Changing Income-Related Inequality in Daily Nutrients Intake: A Longitudinal Analysis from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data
3. Measures
3.1. Nutrients Intake
3.2. Other Variables
3.3. Statistical Analyses
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Prevalence of Underweight among Adults, BMI < 18.5, Crude Estimates by WHO Region. Available online: https://apps.who.int/gho/data/view.main.NCDBMILT18CREGv?lang=en (accessed on 20 July 2020).
- Huang, Y.; Wang, H.; Tian, X. Changing Diet Quality in China during 2004–2011. Int. J. Environ. Res. Public Health 2016, 14, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolls, E.T. Understanding the mechanisms of food intake and obesity. Obes. Rev. 2007, 8 (Suppl. 1), 67–72. [Google Scholar] [CrossRef] [PubMed]
- To, W.; Lee, P. China’s Maritime Economic Development: A Review, the Future Trend, and Sustainability Implications. Sustainability 2018, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Mroz, T.A.; Zhai, F.; Popkin, B.M. Rapid income growth adversely affects diet quality in China-particularly for the poor! Soc. Sci. Med. 2004, 59, 1505–1515. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Koh, W.P.; Yuan, J.M.; Gross, M.D.; Pereira, M.A. Dietary patterns and mortality in a Chinese population. Am. J. Clin. Nutr. 2014, 100, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from China Health and Nutrition Survey (CHNS). Nutr. J. 2018, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with non-communicable diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef]
- Adair, L.S.; Gordon-Larsen, P.; Du, S.F.; Zhang, B.; Popkin, B.M. The emergence of cardiometabolic disease risk in Chinese children and adults: Consequences of changes in diet, physical activity and obesity. Obes. Rev. 2014, 15, 49–59. [Google Scholar] [CrossRef]
- Xu, X.; Byles, J.; Shi, Z.; McElduff, P.; Hall, J. Dietary pattern transitions, and the associations with BMI, waist circumference, weight and hypertension in a 7-year follow up among the older Chinese population: A longitudinal study. BMC Public Health 2016, 16, 743. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Hall, J.J.; Byles, J.E.; Shi, Z. Dietary pattern is associated with obesity in older people in China: Data from China Health and Nutrition Survey (CHNS). Nutrients 2015, 7, 8170–8188. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort profile: The China Health and Nutrition Survey—Monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Zhu, S.; Zhang, T.; Wang, D.; Hu, J.; Gao, J.; Zhou, Z. Explaining Income-Related Inequalities in Dietary Knowledge: Evidence from the China Health and Nutrition Survey. Int. J. Environ. Res. Public Health 2020, 17, 532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition 2009, 2nd ed.; Peking University Medical Press: Beijing, China, 2002; pp. 1–384. [Google Scholar]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition 2002; Peking University Medical Press: Beijing, China, 2002; pp. 1–393. [Google Scholar]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition 2004, 2nd ed.; Peking University Medical Press: Beijing, China, 2002; pp. 1–351. [Google Scholar]
- Xu, X.; Byles, J.E.; Shi, Z.; Hall, J.J. Evaluation of older Chinese people’s macronutrient intake status: Results from the China Health and Nutrition Survey. Br. J. Nutr. 2015, 113, 159–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones-Smith, J.C.; Popkin, B.M. Understanding community context and adult health changes in China: Development of an urbanicity scale. Soc. Sci. Med. 2010, 71, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, H.; Wang, X.; Liu, M.; Wang, Y.; Wang, Y.; Zhou, H. The association between urbanization and child height: A multilevel study in China. BMC Public Health 2019, 19, 568–569. [Google Scholar] [CrossRef] [PubMed]
- Jahng, S.; Wood, P.K. Multilevel Models for Intensive Longitudinal Data with Heterogeneous Autoregressive Errors: The Effect of Misspecification and Correction with Cholesky Transformation. Front. Psychol. 2017, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Erreygers, G. Correcting the concentration index. J. Health Econ. 2009, 28, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Kjellsson, G.; Gerdtham, U. Measuring Health Inequalities Using the Concentration Index Approach. In Encyclopedia of Health Economics; Culyer, A.J., Ed.; Elsevier: San Diego, CA, USA, 2014; pp. 240–246. [Google Scholar]
- Allanson, P.; Gerdtham, U.G.; Petrie, D. Longitudinal analysis of income-related health inequality. J. Health Econ. 2010, 29, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Nicolas, A.L. Measurement and explanation of socioeconomic inequality in health with longitudinal data. Health Econ. 2004, 13, 1015–1030. [Google Scholar] [CrossRef]
- Su, C.; Zhao, J.; Wu, Y.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS. Nutrients 2017, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- World Resource Institute. People Are Eating More Protein than They Need—Especially in Wealthy Regions. Available online: https://www.wri.org/resources/charts-graphs/people-eating-more-protein-wealthy-regions (accessed on 20 July 2020).
- Yu, D.; He, Y.; Guo, Q.; Fang, H.; Xu, X.; Fang, Y.; Li, J.; Zhao, L. Trends of energy and nutrients intake among Chinese population in 2002–2012. Wei Sheng Yan Jiu 2016, 45, 527–533. [Google Scholar] [PubMed]
- Zhao, J.; Su, C.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Secular Trends in Energy and Macronutrient Intakes and Distribution among Adult Females (1991–2015): Results from the China Health and Nutrition Survey. Nutrients 2018, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Shen, C.; Chu, M.J.; Gao, Y.X.; Xu, G.F.; Huang, J.P.; Xu, Q.Q.; Cai, H. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China. PLoS ONE 2016, 11, e147062. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Prevalence of Obesity Among Adults, BMI Crude Estimate. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-obesity-among-adults-bmi-=-30-(crude-estimate)-(-) (accessed on 20 July 2020).
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy Balance and Obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Vadiveloo, M.; Scott, M.; Quatromoni, P.; Jacques, P.; Parekh, N. Trends in Dietary Fat Intake and High-Fat Foods from 1991-2008 in the Framingham Heart Study participants. Br. J. Nutr. 2014, 111, 724–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Villegas, A.; Verberne, L.; De Irala, J.; Ruiz-Canela, M.; Toledo, E.; Serra-Majem, L.; Martinez-Gonzalez, M.A. Dietary fat intake and the risk of depression: The SUN Project. PLoS ONE 2011, 6, e16268. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Eichelsdoerfer, P. Can Low-Income Americans Afford a Healthy Diet? Nutr. Today 2009, 44, 246–249. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R.; Fulgoni, V.L.; Agarwal, S.; Pasiakos, S.M.; Berryman, C.E. Protein intake is more stable than carbohydrate or fat intake across various US demographic groups and international populations. Am. J. Clin. Nutr. 2020, 112, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te, M.L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Giugliano, D.; Maiorino, M.I.; Bellastella, G.; Esposito, K. More sugar? No, thank you! The elusive nature of low carbohydrate diets. Endocrine 2018, 61, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kim, S.H.; Lim, H. Association between dietary carbohydrate quality and the prevalence of obesity and hypertension. J. Hum. Nutr. Diet. 2018, 31, 587–596. [Google Scholar] [CrossRef] [PubMed]
- China NBOS. China Statistical Yearbook 2016; Peking China Statistics Press: Beijing, China, 2016; pp. 165–206. [Google Scholar]
Variables | All (N = 4274) |
---|---|
Age, years | |
Mean ± SD | 49.19 ± 12.68 |
Gender | |
Men, n (%) | 1966 (46) |
Women, n (%) | 2308 (54) |
Income, RMB yuan | |
Mean ± SD | 5353.48 ± 5313.93 |
Education | |
Illiterate, n (%) | 524 (12.26) |
Elementary, n (%) | 1515 (35.45) |
Middle school, n (%) | 1339 (31.33) |
High school, n (%) | 747 (17.48) |
University, n (%) | 149 (3.49) |
Marital status | |
Unmarried, n (%) | 152 (3.56) |
Married, n (%) | 3836 (89.75) |
Others, n (%) | 286 (6.69) |
Household size | |
1 | 96 (2.25) |
2–5 | 3788 (88.63) |
≥6 | 390 (9.12) |
Dietary knowledge score | |
Mean ± SD | 3.67 ± 1.98 |
Working status | |
No, n (%) | 1565 (36.62) |
Yes, n (%) | 2709 (63.38) |
Urbanization index | |
Mean ± SD | 60.31 ± 19.74 |
Geographic regions | 2006 (46.93) |
Eastern China, n (%) | 2006 (46.93) |
Central China, n (%) | 1350 (31.59) |
Western China, n (%) | 918 (21.48) |
Economic Status | 2004 | 2006 | 2009 | 2011 | ||||
---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | |
Poorest | 223 | 26.11 | 291 | 34.28 | 346 | 40.52 | 384 | 45.02 |
Poorer | 269 | 31.50 | 308 | 35.81 | 404 | 47.31 | 378 | 44.16 |
Middle | 331 | 38.76 | 372 | 43.56 | 438 | 51.17 | 437 | 51.35 |
Richer | 415 | 48.48 | 453 | 53.23 | 496 | 58.08 | 503 | 58.56 |
Richest | 500 | 58.41 | 550 | 63.95 | 554 | 64.72 | 560 | 65.50 |
Variables | Protein | Fat | Energy | Carbohydrate | Proportion of Energy from Fat over 30% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate | Std. Error | Ρ | Estimate | Std. Error | Ρ | Estimate | Std. Error | Ρ | Estimate | Std. Error | Ρ | Estimate | Std. Error | Ρ | |
Age (years) | −0.2023 | 0.0203 | <0.0001 | −0.1784 | 0.0350 | <0.0001 | −7.2934 | 0.5937 | <0.0001 | −1.3183 | 0.0932 | <0.0001 | 0.0037 | 0.0018 | 0.0403 |
Gender | |||||||||||||||
Men (ref) | |||||||||||||||
Women | −9.7073 | 0.4566 | <0.0001 | −8.9420 | 0.7811 | <0.0001 | −350.9100 | 13.4606 | <0.0001 | −45.2909 | 2.1302 | <0.0001 | 0.1850 | 0.0401 | <0.0001 |
Economic status | |||||||||||||||
Poorest(ref) | |||||||||||||||
Poorer | 2.4282 | 0.5414 | <0.0001 | 4.3307 | 0.9743 | <0.0001 | 83.6144 | 15.5722 | <0.0001 | 7.6141 | 2.3749 | 0.0013 | 0.1063 | 0.0543 | 0.0500 |
Middle | 3.4332 | 0.5567 | <0.0001 | 5.8832 | 0.9999 | <0.0001 | 81.7213 | 16.0288 | <0.0001 | 3.3460 | 2.4478 | 0.1717 | 0.2454 | 0.0550 | <0.0001 |
Richer | 5.0836 | 0.5820 | <0.0001 | 8.3749 | 1.0422 | <0.0001 | 106.7100 | 16.7764 | <0.0001 | 3.1888 | 2.5666 | 0.2141 | 0.3908 | 0.0568 | <0.0001 |
Richest | 6.8708 | 0.6325 | <0.0001 | 11.1779 | 1.1288 | <0.0001 | 130.0900 | 18.2636 | <0.0001 | 0.3954 | 2.8006 | 0.8877 | 0.5159 | 0.0613 | <0.0001 |
Education | |||||||||||||||
Illiterate (ref) | |||||||||||||||
Elementary | −0.4242 | 0.6263 | 0.4982 | 2.9425 | 1.1006 | 0.0075 | 9.5151 | 18.2127 | 0.6014 | −3.9324 | 2.8222 | 0.1635 | 0.1571 | 0.0591 | 0.0079 |
Middle school | 0.5093 | 0.7121 | 0.4744 | 6.0396 | 1.2471 | <0.0001 | 13.4468 | 20.7428 | 0.5168 | −10.6401 | 3.2225 | 0.0010 | 0.3122 | 0.0664 | <0.0001 |
High school | −0.2434 | 0.8218 | 0.7671 | 4.0749 | 1.4352 | 0.0045 | −38.0573 | 23.9763 | 0.1125 | −17.1813 | 3.7332 | <.0001 | 0.3787 | 0.0760 | <0.0001 |
University | −1.0356 | 1.2332 | 0.4011 | 1.1483 | 2.1538 | 0.5940 | −86.3642 | 35.9761 | 0.0164 | −20.7042 | 5.6014 | 0.0002 | 0.2803 | 0.1147 | 0.0146 |
Marital status | |||||||||||||||
Unmarried (ref) | |||||||||||||||
Married | 1.7426 | 1.3882 | 0.2094 | 6.0781 | 2.4360 | 0.0126 | 104.6100 | 40.4034 | 0.0096 | 5.4535 | 6.2680 | 0.3843 | 0.0244 | 0.1313 | 0.8526 |
Others | −0.2356 | 1.6039 | 0.8832 | 7.2159 | 2.8102 | 0.0102 | 56.1322 | 46.7149 | 0.2295 | −5.9605 | 7.2549 | 0.4113 | 0.2537 | 0.1504 | 0.0917 |
Household size | |||||||||||||||
1 (ref) | |||||||||||||||
2–5 | 1.8692 | 1.2715 | 0.1416 | −13.1687 | 2.2415 | <0.0001 | −114.5000 | 36.9207 | 0.0019 | 3.2140 | 5.7083 | 0.5734 | −0.4553 | 0.1223 | 0.0002 |
≥6 | 3.4912 | 1.3936 | 0.0123 | −14.6821 | 2.4555 | <0.0001 | −117.1500 | 40.4780 | 0.0038 | 5.1180 | 6.2607 | 0.4137 | −0.5975 | 0.1336 | <0.0001 |
Dietary knowledge score | −0.0628 | 0.0472 | 0.1838 | 0.3277 | 0.0855 | 0.0001 | −5.4799 | 1.3556 | <0.0001 | −2.0118 | 0.2061 | <0.0001 | 0.0368 | 0.0048 | <0.0001 |
Working status | |||||||||||||||
No (ref) | |||||||||||||||
Yes | 3.3995 | 0.4306 | <0.0001 | 2.7573 | 0.7679 | 0.0003 | 118.7900 | 12.4360 | <0.0001 | 17.6471 | 1.9078 | <0.0001 | −0.1020 | 0.0416 | 0.0143 |
Urbanization index | 0.0696 | 0.0125 | <0.0001 | 0.2678 | 0.0216 | <0.0001 | −2.0606 | 0.3644 | <0.0001 | −1.2120 | 0.0570 | <0.0001 | 0.0212 | 0.0011 | <0.0001 |
Geographic regions | |||||||||||||||
Eastern China (ref) | |||||||||||||||
Central China | 0.4276 | 0.4997 | 0.3921 | 0.3542 | 0.8529 | 0.6779 | 71.9742 | 14.7461 | <0.0001 | 20.5747 | 2.3375 | <0.0001 | −0.1650 | 0.0437 | 0.0002 |
Western China | −4.7788 | 0.5789 | <0.0001 | −1.5162 | 0.9893 | 0.1254 | −28.6851 | 17.0733 | 0.0930 | 4.7829 | 2.7041 | 0.0770 | −0.0787 | 0.0505 | 0.1191 |
Variables | Year | CIt (Std. Error) | Term 1 | Term 2 | CIT (Std. Error) | MT |
---|---|---|---|---|---|---|
Protein | 2004 | 0.029 (0.003) | 0.029 | 0.000 | 0.029 (0.003) | 0.000 |
2006 | 0.035 (0.003) | 0.032 | −0.002 | 0.034 (0.003) | −0.069 | |
2009 | 0.036 (0.003) | 0.033 | −0.003 | 0.037 (0.002) | −0.098 | |
2011 | 0.037 (0.003) | 0.034 | −0.003 | 0.037 (0.002) | −0.082 | |
Fat | 2004 | 0.070 (0.004) | 0.070 | 0.000 | 0.070 (0.004) | 0.000 |
2006 | 0.070 (0.004) | 0.070 | −0.009 | 0.079 (0.003) | −0.123 | |
2009 | 0.049 (0.005) | 0.063 | −0.010 | 0.073 (0.003) | −0.155 | |
2011 | 0.049 (0.006) | 0.059 | −0.012 | 0.071 (0.003) | −0.197 | |
Energy | 2004 | 0.008 (0.003) | 0.008 | 0.000 | 0.008 (0.003) | 0.000 |
2006 | 0.006 (0.003) | 0.007 | −0.001 | 0.008 (0.002) | −0.139 | |
2009 | 0.018 (0.003) | 0.011 | −0.002 | 0.013 (0.002) | −0.196 | |
2011 | 0.012 (0.003) | 0.011 | −0.003 | 0.014 (0.002) | −0.246 | |
Carbohydrate | 2004 | −0.028 (0.003) | −0.028 | 0.000 | −0.028 (0.003) | 0.000 |
2006 | −0.035 (0.003) | −0.031 | 0.003 | −0.034 (0.003) | −0.099 | |
2009 | −0.006 (0.003) | −0.023 | 0.002 | −0.025 (0.002) | −0.093 | |
2011 | −0.019 (0.003) | −0.022 | 0.002 | −0.024 (0.002) | −0.098 | |
Percentage energy from fat | 2004 | 0.165 (0.010) | 0.165 | 0.000 | 0.165 (0.010) | 0.000 |
2006 | 0.139 (0.010) | 0.151 | −0.019 | 0.170 (0.003) | −0.124 | |
2009 | 0.089 (0.008) | 0.128 | −0.016 | 0.143 (0.006) | −0.122 | |
2011 | 0.087 (0.008) | 0.117 | −0.014 | 0.131 (0.005) | −0.124 |
Variables | CI(x) after 7 years | Mobility(x) | Elasticity | Contribution | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Protein | Fat | Energy | Carbohydrate | Percentage Energy from Fat | Protein | Fat | Energy | Carbohydrate | Percentage Energy from Fat | |||
Age (years) | −0.0114 | −0.6317 | 0.0332 | 0.0154 | 0.1127 | −0.0723 | −0.0247 | −0.0210 | −0.0097 | −0.0712 | 0.0456 | 0.0156 |
Gender | ||||||||||||
Men (ref) | ||||||||||||
Women | −0.0104 | −0.1528 | 0.0602 | 0.0291 | 0.2047 | −0.0937 | −0.0460 | −0.0092 | −0.0044 | −0.0313 | 0.0143 | 0.0070 |
Income | ||||||||||||
Poorest (ref) | ||||||||||||
Poorer | −0.3384 | 0.1557 | −0.0868 | −0.0812 | −0.2811 | 0.0908 | −0.1524 | −0.0135 | −0.0126 | −0.0438 | 0.0141 | −0.0237 |
Middle | −0.0509 | −65.9785 | −0.0002 | −0.0002 | −0.0005 | 0.0001 | −0.0007 | 0.0153 | 0.0138 | 0.0343 | −0.0050 | 0.0439 |
Richer | 0.2739 | 0.3135 | 0.1807 | 0.1561 | 0.3568 | −0.0378 | 0.5572 | 0.0567 | 0.0489 | 0.1119 | −0.0119 | 0.1747 |
Richest | 0.6635 | 0.1701 | 0.4904 | 0.4183 | 0.8733 | −0.0094 | 1.4769 | 0.0834 | 0.0712 | 0.1486 | −0.0016 | 0.2512 |
Education | ||||||||||||
Illiterate (ref) | ||||||||||||
Elementary | −0.1424 | −0.1545 | 0.0077 | −0.0279 | −0.0162 | −0.0237 | −0.1139 | −0.0012 | 0.0043 | 0.0025 | 0.0037 | 0.0176 |
Middle school | 0.0301 | −1.6982 | 0.0008 | 0.0049 | 0.0020 | 0.0055 | 0.0194 | −0.0013 | −0.0083 | −0.0033 | −0.0093 | −0.0329 |
High school | 0.3153 | −0.1375 | −0.0051 | 0.0450 | −0.0755 | 0.1208 | 0.3202 | 0.0007 | −0.0062 | 0.0104 | −0.0166 | −0.0440 |
University | 0.6810 | −0.0842 | −0.0118 | 0.0068 | −0.0922 | 0.0784 | 0.1277 | 0.0010 | −0.0006 | 0.0078 | −0.0066 | −0.0107 |
Marital status | ||||||||||||
Unmarried (ref) | ||||||||||||
Married | 0.0179 | −0.2298 | 0.0100 | 0.0184 | 0.0567 | −0.0105 | 0.0056 | −0.0023 | −0.0042 | −0.0130 | 0.0024 | −0.0013 |
Others | −0.1876 | −0.2595 | 0.0014 | −0.0223 | −0.0311 | −0.0117 | −0.0600 | −0.0004 | 0.0058 | 0.0081 | 0.0030 | 0.0156 |
Household size | ||||||||||||
1 (ref) | ||||||||||||
2—5 | 0.0436 | −0.0441 | 0.0298 | −0.1102 | −0.1719 | −0.0171 | −0.2916 | −0.0013 | 0.0049 | 0.0076 | 0.0008 | 0.0128 |
≥6 | −0.3273 | 0.0049 | −0.0556 | 0.1227 | 0.1756 | 0.0272 | 0.3819 | −0.0003 | 0.0006 | 0.0009 | 0.0001 | 0.0019 |
Dietary knowledge score | 0.0464 | −0.1034 | −0.0093 | 0.0254 | −0.0763 | 0.0994 | 0.2184 | 0.0010 | −0.0026 | 0.0079 | −0.0103 | −0.0226 |
Working status | ||||||||||||
No (ref) | ||||||||||||
Yes | −0.0053 | 1.6303 | 0.0077 | 0.0033 | 0.0253 | −0.0133 | −0.0093 | 0.0126 | 0.0053 | 0.0413 | −0.0218 | −0.0151 |
Urbanization index | 0.0771 | −0.1322 | 0.1335 | 0.2693 | −0.3718 | 0.7755 | 1.6326 | −0.0176 | −0.0356 | 0.0491 | −0.1025 | −0.2157 |
Geographic regions | ||||||||||||
Eastern (ref) | ||||||||||||
Central | −0.0903 | −0.1192 | −0.0049 | −0.0021 | −0.0768 | 0.0779 | 0.0751 | 0.0006 | 0.0003 | 0.0092 | −0.0093 | −0.0089 |
Western | −0.2330 | −0.2646 | 0.0842 | 0.0140 | 0.0476 | 0.0281 | 0.0556 | −0.0223 | −0.0037 | −0.0126 | −0.0074 | −0.0147 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhu, S.; Zhou, Y.; Pramono, A.; Zhou, Z. Changing Income-Related Inequality in Daily Nutrients Intake: A Longitudinal Analysis from China. Int. J. Environ. Res. Public Health 2020, 17, 7627. https://doi.org/10.3390/ijerph17207627
Xu Y, Zhu S, Zhou Y, Pramono A, Zhou Z. Changing Income-Related Inequality in Daily Nutrients Intake: A Longitudinal Analysis from China. International Journal of Environmental Research and Public Health. 2020; 17(20):7627. https://doi.org/10.3390/ijerph17207627
Chicago/Turabian StyleXu, Yongjian, Siyu Zhu, Yiting Zhou, Andi Pramono, and Zhongliang Zhou. 2020. "Changing Income-Related Inequality in Daily Nutrients Intake: A Longitudinal Analysis from China" International Journal of Environmental Research and Public Health 17, no. 20: 7627. https://doi.org/10.3390/ijerph17207627
APA StyleXu, Y., Zhu, S., Zhou, Y., Pramono, A., & Zhou, Z. (2020). Changing Income-Related Inequality in Daily Nutrients Intake: A Longitudinal Analysis from China. International Journal of Environmental Research and Public Health, 17(20), 7627. https://doi.org/10.3390/ijerph17207627