|---|---|---|---|---|
Without SP 83.88% (n = 229) | With SP 16.12% (n = 44) | p | Without SP 83.58% (n = 112) | With SP 16.42% (n = 22) | p | Without SP 84.17% (n = 117) | With SP 15.83% (n = 22) | p | |
Thoracic curve in standing (°) | 35.3 ± 11.6 | 35.5 ± 10.4 | 0.931 | 31.6 ± 11.0 | 34.8 ± 9.6 | 0.204 | 38.8 ± 11.1 | 36.1 ± 11.4 | 0.291 |
Lumbar curve in standing (°) | −35.3 ± 7.2 | −34.8 ± 7.5 | 0.661 | −33.5 ± 7.1 | −33.6 ± 8.6 | 0.883 | −37.2 ± 6.7 | −36.0 ± 6.3 | 0.434 |
Pelvic tilt in standing (°) | 25.0 ± 7.4 | 25.6 ± 6.6 | 0.589 | 26.0 ± 8.2 | 25.9 ± 7.1 | 0.965 | 23.9 ± 6.5 | 25.2 ± 6.2 | 0.370 |
Pelvic tilt in SR (°) | −14.0 ± 13.0 | −14.5 ± 13.7 | 0.753 | −20.3 ± 10.0 | −21.1 ± 7.3 | 0.729 | −7.7 ± 12.5 | −7.9 ± 15.5 | 0.936 |
Distance in SR (cm) | −8.6 ± 9.5 | −9.3 ± 8.7 | 0.647 | −12.6 ± 8.5 | −14.3 ± 5.1 | 0.378 | −4.8 ± 8.7 | −4.3 ± 8.9 | 0.820 |
PSLR (°) | 81.8 ± 14.2 | 82.1 ± 15.1 | 0.870 | 74.7 ± 9.4 | 75.6 ± 7.7 | 0.666 | 88.5 ± 14.8 | 88.7 ± 17.8 | 0.966 |
Age | 13.1 ± 1.2 | 13.7 ± 1.3 | 0.011 | 13.0 ± 1.1 | 13.3 ± 1.2 | 0.398 | 13.2 ± 1.3 | 14.1 ± 1.25 | 0.006 |
Body mass (kg) | 53.7 ± 12.0 | 56.7 ± 12.8 | 0.143 | 54.9 ± 12.8 | 58.7 ± 13.9 | 0.217 | 52.6 ± 11.1 | 54.7 ± 11.6 | 0.428 |
Height (cm) | 161.0 ± 9.4 | 162.9 ± 9.2 | 0.231 | 162.8 ± 10.9 | 165.1 ± 10.6 | 0.381 | 159.3 ± 7.4 | 160.7 ± 7.3 | 0.412 |
BMI (kg/m2) | 20.6 ± 3.7 | 21.3 ± 4.4 | 0.288 | 20.6 ± 3.8 | 21.4 ± 4.1 | 0.386 | 20.6 ± 3.7 | 21.2 ± 4.7 | 0.529 |
Waist girth (cm) | 72.3 ± 9.8 | 72.6 ± 10.5 | 0.843 | 74.9 ± 10.3 | 74.9 ± 11.5 | 0.986 | 69.8 ± 8.6 | 70.3 ± 9.0 | 0.806 |
Hip girth (cm) | 90.1 ± 8.7 | 91.3 ± 9.2 | 0.424 | 89.5 ± 9.0 | 91.3 ± 9.3 | 0.408 | 90.8 ± 8.5 | 91.4 ± 9.2 | 0.768 |
W/H ratio | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.492 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.237 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.997 |
Health related quality of life (HRQL) | |||||||||
Physical well being | 4.0 ± 0.6 | 3.6 ± 0.8 | 0.001 | 4.1 ± 0.6 | 3.9 ± 0.6 | 0.197 | 3.9 ± 0.6 | 3.4 ± 0.8 | 0.001 |
Psychological well being | 1.9 ± 0.5 | 1.7 ± 0.7 | 0.050 | 4.1 ± 0.6 | 3.9 ± 0.6 | 0.261 | 3.9 ± 0.6 | 3.4 ± 0.8 | 0.038 |
Autonomy and relationship with parents | 4.4 ± 0.6 | 4.1 ± 0.6 | 0.002 | 4.4 ± 0.6 | 4.1 ± 0.6 | 0.075 | 4.4 ± 0.6 | 4.0 ± 0.6 | 0.009 |
Social and peer support | 4.7 ± 0.5 | 4.5 ± 0.6 | 0.099 | 4.6 ± 0.6 | 4.5 ± 0.6 | 0.778 | 4.8 ± 0.5 | 4.5 ± 0.6 | 0.023 |
General Sample 100% (n = 273) | MS 49.08% (n = 134) | FS 50.92% (n = 139) | |||||||
---|---|---|---|---|---|---|---|---|---|
Without SP 83.88% (n = 229) | With SP 16.12% (n = 44) | p | Without SP 83.58% (n = 112) | With SP 16.42% (n = 22) | p | Without SP 84.17% (n = 117) | With SP 15.83% (n = 22) | p | |
Thoracic curvature classification | |||||||||
Hypokyphosis | 9.2(21) | 6.8(3) | 0.880 | 15.2(17) | 4.6(1) | 0.258 | 3.4(4) | 9.1(2) | 0.439 |
Normal | 71.2(163) | 72.7(32) | 75.0(84) | 77.3(17) | 67.5(79) | 68.2(15) | |||
Hyperkyphosis | 11.6(45) | 20.4(9) | 9.8(11) | 18.2(4) | 29.1(34) | 22.7(5) | |||
Lumbar curvature classification | |||||||||
Hypolordosis | 1.7(4) | 4.6(2) | 0.484 | 3.6(4) | 9.1(2) | 0.170 | 0.0(0) | 0.0(0) | 0.105 |
Normal | 72.5(166) | 72.7(32) | 81.2(91) | 63.6(14) | 64.1(75) | 81.8(18) | |||
Hyperlordosis | 25.8(59) | 22.7(10) | 15.2(17) | 27.3(6) | 35.9(42) | 18.2(4) | |||
PA practice | |||||||||
No | 14.8(34) | 20.4(9) | 0.350 | 10.7(12) | 9.1(2) | 0.820 | 18.8(22) | 31.8(7) | 0.168 |
Yes | 85.1(195) | 79.5(35) | 89.3(100) | 90.9(20) | 81.2(95) | 68.2(15) | |||
Practice h PA/week | |||||||||
0 h | 15.6(34) | 22.5(9) | 0.741 | 11.4(12) | 10.5(2) | 0.684 | 19.5(22) | 33.3(7) | 0.292 |
1–5 h | 50.0(109) | 45.0(18) | 42.9(45) | 36.8(7) | 56.6(64) | 52.4(11) | |||
6–10 h | 28.0(61) | 27.5(11) | 34.3(36) | 47.4(9) | 22.1(25) | 9.5(2) | |||
+10 h | 6.4(14) | 5.0(2) | 11.4(12) | 5.3(1) | 1.8(2) | 4.8(1) | |||
Leisure-time sedentary behaviors | |||||||||
≤ 2 h | 77.9(176) | 59.1(26) | 0.009 | 72.3(81) | 63.6(14) | 0.412 | 83.3(95) | 54.6(12) | 0.003 |
>2 h | 22.1(50) | 40.9(18) | 27.7(31) | 36.4(8) | 16.7(19) | 45.4(10) |
General Sample 100% (n = 273) | MS 49.08% (n = 134) | FS 50.92% (n = 139) | |||||||
---|---|---|---|---|---|---|---|---|---|
Without SP 83.88% (n = 229) | With SP 16.12% (n = 44) | p | Without SP 83.58% (n = 112) | With SP 16.42% (n = 22) | p | Without SP 84.17% (n = 117) | With SP 15.83% (n = 22) | p | |
Not sedentary and active | 86.59(71) | 13.41(11) | 0.014 | 84(42) | 16(8) | 0.585 | 90.63(29) | 9.38(3) | 0.011 |
Not sedentary and not active | 88.24(105) | 11.76(14) | 88.64(39) | 11.36(5) | 88(66) | 12(9) | |||
Sedentary and active | 87.50(14) | 12.50(2) | 85.71(12) | 14.29(2) | 100(2) | 0(0) | |||
Sedentary and Not active | 69.23(36) | 30.77(16) | 76(19) | 24(6) | 62.96(17) | 37.04(10) |
Predictor Variable of SP | Adjusted Odd Ratio | SE | 95% Confidence Interval | p | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Model 1 | Age | 1.42 | 0.131 | 1.10 | 1.84 | 0.007 |
Model 2 | Age | 1.35 | 0.134 | 1.04 | 1.76 | 0.023 |
Leisure-time sedentary behaviors ± 2 h | 2.10 | 0.355 | 1.04 | 4.21 | 0.037 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Gálvez, N.; Vaquero-Cristóbal, R.; López-Vivancos, A.; Albaladejo-Saura, M.; Marcos-Pardo, P.J. Back Pain Related with Age, Anthropometric Variables, Sagittal Spinal Curvatures, Hamstring Extensibility, Physical Activity and Health Related Quality of Life in Male and Female High School Students. Int. J. Environ. Res. Public Health 2020, 17, 7293. https://doi.org/10.3390/ijerph17197293
González-Gálvez N, Vaquero-Cristóbal R, López-Vivancos A, Albaladejo-Saura M, Marcos-Pardo PJ. Back Pain Related with Age, Anthropometric Variables, Sagittal Spinal Curvatures, Hamstring Extensibility, Physical Activity and Health Related Quality of Life in Male and Female High School Students. International Journal of Environmental Research and Public Health. 2020; 17(19):7293. https://doi.org/10.3390/ijerph17197293
Chicago/Turabian StyleGonzález-Gálvez, Noelia, Raquel Vaquero-Cristóbal, Abraham López-Vivancos, Mario Albaladejo-Saura, and Pablo Jorge Marcos-Pardo. 2020. "Back Pain Related with Age, Anthropometric Variables, Sagittal Spinal Curvatures, Hamstring Extensibility, Physical Activity and Health Related Quality of Life in Male and Female High School Students" International Journal of Environmental Research and Public Health 17, no. 19: 7293. https://doi.org/10.3390/ijerph17197293