Predictors of Spontaneous Remission of Problematic Internet Use in Adolescence: A One-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Measures
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Bivariate Logistic Regression Analyses
3.3. Multivariable Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cerniglia, L.; Zoratto, F.; Cimino, S.; Laviola, G.; Ammaniti, M.; Adriani, W. Internet Addiction in adolescence: Neurobiological, psychosocial and clinical issues. Neurosci. Biobehav. Rev. 2017, 76, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.; Black, D.W. Internet addiction: Definition, assessment, epidemiology and clinical management. CNS Drugs 2008, 22, 353–365. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O. Generalised Versus Specific Internet Use-Related Addiction Problems: A Mixed Methods Study on Internet, Gaming, and Social Networking Behaviours. IJERPH 2018, 15, 2913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, J.T.; Wu, A.M.; Gross, D.L.; Cheng, K.-m.; Lau, M.M. Is Internet addiction transitory or persistent? Incidence and prospective predictors of remission of Internet addiction among Chinese secondary school students. Addict. Behav. 2017, 74, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.A. A cognitive-behavioral model of pathological Internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. DSM-5, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013; ISBN 978-0890425558. [Google Scholar]
- Wartberg, L.; Zieglmeier, M.; Kammerl, R. Accordance of Adolescent and Parental Ratings of Internet Gaming Disorder and Their Associations with Psychosocial Aspects. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 264–270. [Google Scholar] [CrossRef]
- Pies, R. Should DSM-V designate “Internet addiction” a mental disorder? Psychiatry 2009, 6, 31–37. [Google Scholar]
- Spada, M.M. An overview of problematic Internet use. Addict. Behav. 2014, 39, 3–6. [Google Scholar] [CrossRef]
- Starcevic, V.; Aboujaoude, E. Internet addiction: Reappraisal of an increasingly inadequate concept. CNS Spectr. 2017, 22, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Kardefelt-Winther, D. A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.; Griffiths, M.; Karila, L.; Billieux, J. Internet Addiction: A Systematic Review of Epidemiological Research for the Last Decade. CPD 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shek, D.T.; Yu, L. Adolescent Internet Addiction in Hong Kong: Prevalence, Change, and Correlates. J. Pediatric Adolesc. Gynecol. 2016, 29, S22–S30. [Google Scholar] [CrossRef] [Green Version]
- Wartberg, L.; Kriston, L.; Kammerl, R.; Petersen, K.-U.; Thomasius, R. Prevalence of Pathological Internet Use in a Representative German Sample of Adolescents: Results of a Latent Profile Analysis. Psychopathology 2015, 48, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, H.-J.; Vermulst, A.A.; Bischof, A.; Kastirke, N.; Gürtler, D.; Bischof, G.; Meerkerk, G.-J.; John, U.; Meyer, C. Occurence of Internet Addiction in a General Population Sample: A Latent Class Analysis. Eur. Addict. Res. 2014, 20, 159–166. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Bröning, S.; Kegel, K.; Thomasius, R. Adolescent problematic Internet use: Is a parental rating suitable to estimate prevalence and identify familial correlates? Comput. Hum. Behav. 2017, 67, 233–239. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Thomasius, R. Internet gaming disorder and problematic social media use in a representative sample of German adolescents: Prevalence estimates, comorbid depressive symptoms and related psychosocial aspects. Comput. Hum. Behav. 2020, 103, 31–36. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Kim, H.-S. Effects of a prevention program for internet addiction among middle school students in South Korea. Public Health Nurses 2018, 35, 246–255. [Google Scholar] [CrossRef]
- Karaer, Y.; Akdemir, D. Parenting styles, perceived social support and emotion regulation in adolescents with internet addiction. Compr. Psychiatry 2019, 92, 22–27. [Google Scholar] [CrossRef]
- Wartberg, L.; Brunner, R.; Kriston, L.; Durkee, T.; Parzer, P.; Fischer-Waldschmidt, G.; Resch, F.; Sarchiapone, M.; Wasserman, C.; Hoven, C.W.; et al. Psychopathological factors associated with problematic alcohol and problematic Internet use in a sample of adolescents in Germany. Psychiatry Res. 2016, 240, 272–277. [Google Scholar] [CrossRef]
- Vadher, S.B.; Panchal, B.N.; Vala, A.U.; Ratnani, I.J.; Vasava, K.J.; Desai, R.S.; Shah, A.H. Predictors of problematic Internet use in school going adolescents of Bhavnagar, India. Int. J. Soc. Psychiatry 2019, 65, 151–157. [Google Scholar] [CrossRef]
- Kim, J.; Hong, H.; Lee, J.; Hyun, M.-H. Effects of time perspective and self-control on procrastination and Internet addiction. J. Behav. Addict. 2017, 6, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, S.-Y.; Chen, Y.-T.; Chang, Y.-K.; Lee, P.-H.; Liu, M.-J.; Chen, S.-R. Influence of internet addiction on executive function and learning attention in Taiwanese school-aged children. Perspect. Psychiatr. Care 2018, 54, 495–500. [Google Scholar] [CrossRef]
- Strittmatter, E.; Parzer, P.; Brunner, R.; Fischer, G.; Durkee, T.; Carli, V.; Hoven, C.W.; Wasserman, C.; Sarchiapone, M.; Wasserman, D.; et al. A 2-year longitudinal study of prospective predictors of pathological Internet use in adolescents. Eur. Child Adolesc. Psychiatry 2016, 25, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Kammerl, R.; Zieglmeier, M.; Wartberg, L. Medienerziehung und familiale Aspekte als Prädiktoren für problematischen jugendlichen Internetgebrauch. Zeitschrift Für Erziehungswissenschaft 2019. [Google Scholar] [CrossRef]
- Ko, C.-H.; Yen, J.-Y.; Yen, C.-F.; Lin, H.-C.; Yang, M.-J. Factors Predictive for Incidence and Remission of Internet Addiction in Young Adolescents: A Prospective Study. CyberPsychol. Behav. 2007, 10, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Liu, T.-L.; Wang, P.-W.; Chen, C.-S.; Yen, C.-F.; Yen, J.-Y. The exacerbation of depression, hostility, and social anxiety in the course of Internet addiction among adolescents: A prospective study. Compr. Psychiatry 2014, 55, 1377–1384. [Google Scholar] [CrossRef]
- Meerkerk, G.-J.; Van Den Eijnden, R.J.J.M.; Vermulst, A.A.; Garretsen, H.F.L. The Compulsive Internet Use Scale (CIUS): Some Psychometric Properties. Cyberpsychol. Behav. 2009, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bischof, G.; Bischof, A.; Meyer, C.; John, U.; Rumpf, H.-J. Prävalenz der Internetabhängigkeit—Diagnostik und Risikoprofile (PINTA-DIARI); University of Lübeck: Lübeck, Germany, 2013. [Google Scholar]
- Lindenberg, K.; Halasy, K.; Schoenmaekers, S. A randomized efficacy trial of a cognitive-behavioral group intervention to prevent Internet Use Disorder onset in adolescents: The protect study protocol. Contemp. Clin. Trials Commun. 2017, 6, 64–71. [Google Scholar] [CrossRef]
- Wartberg, L.; Petersen, K.-U.; Kammerl, R.; Rosenkranz, M.; Thomasius, R. Psychometric validation of a German version of the compulsive Internet use scale. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Jerusalem, M.; Schwarzer, R. SWE—Skala zur Allgemeinen Selbstwirksamkeitserwartung; Leibniz Institute for Psychology Information: Trier, Germany, 2003. [Google Scholar]
- Grob, A.; Smolenski, C. Fragebogen zur Erhebung der Emotionsregulation bei Kindern und Jugendlichen (FEEL-KJ); Verlag Hans Huber: Bern, Switzerland, 2005. [Google Scholar]
- Goodman, R.; Meltzer, H.; Bailey, V. The Strengths and Difficulties Questionnaire: A pilot study on the validity of the self-report version. Int. Rev. Psychiatry 2003, 15, 173–177. [Google Scholar] [CrossRef]
- Stiensmeier-Pelster, J.; Schürmann, M.; Duda, K. Depressions-Inventar für Kinder und Jugendliche (DIKJ); Hogrefe: Göttingen, Germany, 2000. [Google Scholar]
- Döpfner, M. Phobiefragebogen für Kinder und Jugendliche; Manual; Hogrefe: Göttingen, Germany, 2006. [Google Scholar]
- Stangier, U.; Heidenreich, T.; Berardi, A.; Golbs, U.; Hoyer, J. Die Erfassung sozialer Phobie durch die Social Interaction Anxiety Scale (SIAS) und die Social Phobia Scale (SPS). Zeitschrift für Klinische Psychologie und Psychotherapie 1999, 28, 28–36. [Google Scholar] [CrossRef]
- Höcker, A.; Engberding, M.; Rist, F. Prokrastination: Ein Manual zur Behandlung des Pathologischen Aufschiebens; Hogrefe Verlag: Göttingen, Germany, 2013. [Google Scholar]
- Petermann, U.; Petermann, F.; Lohbeck, A. Schülereinschätzliste für Sozial—Und Lernverhalten: SSL; Hogrefe: Göttingen, Germany, 2014. [Google Scholar]
- Lewinsohn, P.M. A behavioral approach to depression. In The Psychology of Depression: Contemporary Theory and Research; Friedman, R.J., Katz, M.M., Eds.; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Seligman, M.E.P. Erlernte Hilflosigkeit, 5, neu Ausgestattete Auflage; Beltz: Weinheim, Germany; Basel, Switzerland, 2016; ISBN 9783621283915. [Google Scholar]
- Beck, A.T. Cognitive Therapy and the Emotional Disorders, 4th ed.; International Universities Press: Madison, WI, USA, 1986; ISBN 0823609901. [Google Scholar]
- Chang, F.-C.; Chiu, C.-H.; Lee, C.-M.; Chen, P.-H.; Miao, N.-F. Predictors of the initiation and persistence of internet addiction among adolescents in Taiwan. Addict. Behav. 2014, 39, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Lindenberg, K.; Halasy, K.; Szász-Janocha, C.; Wartberg, L. A Phenotype Classification of Internet Use Disorder in a Large-Scale High-School Study. Int. J. Environ. Res. Public Health 2018, 15, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danner, D. Reliability—The Precision of a Measurement. GESIS—Leibniz-Institut für Sozialwissenschaften (SDM Survey Guidelines): Mannheim. 2015. Available online: https://www.gesis.org/fileadmin/upload/SDMwiki/Danner_Reliability.pdf (accessed on 30 December 2019).
- Szász-Janocha, C.; Vonderlin, E.; Lindenberg, K. Die Wirksamkeit eines Frühinterventionsprogramms für Jugendliche mit Computerspiel- und Internetabhängigkeit: Mittelfristige Effekte der PROTECT+ Studie. Zeitschrift für Kinder-und Jugendpsychiatrie und Psychotherapie 2019, 1–12. [Google Scholar] [CrossRef]
Variable | Remission of Problematic Internet Use (t2) % or M (Standard Deviation; SD) | No Remission of Problematic Internet Use (t2) % or M (SD) |
---|---|---|
Gender | 51.0% (girls); 49.0% (boys) | 73.7% (girls); 26.3% (boys) |
Age (t1) | 15.04 (1.84) | 15.21 (1.89) |
Problematic Internet use (t1) | 28.80 (4.64) | 31.40 (6.10) |
Self-efficacy (t1) | 27.42 (4.35) | 25.40 (5.23) |
Adaptive emotion regulation strategies (t1) | 6.22 (1.19) | 6.12 (1.09) |
Maladaptive emotion regulation strategies (t1) | 5.35 (1.32) | 6.46 (1.23) |
General psychopathology (t1) | 12.45 (4.70) | 14.21 (4.94) |
Depression (t1) | 14.62 (6.38) | 19.12 (8.09) |
Performance and school anxiety (t1) | 6.50 (3.31) | 8.35 (4.17) |
Social-interaction anxiety (t1) | 25.01 (11.92) | 31.55 (15.04) |
Procrastination (t1) | 69.42 (20.93) | 79.48 (19.24) |
Social behavior (t1) | 56.52 (9.19) | 54.61 (11.13) |
Learning behavior (t1) | 35.57 (7.67) | 33.97 (7.93) |
Variable | Remission of Problematic Internet Use (t2) Bivariate Regression Models Unadjusted Odds Ratios (95% Confidence Interval; CI) | Remission of Problematic Internet Use (t2) Multivariable Regression Model Adjusted Odds Ratios (95% CI) |
---|---|---|
Gender a | 0.37 * (0.16; 0.85) | 0.53 (0.18; 1.55) |
Age (t1) | 0.95 (0.78; 1.16) | 1.04 (0.81; 1.34) |
Self-efficacy (t1) | 1.10* (1.01; 1.19) | 0.98 (0.87; 1.10) |
Adaptive emotion regulation strategies (t1) | 1.08 (0.78; 1.51) | 0.83 (0.54; 1.28) |
Maladaptive emotion regulation strategies (t1) | 0.53 *** (0.39; 0.73) | 0.54 ** (0.34; 0.84) |
General psychopathology (t1) | 0.93 (0.86; 1.00) | 1.14 (0.97; 1.32) |
Depression (t1) | 0.92 ** (0.87; 0.97) | 0.94 (0.85; 1.05) |
Performance and school anxiety (t1) | 0.87 * (0.78; 0.97) | 0.88 (0.76; 1.02) |
Social-interaction anxiety (t1) | 0.96 * (0.94; 0.99) | 1.00 (0.95; 1.04) |
Procrastination (t1) | 0.98 * (0.96; 1.00) | 1.00 (0.97; 1.02) |
Social behavior (t1) | 1.02 (0.98; 1.06) | 1.02 (0.97; 1.08) |
Learning behavior (t1) | 1.03 (0.98; 1.08) | 1.01 (0.94; 1.09) |
Nagelkerke’s R2 | – | 0.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wartberg, L.; Lindenberg, K. Predictors of Spontaneous Remission of Problematic Internet Use in Adolescence: A One-Year Follow-Up Study. Int. J. Environ. Res. Public Health 2020, 17, 448. https://doi.org/10.3390/ijerph17020448
Wartberg L, Lindenberg K. Predictors of Spontaneous Remission of Problematic Internet Use in Adolescence: A One-Year Follow-Up Study. International Journal of Environmental Research and Public Health. 2020; 17(2):448. https://doi.org/10.3390/ijerph17020448
Chicago/Turabian StyleWartberg, Lutz, and Katajun Lindenberg. 2020. "Predictors of Spontaneous Remission of Problematic Internet Use in Adolescence: A One-Year Follow-Up Study" International Journal of Environmental Research and Public Health 17, no. 2: 448. https://doi.org/10.3390/ijerph17020448