Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming
Abstract
:1. Introduction
2. Part I: Fundamental Concepts and Physiology of Human Thermoregulation
2.1. Definitions and Indicators of Thermoregulation
2.1.1. Core Temperature
2.1.2. Heat Tolerance
2.1.3. Heat Strain and Heat Stress
2.1.4. Rate of Rise in Core Temperature
2.2. The Physical Properties of Heat Transfer and Storage
2.2.1. Metabolic Heat Production
2.2.2. Radiative Heat Exchange
2.2.3. Conductive Heat Exchange
2.2.4. Convective Heat Exchange
2.2.5. Evaporative Heat Loss
2.3. The Physiology of Thermoregulation and Adaptation
2.3.1. Central Regulation of Body Temperature
2.3.2. Central Regulation of Body Temperature during Physical Work
2.3.3. Cardiovascular Stress, Fluid Homeostasis and Thermoregulation
2.3.4. Sex-Related Differences in Thermoregulation
2.3.5. Food Intake Behavior in Hot Environment
3. Part II: Potential Strategies for Adaptation to Global Warming
3.1. Impact of Global Warming on Human Life and Functions
3.2. Heat Acclimatization
3.2.1. Effectiveness of Heat Acclimatization When Working in Impermeable Clothing
3.2.2. Heat Acclimatization and Prevention of Heat Injury
3.3. Circadian Shift to Sub-Nocturnal Lifestyle
3.4. Mechanization to Reduce Metabolic Heat Production
3.5. Solar Energy to Reduce Carbon Emission and Radiative Heat Exposure
3.6. Air and Body Cooling
3.7. Potential Adaptation Strategies in Public Health, Sport, and Occupational Settings
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Gisolfi, C.V.; Mora, F. The Hot Brain: Survival, Temperature and the Human Body; MIT Press: Cambridge, MA, USA, 2000; pp. 1–20, 94–119, 157–163, 171–174, 191–215. [Google Scholar]
- Folk, E.G.; Riedesel, M.L.; Thrift, D.L. Principles of Integritive Environmental Physiology; Austin and Winfield Publishers: Bethesda, MD, USA, 1998. [Google Scholar]
- Fox, S.W.; Dose, K. Molecular Evolution and the Origins of Life; Freeman: San Francisco, CA, USA, 1972. [Google Scholar]
- Muller, A.W. Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion. Prog. Biophys. Mol. Biol. 1995, 63, 193–231. [Google Scholar] [CrossRef]
- Van Holde, K.E. The Origins of Life; Alan R. Liss: New York, NY, USA, 1980. [Google Scholar]
- Haymes, E.M.; Wells, C.L. Environment and Human Performance; Human Kinetics Publishers: Champaign, IL, USA, 1986; pp. 1–10. [Google Scholar]
- Lim, C.L.; Byrne, C.; Lee, J. Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann. Acad. Med. Singap. 2008, 37, 347–353. [Google Scholar] [PubMed]
- Stitt, J. Central regulation of body temperature. In Perspectives in Exercise Science and Sports Medicine; Gisolfi, C.V., Lamb, D.R., Nadel, E.R., Eds.; Cooper Publishing Group: Traverse, IN, USA, 1993; Volume 6, pp. 2–39. [Google Scholar]
- Gisolfi, C.V.; Robinson, S. Relations between physical training, acclimatization, and heat tolerance. J. Appl. Physiol. 1969, 26, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Pettigrew, R.T.; Galt, J.M.; Ludgate, C.M.; Horn, D.B.; Smith, A.N. Circulatory and biochemic al effects of whole body hyperthermia. Br. J. Surg. 1974, 61, 727–730. [Google Scholar] [CrossRef]
- Bynum, G.D.; Pandolf, K.B.; Schuette, W.H.; Goldman, R.F.; Lees, D.E.; Whang-Peng, J.; Atkinson, E.R.; Bull, J.M. Induced hyperthermia in sedated humans and the concept of critical thermal maximum. Am. J. Physiol. 1978, 235, R228–R236. [Google Scholar] [CrossRef]
- Byrne, C.; Lee, J.; Chew, S.A.N.; Lim, C.L.; Tan, Y.M. Continuous thermoregulatory responses to mass-participation distance running in heat. Med. Sci. Sports Exerc. 2006, 38, 803–810. [Google Scholar] [CrossRef]
- Lee, J.K.W.; Nio, A.Q.X.; Lim, C.L.; Teo, Y.N.E.; Byrne, C. Thermoregulation, pacing and fluid balance during mass participation distance running in a warm and humid environment. Eur. J. Appl. Physiol. 2010, 109, 887–898. [Google Scholar] [CrossRef]
- Pugh, L.G.C.E.; Corbett, J.L.; Johnson, R.H. Rectal temperatures, weight losses and sweat rates in marathon running. J. Appl. Physiol. 1967, 23, 347–352. [Google Scholar] [CrossRef]
- Racinais, S.; Moussay, S.; Nichols, D.; Travers, G.; Belfekih, T.; Schumacher, Y.O.; Periard, J.D. Core temperature up to 41.5 °C during UCI road cycling world championships in the heat. Br. J. Sports Med. 2019, 53, 426–429. [Google Scholar] [CrossRef]
- Aoyagi, Y.; McLellan, T.M.; Shephard, R.J. Effects of 6 versus 12 days of heat acclimation on heat tolerance in lightly exercising men wearing protective clothing. Eur. J. Appl. Physiol. 1995, 71, 187–196. [Google Scholar] [CrossRef]
- Wyndham, C.H. The physiology of exercise under heat stress. Ann. Rev. Physiol. 1973, 35, 193–220. [Google Scholar] [CrossRef] [PubMed]
- Hein, A.; Daanen, M.; Racinais, S.; Periard, J.D. Heat acclimation decay and re-induction: A systematic review and meta analysis. Sports Med. 2018, 48, 409–430. [Google Scholar]
- Brearley, M.B. Pre-deployment Heat Acclimatization Guidelines for Disaster Responders. Prehosp. Disaster. Med. 2016, 31, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, E.G.; Tait, P.W. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming. Int. J. Environ. Res. Public Health 2015, 12, 8034–8074. [Google Scholar] [CrossRef]
- Aoyagi, Y.; McLellan, T.M.; Shephard, R.J. Effects of training and acclimation on heat tolerance in exercising men wearing protective clothing. Eur. J. Appl. Physiol. 1994, 68, 234–245. [Google Scholar] [CrossRef]
- Aoyagi, Y.; McLellan, T.M.; Shephard, R.J. Interaction of physical training and heat acclimation. Sports Med. 1997, 23, 173–210. [Google Scholar] [CrossRef]
- Nadel, E.R.; Pandolf, K.B.; Roberts, M.F.; Stolwijk, J.A.J. Mechanisms of thermal acclimation to exercise and heat. J. Appl. Physiol. 1974, 37, 515–520. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Maresh, C.M. The induction and decay of heat acclimatisation in trained athletes. Sports Med. 1991, 12, 302–312. [Google Scholar] [CrossRef]
- Lim, C.L.; Ng, K.K.C.; Lee, L.K.H. The effects of prolonged passive heat exposure and Basic Military Training on thermoregulatory and cardiovascular responses in recruits from a tropical country. Mil. Med. 1997, 162, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, A.; Zhai, J.; Jiang, T.; Su, B.; Yang, J.; Wang, G.; Liu, Q.; Gao, C.; Kundzwicz, Z.W.; et al. Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2 °C warming. Natr. Comms. 2019. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.L.; Duan, Q. Global heast stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- IPCC; Allen, M.R.; Dube, O.P.; Solecki, W.; Aragon-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; et al. Fram. Context; IPCC: Geneva, Switzerland, 2018; pp. 49–91. [Google Scholar]
- Lee, J.Y.; Lee, W.S.; Ebi, K.I.; Kim, H. Temperature-related summer mortality under multiple climate, population, and adaptation scenarios. Environ. Res. Pub. Health 2019, 16, 1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coumou, D.; Rahmstorf, S. A Decade of Weather Extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- World Meteorological Organization. The Global Climate 2001–2010. A Decade of Weather Extremes; World Meteorological Organization: Geneva, Switzerland, 2012; p. 61. Available online: https://library.wmo.int/index.php?lvl=notice_display&id=15112#.X5GJsIgzbIU (accessed on 22 October 2020).
- World Meteorological Organization. Warming Trend Continues in 2014 Hottest Year on Record; World Meteorological Organization: Geneva, Switzerland, 2015; Available online: https://public.wmo.int/en/media/press-release/warming-trend-continues-2014 (accessed on 22 October 2020).
- Cowtan, K.; Way, R.G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 2014, 140, 1935–1944. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Zhai, P.; Portner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Pean, C.; Pidcock, R.; et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Inductrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Erradicate Poverty; Intergovermental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Tait, P.W.; Hannah, E.G. A conceptual framework for planning systemic human adaptation to global warming. Int. J. Environ. Res. Public Health 2015, 12, 10700–10722. [Google Scholar] [CrossRef] [Green Version]
- Harding, E.C.; Franks, N.P.; Wisden, W. The temperature dependence of sleep. Front. Neurosci. 2019, 13, 336. [Google Scholar] [CrossRef]
- Semenza, J.C.; Wilson, D.J.; Parra, J.; Bontempo, B.D.; Hart, M.; Sailor, D.J.; George, L.A. Public perception and behaviour change in relationship to hot waether and air pollution. Environ. Res. 2008, 107, 401–411. [Google Scholar] [CrossRef]
- Taylor, J.; Wilkinson, P.; Picetti, R.; Symonda, P.; Heaviside, C.; Macintyre, H.; Davies, M.; Mavrogianni, A.; Hutchinson, E. Comparison of built environment adaptations to heat exposure and mortality during hot weather, West Midlands region, UK. Environ. Int. 2017, 111, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Epstein, Y. Heat intolerance: Predisposing factors or residual injury? Med. Sci. Sports Exerc. 1990, 22, 29–35. [Google Scholar] [CrossRef]
- Horn, G.P.; Kesler, R.M.; Kerber, S.; Fent, K.W.; Schroeder, T.J.; Scott, W.S.; Fehling, P.C.; Fernhall, B.; Smith, D.L. Thermal response to firefighting activities in residential structure fires: Impact of job assignment and suppression tactic. Ergonomics 2018, 61, 404–419. [Google Scholar] [CrossRef]
- Larsen, B.; Snow, R.; Vincent, G.; Tran, J.; Wolkow, A.; Aisbett, B. Multiple days of heat exposure on firefighters’ work performance and physiology. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.K. Preventing heat injury: Military versus civilian perspective. Mil. Med. 1997, 162, 55–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konrad, J.; Gagnon, D.; Serresse, O.; Oddson, B.; Leduc, C.; Dorman, S.C. Effect of a simulated mine rescue on physiological variables and heat strain of mine rescue workers. J. Occup. Environ. Med. 2019, 61, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ health and productivity under occupational heat strain: A systematic review and meta-analysis. Lancet Planet Health 2018, 2, e521–e531. [Google Scholar] [CrossRef] [Green Version]
- Vega-Arroyo, A.J.; Mitchell, D.C.; Castro, J.R.; Armitage, T.L.; Tancredi, D.J.; Bennett, D.H.; Schenker, M.B. Impacts of weather, work rate, hydration, and clothing in heat-related illness in California farmworkers. Am. J. Ind. Med. 2019. [Google Scholar] [CrossRef]
- Horn, G.P.; Kesler, R.M.; Motl, R.W.; Hsiao-Wecksler, E.T.; Klaren, R.E.; Ensari, I.; Petrucci, M.N.; Fernhall, B.; Rosengren, K.S. Physiological responses to simulated firefighter exercise protocols in varying environments. Ergonomics 2015, 58, 1012–1021. [Google Scholar] [CrossRef]
- Williams-Bell, F.M.; Aisbett, B.; Murphy, B.A.; Larsen, B. The effects of simulated wildland firefighting tasks on core temperature and cognitive function under very hot conditions. Front. Physiol. 2017, 8, 815. [Google Scholar] [CrossRef] [Green Version]
- Hunt, A.P.; Billing, D.C.; Patterson, M.J.; Caldwell, J.N. Heat strain during military training activities: The dilemma of balancing force protection and operational capability. Temperature 2016, 3, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Kumae, T.; Yamasaki, K.; Ishizaki, K.; Ito, T. Effects of summer camp endurance training on non-specific immunity in long-distance runners. Int. J. Sports Med. 1999, 20, 390–395. [Google Scholar] [CrossRef]
- Aarseth, H.P.; Eide, I.; Skeie, B.; Thaulow, E. Heat stroke in endurance exercise. Acta Med. Scand. 1986, 220, 279–283. [Google Scholar] [CrossRef]
- Ng, Q.Y.; Lee, K.W.; Byrne, C.; Ho, T.F.; Lim, C.L. Plasma endotoxin and immune responses during a 21-km road racen under a warm and humid environment. Ann. Acad. Med. Singap. 2008, 37, 307–314. [Google Scholar] [PubMed]
- Armstrong, E.; Casa, D.J.; Millard-Stafford, M.; Moran, D.; Pyne, S.W.; Roberts, W.O. American College of Sports Medicine Position Stand: Exertional heat during trainig and competition. Med. Sci. Sports Exerc. 2007, 39, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Luckstead, E.F.; Patel, D.R. Catastrophic pediatric sports injuries. Pediatr. Clin. N. Am. 2002, 49, 581–591. [Google Scholar] [CrossRef]
- Nichols, A.W. Heat-related illness in sports and exercise. Curr. Rev. Musculoskelet. Med. 2014, 7, 355–365. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, F.; Casa, D.G.; Bergeron, M.F.; Carter III, R.; Deuster, P.A.; Heled, Y.; Leon, L.; McDermott, B.; O’Brien, K.; Roberts, W.O. American College of Sports Medicine rountable on exertional heat stroke - return to duty/return to play: Conference proceedings. Curr. Sports Med. Rep. 2010, 9, 314–321. [Google Scholar] [CrossRef]
- Chalmers, S.; Siegler, J.; Lovell, R.; Lynch, G.; Gregson, W.; Marshall, P.; Jay, O. Brief in-play cooling breaks reduce thermal strain during football in hot conditions. J. Sci. Med. Sport 2019, 22, 912–917. [Google Scholar] [CrossRef]
- Redfearn, J.A., Jr.; Murphy, R.J. History of heat stroke in a football trainee. JAMA 1969, 208, 699–700. [Google Scholar]
- Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; Guiot, J.; Hijioka, Y.; Mehrotra, S.; et al. Impacts of 1.5 °C of Global Warming on Natural and Human Systems; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Flouris, A.D.; Kenny, G.P. Heat remains unaccounted for in thermal physiology and climate change research. F1000Research 2017, 6, 221. [Google Scholar] [CrossRef]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef] [Green Version]
- Eggenberger, P.; MacRae, B.A.; Kemp, S.; Burgisser, M.; Rossi, R.M.; Annaheim, S. Prediction of core body temperature based on skin temperature, heat flux, and heart rate under different exercise and clothing conditions in the heat in young adult males. Front. Physiol. 2018, 9, 1780. [Google Scholar] [CrossRef]
- Te Lindert, B.H.W.; Van Someren, E.J.W. Skin temperature, sleep, and vigilance. Handb. Clin. Neurol. 2018, 156, 353–365. [Google Scholar] [PubMed] [Green Version]
- Chen, W. Thermometry and interpretation of body temperature. Biomed. Eng. Lett. 2019, 9, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Childs, C. Body temperature and clinical thermometry. Handb. Clin. Neurol. 2018, 157, 467–482. [Google Scholar]
- Rupp, M.E.; Heermann, J.; Uphoff, M.E. Need for a reliable system to measure body temperature. Am. J. Infect. Control 2004, 32, 184. [Google Scholar] [CrossRef] [PubMed]
- Farnell, S.; Maxwell, L.; Tan, S.; Rhodes, A. Temperature measurement: Comparison of non-invasive methods used in adult critical care. J. Clin. Nurs. 2005, 14, 632–639. [Google Scholar] [CrossRef]
- El Radhi, A.S.; Barry, W. Thermometry in paediatric practice. Arch. Dis. Child. 2006, 91, 351–356. [Google Scholar] [CrossRef]
- Mundel, T.; Carter, J.M.; Wilkinson, D.M.; Jones, D.A. A comparison of rectal, oesophageal and gastro-intestinal tract temperatures during moderate-intensity cycling in temperate and hot conditions. Clin. Physiol. Funct. Imaging 2016, 36, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.C.; Hughes, L.E.; Long, B.C.; Adams, W.M.; Casa, D.J. Validity ofcore temperature measurements at 3 rectal depths during rest, exercise, cold-water immersion, and recovery. J. Athl. Train. 2017, 52, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Vardasca, R.; Magalhaes, C.; Marques, D.; Moreira, J.; Frade, R.A.; Seixas, A.; Mendes, J.G.; Ring, F. Bilateral assessment of body core temperature through axillar, tympanic and inner canthi thermometers in a young population. Physiol. Meas. 2019. [Google Scholar] [CrossRef]
- Yeoh, W.K.; Lee, J.K.W.; Lim, H.Y.; Gan, C.W.; Liang, W.; Tan, K.K. Re-visiting the tympanic membrane vicinity as core body temperature measurement site. PLoS ONE 2017. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.L. Look beyond thermoregulatyion and hydration in the diagnosis of heat stroke. Med. Sci. Sports Exerc. 2016, 48, 2583. [Google Scholar] [CrossRef]
- Byrne, C.; Lim, C.L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. Br. J. Sports Med. 2007, 41, 126–133. [Google Scholar] [CrossRef]
- Moseley, P.L. Heat shock proteins and heat adaptation of the whole organism. J. Appl. Physiol. 1997, 83, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. Forty years of stress research: Principal remaining problems and misconceptions. Can. Med. Assoc. J. 1976, 115, 53–56. [Google Scholar] [PubMed]
- Brooks, G.A.; Fahey, T.D.; White, T.P. Exercise Physiology: Human Bioenergetics and its Applications, 2nd ed.; Mayfield Publishing Company: California, CA, USA, 1996; p. 504. [Google Scholar]
- Knochel, J.P.; Dotin, L.N.; Hamburger, R.C. Heat stress, exercise, and muscle: Effects on urate metabolism an drenal function. Am. J. Intern Med. 1974, 81, 321–328. [Google Scholar] [CrossRef]
- Dube, P.A.; Imbeau, D.; Dubeau, D.; Auger, I. Worker heat stress prevention and work metabolism estimation: Comparing two assessment methods of the heart rate thermal component. Ergonomics 2019, 62, 1066–1085. [Google Scholar] [CrossRef]
- Yu, F.C.; Lu, K.C.; Lin, S.H.; Chen, G.S.; Chu, P.; Gao, G.W.; Lin, Y.F. Energy metabolism in exertional heat stroke with acute renal failure. Nephrol. Dial. Transplant 1997, 12, 2087–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Febbraio, M.A. Alterations in energy metabolism during exercise and heat stress. Sports Med. 2001, 31, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Nadel, E.R.; Mack, G.W.; Nose, H.; Tripathi, A. Tolerance to severe heat and exercise: Peropheral vascular responses to body fluid changes. In Heat Stress: Physical Exertion and Environment; Hales, R.J.S., Richards, D.A.B., Eds.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1987; pp. 117–131. [Google Scholar]
- Sawka, M.N. Human tolerance and heat strain during exercise: Influence of hydration. J. Appl. Physiol. 1992, 73, 368–375. [Google Scholar] [CrossRef]
- Coggan, A.R.; Coyle, E.F. Carbohydrate ingestion during prolonged exercise: Effects on metabolism and performance. Exerc. Sport Sci. Rev. 1991, 19, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.L.; Kammer, W.F.; Fisher, A. Fluid ingestion during distance running. Arch. Environ. Health 1970, 21, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.J.; Law, L.Y.L.; Lim, C.L. Gastrointestinal response and endotoxemia during intense exercise in hot and cool environments. Eur. J. Appl. Physiol. 2013, 113, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine, Position stand: Heat and cold illnesses during distance running. Med. Sci. Sports Exerc. 1996, 28, i–x.
- Otani, H.; Goto, T.; Goto, H.; Shirato, M. Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat. Chronobiol. Int. 2017, 34, 1224–1238. [Google Scholar] [CrossRef] [PubMed]
- Werner, J. Temperature Regulation during Exercise: An Overview; Cooper Publishing Group: Michigan, IN, USA, 1993; Volume 6, pp. 49–79. [Google Scholar]
- Zamanian, Z.; Sedaghat, Z.; Hemehrezaee, M.; Khajehnasiri, F. Evaluation of environmental heat stress on physiological parameters. J. Environ. Health Sci. Eng. 2017, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liao, W.; Rigden, A.J.; Liu, X.; Wang, D.; Malyshev, S.; Shevliakova, E. Urban heat island: Aerodynamics or imperviousness? Sci. Adv. 2019, 5, eeau4299. [Google Scholar] [CrossRef] [Green Version]
- Masson, V.; Bonhomme, M.; Salagnac, J.L.; Briottet, X.; Lemonsu, A. Solar panels reduce both global warming and urban heat island. Front. Environ. Sci. 2014, 2. [Google Scholar] [CrossRef]
- Sharma, R.; Hooyberghs, H.; Lauwaet, D.; De Ridder, K. Urban heat island and future climate change—Implications for Delhi’s heat. J. Urban Health 2019, 96, 235–251. [Google Scholar] [CrossRef]
- Scott, A.A.; Waugh, D.W.; Zaitchik, B.F. Reduced Urban Heat Island intensity under warmer conditions. Environ. Res. Lett. 2018, 13, 064003. [Google Scholar] [CrossRef]
- Costrini, A. Emergency treatment of exertional heatstroke and comparison of whole body cooling techniques. Med. Sci. Sports Exerc. 1990, 22, 15–18. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Crago, A.E.; Adams, R.; Roberts, W.O.; Maresh, C.M. Whole-body cooling of hyperthermic runners: Comparison of two field therapies. Am. J. Emerg. Med. 1996, 14, 355–358. [Google Scholar] [CrossRef]
- Gao, C.; Kuklane, K.; Östergren, P.O.; Kjellstrom, T. Occupational heat stress assessment and protective strategies in the context of climate change. Int. J. Biometeorol. 2018, 62, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.W.; Gertlera, P.J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA 2015, 112, 5962–5967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kownacki, K.L.; Hornyanszky, E.D.; Chu, T.A.; Olsson, J.A.; Becker, P. Challenges of using air conditioning in an increasingly hot climate. Int. J. Biometeorol. 2018, 62, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worfolk, J.B. Heat waves: Their impact on the health of elders. Geriatr. Nurs. 2000, 21, 70–77. [Google Scholar] [CrossRef]
- Rajpal, R.C.; Weisskopf, M.G.; Rumm, P.D.; Peterson, P.L.; Jentzen, J.M.; Blair, K.; Foldy, S. Wisconsin, July 1999 heat wave: An epidemiologic assessment. WMJ 2000, 99, 41–44. [Google Scholar]
- Naughton, M.P.; Henderson, A.; Mirabelli, M.C.; Kaiser, R.; Wilhelm, J.L.; Kieszak, S.M.; Rubin, C.H.; McGeehin, M.A. Heat-related mortality during a 1999 heat wave in Chicago. Am. J. Prev. Med. 2002, 22, 221–227. [Google Scholar] [CrossRef]
- Hausefather, Z.; Peters, G.P. Emissions—The “business as usual” story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Law, L.Y.; Lim, C.L. Heat Acclimatisation and Active Body Cooling Strategies to Mitigate Heat Stress for Operations Involving Bullet-Proof Vests. In Proceedings of the Army Science Conference (26th), Orlando, FL, USA, 1–4 December 2008. [Google Scholar]
- Armstrong, L.E.; Maresh, C.M. Effects of training, environment, and host factors on the sweating response to exercise. Int. J. Sports Med. 1998, 19 (Suppl. 2), S103–S105. [Google Scholar] [CrossRef]
- Sato, K. The mechanism of eccrine sweat secretion. In Exercise, Heat, and Thermoregulation; Gisolfi, C.V., Lamb, D.R., Nadel, E.R., Eds.; Cooper Publishing Group: Traverse City, MI, USA, 1993; Volume 6, pp. 85–107. [Google Scholar]
- Montain, S.J.; Sawka, M.N.; Cadarette, B.S.; Quigley, M.D.; McKay, J.M. Physiological tolerance to uncompensable heat stress: Effects of exercise intensity, protective clothing, and climate. J. Appl. Physiol. 1994, 77, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Buono, M.J.; Sjoholm, N.T. Effect of physical traning on peripheral sweat production. J. Appl. Physiol. 1988, 65, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N. The control of sweating rate and skin blood flow during exercise. In Exercise, Nutrition, and Environmental Stress; Gisolfi, C.V., Ed.; Cooper Publishing Group: Traverse City, MI, USA, 2001; Volume 1, pp. 153–178. [Google Scholar]
- McAllen, R.M.; McKinley, M.J. Efferent thermoregulatory pathways regulating cutaneous blood flow and sweating. Handb. Clin. Neurol. 2018, 156, 305–316. [Google Scholar] [PubMed]
- Pethick, W.A.; Murray, H.J.; McFadyen, P.; Brodie, R.; Gaul, C.A.; Stellingwerff, T. Effects of hydration status during heat acclimation on plasma volume and performance. Scand. J. Med. Sci. Sports 2019, 29, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.D.; Scott, D.M.; Brand, N.A.; Suh, H.G.; Seal, A.D.; McDermott, B.P.; Ganio, M.S.; Kavouras, S.A. Mild hypohydration impairs cycle ergometry performance in the heat: A blinded study. Scand. J. Med. Sci. Sports 2019, 29, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Alonso, J.; Mora-Rodriguez, R.; Below, P.R.; Coyle, E.F. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J. Appl. Physiol. 1997, 82, 1229–1236. [Google Scholar]
- Sawka, M.N.; Montain, S.J.; Latzka, W.A. Hydration effects on thermoregulation and performance in the heat. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 128, 679–690. [Google Scholar] [CrossRef]
- Fehling, P.C.; Haller, J.M.; Lefferts, W.K.; Hultquist, E.M.; Wharton, M.; Rowland, T.W.; Smith, D.L. Effect of exercise, heat stress and dehydration on myocardial performance. Occup. Med. 2015, 65, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Sawka, M.N.; Latzka, W.A.; Mattot, R.P.; Montain, S.J. Hydration effects on temperature regulation. Int. J. Sports Med. 1998, 19 (Suppl. 2), S108–S110. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, J.; Mora-Rodriguez, R.; Below, P.R.; Coyle, E.F. Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. J. Appl. Physiol. 1995, 79, 1487–1496. [Google Scholar] [CrossRef]
- Heaps, C.L.; Gonzalez-Alonso, J.; Coyle, E.F. Hypohydration causes cardiovascular drift without reducing blood volume. Int. J. Sports Med. 1994, 15, 74–79. [Google Scholar] [CrossRef]
- Montain, S.J.; Coyle, E.F. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J. Appl. Physiol. 1992, 73, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Wittbrodt, M.T.; Millard-Stafford, M.; Sherman, R.A.; Cheatham, C.C. Fluid Replacement Attenuates Physiological Strain Resulting From Mild Hypohydration without Impacting Cognitive Performance. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Senay, L.C.; Mitchell, D.; Wyndham, C.H. Acclimatization in a hot and humid environment: Body fluid adjustments. J. Appl. Physiol. 1976, 40, 786–796. [Google Scholar] [CrossRef]
- Shanks, N.J.; Papworth, G. Environmental factors and heatstroke. Occup. Med. 2001, 51, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.K.; Baker, L.B.; Barnes, K.; Ungaro, C.; Stofan, J. Thermoregulation, fluid balance, and sweat losses in American football players. Sports Med. 2016, 46, 1391–1405. [Google Scholar] [CrossRef] [PubMed]
- Coris, E.E.; Ramirez, A.M.; Van Durme, D.J. Heat illness in athletes. Sports Med. 2004, 34, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Kark, J.A.; Karen, K.; Sanborn, J.S.; Gastaldo, E.; Burr, P.; Wenger, B. Risk factors predicting exertional heat illness in male Marine Corps recruits. Med. Sci. Sports Exerc. 1996, 28, 939–944. [Google Scholar] [CrossRef]
- Cian, C.; Koulman, N.; Barraud, P.A.; Jimenez, C.; Melin, B. Influence of variations in body hydration on cognitive function: Effect of hyperhydration, heat stress, and exercise-induced dehydration. J. Psychophysiol. 2000, 14, 29–36. [Google Scholar] [CrossRef]
- Newburg, L.H. Physiology of Heat Regulation and the Science of Clothing; Saunders: Philadelphia, PA, USA, 1949; p. 267. [Google Scholar]
- Lee, J.K.W.; Nio, A.Q.X.; Fun, D.C.Y.; Teo, Y.S.; Von Chia, E.; Lim, C.L. Effects of Heat Acclimatization on Work Tolerance and Thermoregulation In Trained Tropical Natives. Med. Sci. Sports Exerc. 2012, 44, 365. [Google Scholar]
- Hue, O.; Le Jeannic, P.; Chamari, K. Self-hydration and thermoregulatory processes of average-level paddlers during international surfski events in a tropical climate. Biol. Sport 2015, 32, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Madden, C.J.; Morrison, S.F. Central nervous system circuits that control body temperature. Neurosci. Lett. 2019, 696, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Zalewski, P.; Bitner, A.; Slomko, J.; Szrajda, J.; Klawe, J.J.; Tafil-Klawe, M.; Newton, J.L. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature. J. Therm. Biol. 2014, 45, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Hissa, R. Central control of body temperature. Arct. Med. Res. 1990, 49, 315. [Google Scholar]
- Morrison, S.F.; Nakamura, K. Central Mechanisms for Thermoregulation. Annu. Rev. Physiol. 2019, 81, 285–308. [Google Scholar] [CrossRef]
- Tansey, E.A.; Johnson, C.D. Recent advances in thermoregulation. Adv. Physiol. Educ. 2015, 39, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Piwonka, R.W.; Robinson, S. Acclimatization of highly trained men to work in severe heat. J. Appl. Physiol. 1963, 22, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Strydom, N.B.; Williams, C.G. Effects of physical conditioning on state of heat acclimatization of Bantu laborers. J. Appl. Physiol. 1969, 27, 262–265. [Google Scholar] [CrossRef]
- Thun, E.; Bjorvatn, B.; Flo, E.; Harris, A.; Pallesen, S. Sleep, circadian rhythms, and athletic performance. Sleep Med. Rev. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Sim, S.Y.; Joo, K.M.; Kim, H.B.; Jang, S.; Kim, B.; Hong, S.; Kim, S.; Park, K.S. Estimation of circadian body temperature rhythm based on heart rate in healthy, ambulatory subjects. IEEE J. Biomed. Health Inform. 2017, 21, 407–415. [Google Scholar] [CrossRef]
- Gordon, K.; Blondin, D.P.; Friesen, B.J.; Tingelstad, H.C.; Kenny, G.P.; Haman, F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J. Appl. Physiol. 2019, 126, 1598–1606. [Google Scholar] [CrossRef]
- Nye, E.A.; Edler, J.R.; Eberman, L.E.; Games, K.E. Optimizing cold-water immersion for exercise-induced hyperthermia: An evidence-based paper. J. Athl. Train. 2016, 51, 500–501. [Google Scholar] [CrossRef] [Green Version]
- Flouris, A.D.; Schlader, Z.J. Human behavioral thermoregulation during exercise in the heat. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 1), 52–64. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, K.; Tokizawa, K.; Marui, S. Thermal comfort. Handb. Clin. Neurol. 2018, 156, 249–260. [Google Scholar] [PubMed]
- Nakayama, A.; Mitsui, T.; Nakata, T.; Mabuchi, H.; Kawabata, K.; Yoshimatsu, H.; Ito, T.; Matsunaga, K.; Kosuge, M.; Kamijo, Y.I.; et al. Changes in thermal comfort, core temperature, and body weight during simulated parcel home-delivery in summer and winter. Ind. Health 2019. [Google Scholar] [CrossRef] [Green Version]
- Noakes, T.D. Waterlogged: The Serious Problem of Overhydration in Endurance Sports; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Marino, F.E.; Lambert, M.I.; Noakes, T.D. Superior performance of African runners in warm humid but not in cool environmental conditions. J. Appl. Physiol. 2004, 96, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.; Carter, R.N.; Duncan, M. Brain and abdominal temperatures at fatigue in rats exercising in the heat. J. Appl. Physiol. 1998, 84, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, S.S.; Sleivert, G.G. Multiple triggers of hyperthermic fatigue and exhaustion. Exerc. Sport Sci. Rev. 2003, 32, 100–106. [Google Scholar] [CrossRef]
- Van Cutsem, J.; De Pauw, K.; Buyse, L.; Marcora, S.; Meeusen, R.; Roelands, B. Effects of mental fatigue on endurance performance in the heat. Med. Sci. Sports Exerc. 2017, 49, 1677–1687. [Google Scholar] [CrossRef]
- Nielsen, B.; Nybo, L. Cerebral changes during exercise in the heat. Sports Med. 2003, 33, 1–11. [Google Scholar] [CrossRef]
- Walters, T.J.; Ryan, K.L.; Tate, L.M.; Mason, P.A. Exercise in the heat is limited by a critical internal temperature. J. Appl. Physiol. 2000, 89, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Brinnel, H.; Cabanac, M.; Hales, J.R.S. Critical upper levels of body temperature, tissue thermosensitivity and selective brain cooling in hyperthermia. In Heat Stress: Physical Exertion and Environment; Hales, J.R.S., Richards, D.A.B., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 209–240. [Google Scholar]
- Gonzalez-Alonso, J.; Teller, C.; Andersen, S.L.; Jensen, F.B.; Hyldig, T.; Nielsen, B. Influence of body temperature on the development of fatigue during prolong exercise in the heat. J. Appl. Physiol. 1999, 86, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- James, C.A.; Richardson, A.J.; Watt, P.W.; Willmott, A.G.; Gibson, O.R.; Maxwell, N.S. Short-term heat acclimation improves the determinants of endurance performance and 5-km running performance in the heat. Appl. Physiol. Nutr. Metab. 2017, 42, 285–294. [Google Scholar] [CrossRef]
- Periard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 1), 20–38. [Google Scholar] [CrossRef]
- Vargas, N.T.; Slyer, J.; Chapman, C.L.; Johnson, B.D.; Temple, J.L.; Mietlicki-Baase, E.G.; Schlader, Z.J. The motivation to behaviorally thermoregulate during passive heat exposure in humans is dependent on the magnitude of increases in skin temperature. Physiol. Behav. 2018, 194, 545–551. [Google Scholar] [CrossRef]
- Johnson, J.S.; Aardsma, M.A.; Duttlinger, A.W.; Kpodo, K.R. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport. J. Anim. Sci. 2018, 96, 1640–1653. [Google Scholar] [CrossRef]
- Gisolfi, C.V. Fluid balance and optimal performance. Nutri. Rev. 1996, 54, S159–S168. [Google Scholar] [CrossRef]
- Zambraski, E.J. Renal regulation of fluid homeostasis during exercise. In Perspectives in Exercise Science and Sports Medicine Volume 3: Fluid Homeostasis During Exercise; Gisolfi, C.V., Lamb, D.R., Eds.; Cooper Publishing Group: Michigan IN, USA, 1990; Volume 3, pp. 247–276. [Google Scholar]
- Noakes, T.D. Fluid replacement during marathon running. Clin. J. Sports Med. 2003, 13, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Montain, S.J.; Latzka, W.A.; Sawka, M.N. Fluid replacement recommendations for training in hot weather. Mil. Med. 1999, 164, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Greenleaf, J.E. Importance of Fluid Homeostasis for Optimal Adaptation to Exercise and Environmenta Stress: Acceleration; Cooper Publishing Group: Michigan IN, USA, 1990; Volume 3, pp. 309–339. [Google Scholar]
- Coyle, E.F.; Montain, S.J. Benefits of fluid replacement with carbohydrate during exercise. Med. Sci. Sports Exerc. 1992, 24, S324–S330. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.L. Fluid requirements during physical exercise. Nutr. Today 2009, 44, 10–13. [Google Scholar] [CrossRef]
- Coyle, E.F.; Montain, S.J. Carbohydrate and fluid ingestion during exercise: Are there trade-offs? Med. Sci. Sports Exerc. 1992, 24, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Prevention, C. Hyperthermia and dehydration-related deaths associated with intentional rapid weight loss in three colleagiate wrestlers—North Carolina, Wisconsin, and Michigan, November–December 1997. JAMA 1998, 279, 824–825. [Google Scholar]
- Noakes, T.D. Can we trust rehydration. In Philosophy and Sciences of Exercise, Health and Sport. Critical Perspectives on Research Methods; McNamee, M., Ed.; Routledge: Oxford, UK, 2005; pp. 144–168. [Google Scholar]
- Shirreffs, S.M.; Maughan, R.J. Rehydration and recovery of fluid balance after exercise. Exerc. Sports Sci. Rev. 2000, 28, 27–32. [Google Scholar]
- Hughson, R.L.; Green, H.J.; Houston, M.E.; Thomson, J.A.; MacLean, R.D.; Sutton, J.R. Heat injuries in Canadian mass participation runs. CMAJ 1980, 122, 1141–1144. [Google Scholar]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine, Position Stand: Exercise and Fluid Replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar]
- Havenith, G. An individualised model of human thermoregulation for the simulation of heat stress response. J. Appl. Physiol. 2001, 90, 1943–1954. [Google Scholar] [CrossRef]
- Havenith, G. Human surface to mass ratio and body core temperarure in exercise heat stress—A concept revisited. J. Therm. Biol. 2001, 26, 387–393. [Google Scholar] [CrossRef]
- Gagnon, D.; Crandall, C.G.; Kenny, G.P. Sex differences in postsynaptic sweating and cutaneous vasodilation. J. Appl. Physiol. 2013, 114, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, D.; Kenny, G.P. Sex modulates wholebody sudomotor thermosensitivity during exercise. J. Appl. Physiol. 2011, 589, 6205–6217. [Google Scholar]
- Yanovich, R.; Ketko, I.; Charkoudian, N. Sex differences in human thermoregulation: Relevance for 2020 and beyond. Physiology 2020, 35, 177–184. [Google Scholar] [CrossRef]
- Ali, Y.S.; Daamen, N.; Jacob, G.; Jordan, J.; Shannon, J.R.; Blaggioni, I.; Robertson, D. Orthostatic intoelrance: A disorder of young women. Obstet. Gynecol. Surv. 2000, 55, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.; Sparling, P.B.; Rosskopf, L.B.; Snow, T.K.; DiCarlo, L.J.; Hinson, B.T. Fluid intake in male and female runners during a 40-km field run in the heat. J. Sports Sci. 1995, 13, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, Y.; Pandolf, K.B.; Avellini, B.A.; Pigmental, N.A.; Goldman, R.F. Physiological responses of men and women to humaid and dry heat. J. Appl. Physiol. 1980, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gifford, R.M.; Todisco, T.; Stacey, M.; Fujisawa, T.; Allerhand, M.; Woods, D.R.; Reynolds, R.M. Risk of heat illness in men and women: A systematic review and metaanalysis. Environ. Res. 2019, 171, 24–35. [Google Scholar] [CrossRef]
- Mee, J.A.; Gibson, O.R.; Doust, J.; Maxwell, N.S. A comparison of males and females’ temporal patterning to short- and long-term heat acclimation. Med. Sci. Sports Exerc. 2015, 25, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.; Deakin, V. Clinical Sports Nutrition; McGraw-Hill Australia: Sydney, Australia, 2005. [Google Scholar]
- Charlot, K.; Faure, C.; Antoine-Jonville, S. Influence of hot and cold environments on the regulation of energy balance following a single exercise session: A mini-review. Nutrients 2017, 9, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, M.M.; Sabapathy, S.; Leveritt, M.B.D. Acute exercise and hormones related to appetite regulation: A meta-analysis. Sports Med. 2014, 44, 387–403. [Google Scholar] [CrossRef] [Green Version]
- Hagobian, T.A.; Sharoff, C.G.; Braun, B. Effects of short-term exercise and energy surplus on hormones related to regulation of energy balance. Metabolism 2008, 57, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Shorten, A.L.; Wallman, K.E.; Guelfi, K.J. Acute effect of environmental temperature during exercise on subsequent energy intake in active men. Am. J. Clin. Nutr. 2009, 90, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Faure, C.; Charlot, K.; Henri, S.; Hardy-Dessources, M.D.; Hue, O.; Antoine-Jonville, S. Effect of heat exposure and exercise on food intake regulation: A randomized crossover study in young healthy men. Metabolism 2016, 65, 1541–1549. [Google Scholar] [CrossRef]
- Ahmed, M.; Mandic, I.; Lou, W.; Goodman, L.; Jacobs, I.; Abbé, M.R.L. Comparison of dietary intakes of Canadian Armed Forces personnel consuming field rations in acute hot, cold, and temperate conditions with standardized infantry activities. BMC Mil. Med. Res. 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Simonson, A.J.; Darnell, M.E.; DeLany, J.P.; Wohleber, M.F.; Connaboy, C. Energy expenditure and intake during Special Operations Forces field training in a jungle and glacial environment. Appl. Physiol. Nutr. Metab. 2017, 43, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Rossati, A. Global warming and its health impact. Int. J. Occup. Environ. Med. 2017, 8, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Luber, G.; Prudent, N. Climat Chang. Human Health. Trans. Am. Clin. Climatol. Assoc. 2009, 120, 113–117. [Google Scholar]
- Stillman, J.H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 2019, 34, 86–100. [Google Scholar] [CrossRef]
- Argaud, L.; Ferry, T.; Le, Q.H.; Marfisi, A.; Ciorba, D.; Achache, P.; Ducluzeau, R.; Robert, D. Short- and long-term outcomes of heatstroke following the 2003 heat wave in Lyon, France. Arch. Intern. Med. 2007, 167, 2177–2183. [Google Scholar] [CrossRef] [Green Version]
- Hifumi, T.; Kondo, Y.; Shimizu, K.; Miyake, Y. Heat stroke. J. Intensive Care 2018, 6, 30–38. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Guo, Y.; Sera, F.; Huber, V.; Schleussner., C.F.; Mitchell, D.; Tong, S.; De Sousa, M.; Coelho, Z.S.; Saldiva, P.H.N.; et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Chang. 2018, 150, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, E.; Capone, P.; Freda, D. Climate change impact on microclimate of work environment related to occupational health and productivity. Annali dell’Istituto Superiore di Sanita 2016, 52, 338–342. [Google Scholar]
- Nielsen, B. Heat stress and acclimation. Ergonomics 1994, 137, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Wyndham, C.H.; Rogers, G.G.; Senay, L.C.; Mitchell, D. Acclimatization in a hot, humid environment: Cardiovascular adjustments. J. Appl. Physiol. 1976, 40, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Hausswirth, C.; Jay, J.; Lee, J.K.W.; Mitchell, N.; et al. Consensus recommendations on training and competing in the heat. Scand. J. Med. Sci. Sports 2015, 25, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Shvartz, E.; Shapiro, Y.; Magazanik, A. Heat acclimation, physical fitness, and responses to exercise in temperate and hot environment. J. Appl. Physiol. 1977, 43, 678–683. [Google Scholar] [CrossRef]
- Karlsen, A.; Nybo, L.; Norgaard, S.J.; Jensen, M.V.; Bonne, T.; Racinais, S. Tiome course of natural heat acclimatization in well-trained cyclists during a 2-week training camp in the heat. Scand. J. Med. Sci. Sports 2015, 25, 240–249. [Google Scholar] [CrossRef]
- Lorenzo, S.; Halliwill, J.; Sawka, M.N.; Minson, C.T. Heat acclmation improves exercise performance. J. Appl. Physiol. 2010, 109, 1140–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladell, W.S.S. Assessment of a group acclimatization to heat and humidity. J. Physiol. 1951, 115, 296–312. [Google Scholar] [CrossRef] [Green Version]
- Zurawlew, M.J.; Mee, J.A.; Walsh, N.P. Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations in Endurance Trained and Recreationally Active Individuals. Front. Physiol. 2018, 9, 1824. [Google Scholar] [CrossRef]
- Zurawlew, M.J.; Mee, J.A.; Walsh, N.P. Post-exercise hot water immersion elicits heat acclimation adaptations that are retained for at least two weeks. Front. Physiol. 2019. [Google Scholar] [CrossRef]
- Wingfield, G.L.; Gale, R.; Minett, G.M.; Marino, F.E.; Skein, M. The effect of high versus low intensity heat acclimation on performance and neuromuscular responses. J. Therm. Biol. 2016, 58, 50–59. [Google Scholar] [CrossRef]
- Schmit, C.; Duffield, R.; Hausswirth, C.; Brisswalter, J.; Le Meur, Y. Optimizing heat acclimation for endurance athletes: High- versus low-intensity training. Int. J. Sports Physiol. Perform. 2018, 13, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Duvnjak-Zaknich, D.M.; Wallman, K.E.; Dawson, B.T.; Peeling, P. Continuous and intermittent heat acclimation and decay in team sport athletes. Eur. J. Sport Sci. 2019, 19, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Periard, J.D.; Karlsen, A.; Nybo, L. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med. Sci. Sports Exerc. 2015, 47, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhadad., S.B.; Tan, P.M.S.; Lee, J.K.W. Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis. Front. Physiol. 2019. [Google Scholar] [CrossRef]
- Glitz, K.J.; Seibel, U.; Rohde, U.; Gorges, W.; Witzki, A.; Piekarski, C.; Leyk, D. Reducing heat stress under thermal insulation in protective clothing: Microclimate cooling by a ‘physiological’ method. Ergonomics 2015, 58, 1461–1469. [Google Scholar] [CrossRef]
- Lim, C.L. Heat Sepsis Precedes Heat Toxicity in the Pathophysiology of Heat Stroke-A New Paradigm on an Ancient Disease. Antioxidants 2018, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.L.; Mackinnon, L.T. The role of exercise-induced immune system disturbances in the pathology of heat stroke: The dual pathway model of heat stroke. Sports Med. 2006, 36, 39–64. [Google Scholar] [CrossRef]
- Bouchama, A.; Knochel, J.P. Heat Stroke. N. Engl. J. Med. 2002, 346, 1978–1988. [Google Scholar] [CrossRef]
- Kenny, G.P.; Wilson, T.E.; Flouris, A.D.; Fujii, N. Heat exhaustion. Handb. Clin. Neurol. 2018, 157, 505–529. [Google Scholar]
- Noakes, T.D. Fluid and electrolyte disturbances in heat illness. Int. J. Sports Med. 1998, 19 (Suppl. 2), S146–S149. [Google Scholar] [CrossRef]
- El Bakry, A.K.; Channa, A.B.; Bakhamees, H.; Turkistani, A.; Seraj, M.A. Heat exhaustion during mass pilgrimage--is there a diagnostic role for pulse oximetry? Resuscitation 1996, 31, 121–126. [Google Scholar] [CrossRef]
- Shapiro, Y.; Seidman, D.S. Field and clinical observations of exertional heat stroke patients. Med. Sci. Sports Exerc. 1990, 22, 6–14. [Google Scholar] [CrossRef] [PubMed]
- National Athlete Trainer, A. National Athlete Trainer Association’s Position Statement: Exertional Heat Illness. J. Athl. Train. 2002, 37, 329–343. [Google Scholar]
- Dickinson, J.G. Heat illness in the services. J. R. Army Med. Corp. 1994, 140, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shani, Y.; Moran, D.S.; Heled, Y.; Shapiro, Y.; Epstein, Y. Exertional heat illness. Lancet 2000, 355, 1992–1993. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S.; Shapiro, Y.; Sohar, E.; Shemer, J. Exertional heat stroke: A case series. Med. Sci. Sports Exerc. 1999, 31, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Kashmeery, A. Exertional heat illness. Lancet 2000, 355, 1992. [Google Scholar] [CrossRef]
- Maron, M.B.; Wagner, J.A.; Horvath, S.M. Thermoregulatory responses during competitive marathon running. J. Appl. Physiol. 1977, 42, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.L.; Wilson, G.; Brown, L.; Coombes, J.S.; Mackinnon, L.T. Pre-existing inflammatory state compromises heat tolerance in rats exposed to heat stress. Am. J. Physiol. 2007, 292, R186–R194. [Google Scholar] [CrossRef] [Green Version]
- Moseley, P.; Gisolfi, C.V. New frontiers in thermoregulation and exercise. Sports Med. 1993, 16, 163–167. [Google Scholar] [CrossRef]
- Hales, R.J.S.; Sakurada, S. Heat Tolerance: A role for fever? Ann. N. Y. Acad. Sci. 1998, 856, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Lee, E.C.; Armstrong, E.M. Interactions of gut microbiota, endotoxemia, immune function, and diet in exertional heatstroke. J. Sports Med. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, G.P. Role of gastrointestinal permeability in exertional heatstroke. Exer. Sport Sci. Rev. 2004, 32, 185–190. [Google Scholar] [CrossRef]
- Selkirk, G.A.; McLellan, T.M.; Wright, H.E.; Rhind, S.G. Mild endotoxemia, NF-kB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. Am. J. Physiol. 2008, 295, R611–R623. [Google Scholar]
- Jeukendrup, A.E.; Vet-Joop, K.; Sturk, A.; Stegen, J.H.; Senden, J.; Saris, W.H.; Wagenmakers, A.J. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin. Sci. 2000, 98, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.; Hart, J.; Millis, M.; Baker, A.L. Fulminant hepatic failure from heat stroke requiring liver transplantation. J. Clin. Gastroenterol. 2000, 30, 429–431. [Google Scholar] [CrossRef]
- Lim, C.L.; Suzuki, K. Systemic inflammation mediates the effects of endotoxemia in the mechanisms of heat stroke. Biol. Med. 2016, 9, 1–3. [Google Scholar] [CrossRef]
- Bynum, G.D.; Brown, J.; Dubose, D.A.; Marsili, M.; Leav, I.; Pistole, T.G.; Hamlet, M.; Lemarie, M.; Caleb, B. Increased survival in experimental dog heatstroke after reduction of gut flora. Aviat. Space Environ. Med. 1979, 50, 816–819. [Google Scholar]
- Gathiram, P.; Wells, M.T.; Brock Utne, J.G.; Gaffin, S.L. Prophylactic corticosteroid increases survival in experimental heat stroke in primates. Aviat. Space Environ. Med. 1988, 59, 352–355. [Google Scholar]
- Zanghi, B.M.; Gardner, C.; Araujo, J.; Milgram, N.W. Diurnal changes in core body temperature, day/night locomotor activity patterns, and actigraphy-generated behavioral sleep in aged canines with varying levels of cognitive dysfunction. Neurobiol. Sleep Circadian Rhythm. 2016, 1, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Boivin, D.B.; Shechter, A.; Boudreau, P.; Begum, E.A.; Ng Ying-Kin, N.M. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women. Proc. Natl. Acad. Sci. USA 2016, 113, 10980–10985. [Google Scholar] [CrossRef] [Green Version]
- Mtibaa, K.; Thomson, A.; Nichols, D.; Hautier, C.; Racinais, S. Hyperthermia-induced neural alterations impair proprioception and balance. Med. Sci. Sports Exerc. 2018, 50, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Hanusch, K.U.; Janssen, C.W. The impact of whole-body hyperthermia interventions on mood and depression—Are we ready for recommendations for clinical application? Int. J. Hyperth. 2019, 36, 573–581. [Google Scholar] [CrossRef]
- Heesch, M.W.; Slivka, D.R. Running performance, pace strategy, and thermoregulation differ between a treadmill and indoor track. J. Strength Cond. Res. 2015, 29, 330–335. [Google Scholar] [CrossRef]
- Larsen, B.; Snow, R.; Aisbett, B. Effect of heat on firefighters’ work performance and physiology. J. Therm. Biol. 2015, 53, 1–8. [Google Scholar] [CrossRef]
- Mather, V. Fearing Heat, Tokyo Games Move Marathons. The New York Times, 17 October 2019; p. 12. [Google Scholar]
- Goh, V.H.H.; Tong, T.Y.Y.; Lim, C.L.; Low, E.C.T.; Lee, L.K.H. Effects of one night sleep deprivation on hormonal profiles and performance efficiency. Mil. Med. 2001, 166, 427–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legault, G.; Clement, A.; Kenny, G.P.; Hardcastle, S.; Keller, N. Cognitive consequences of sleep deprivation, shiftwork, and heat exposure for underground miners. Appl. Ergon. 2017, 58, 144–150. [Google Scholar] [CrossRef]
- Meade, R.D.; D’Souza, A.W.; Krishen, L.; Kenny, G.P. The physiological strain incurred during electrical utilities work over consecutive work shifts in hot environments: A case report. J. Occup. Environ. Hyg. 2017, 14, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Gifkins, J.; Johnston, A.; Loudoun, R. The impact of shift work on eating patterns and self-care strategies utilised by experienced and inexperienced nurses. Chronobiol. Int. 2018, 35, 811–820. [Google Scholar] [CrossRef] [Green Version]
- Oliveira Tavares, T.; Oliveira, B.R.; Albuquerque Silva, V.; Silva, R.P.; Santos, A.F.; Okida, E.S. The times, movements and operational efficiency of mechanized coffee harvesting in sloped areas. PLoS ONE 2019. [Google Scholar] [CrossRef]
- Shepon, A.; Henriksson, P.J.G.; Wu, T. Conceptualizing a sustainable food system in an automated world: Toward a “Eudaimonian” future. Front. Nutr. 2018, 5, 104–117. [Google Scholar] [CrossRef]
- Parka, A.G.; McDonaldb, A.J.; Devkotab, M.; Davisa, A.S. Increasing yield stability and input efficiencies with cost-effective mechanization in Nepal. Field Crop. Res. 2018, 228, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Mudie, K.L.; Boynton, A.C.; Karakolis, T.; O’Donovan, M.P.; Kanagaki, G.B.; Crowell, H.P.; Begg, R.K.; LaFiandra, M.E.; Billing, D.C. Consensus paper on testing and evaluation of military exoskeletons for the dismounted combatant. J. Sci. Med. Sport 2018, 21, 1154–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, R.J. Mechanization of undergroud mining: A quick look backward and forward. Int. J. Rock Mech. Min. Sci. 2000, 37, 413–421. [Google Scholar] [CrossRef]
- Marogel-Popa, T.; Cheta, M.; Marcu, M.V.; Duta, C.I.; Ioras, F.; Borz, S.A. Manual cultivation operations in poplar stands: A characterization of job difficulty and risks of health impairment. Int. J. Environ. Res. Public Health 2019, 16, 1911. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.J.; Kim, J.S.; Baker, L.; Long, A.; Karavas, N.; Menard, N.; Galiana, I.; Walsh, C.J. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. J. Neuro. Engr. Rehab. 2018, 15, 66–74. [Google Scholar] [CrossRef]
- Mooney, L.M.; Rouse, E.J.; Herr, H.M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J. Neuro. Engr. Rehab. 2014, 11, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Honig, S.; Oron-Gilad, T. Understanding and resolving failures in human-robot interaction: Literature review and model development. Front. Psychol. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvel, J.A.; Bostelman, R.; Falco, J. Multi-robot assembly atrategies and metrics. ACM Comput. Surv. 2018. [Google Scholar] [CrossRef] [Green Version]
- Phillips, L. Solar Energy; Elsevier: London, UK, 2019; pp. 317–330. [Google Scholar]
- O’Hara, R.; Vojta, C.; Henry, A.; Caldwell, L.; Wade, M.; Swanton, S.; Linderman, J.K.; Ordway, J. Effects of a new cooling technology on physical performance in US Air Force military personnel. J. Spec. Oper. Med. 2016, 16, 57–61. [Google Scholar] [PubMed]
- McLinden, M.O.; Brown, J.S.; Brignoli, R.; Kazakov, A.F.; Domanski, P.A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kovats, S.; Akhtar, R. Climate change and human health i Asian cities. Environ. Urban 2008, 20, 165–175. [Google Scholar] [CrossRef]
- Dahl, R. Cooling concepts: Alternative to air conditioning for a warm world. Environ. Health Perspect. 2013, 121, a18–a25. [Google Scholar] [CrossRef] [Green Version]
- Isaac, M.; Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Parameswarappa, S.B.; Narayana, J. Assessment of Effectiveness of Cool Coat in Reducing Heat Strain among Workers in Steel Industry. Indian J. Occup. Environ. Med. 2017, 21, 29–35. [Google Scholar]
- Tan, P.M.; Teo, E.Y.; Ali, N.B.; Ang, B.C.; Iskandar, I.; Law, L.Y.; Lee, J.K. Evaluation of Various Cooling Systems After Exercise-Induced Hyperthermia. J. Athl. Train. 2017, 52, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.P.; Yang, Y.; Song, W.F.; Wong, D.P. Hybrid cooling vest for cooling between exercise bouts in the heat: Effects and practical considerations. J. Therm. Biol. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Savage, R.J.; Lord, C.; Larsen, B.L.; Knight, T.L.; Langridge, P.D.; Aisbett, B. Firefighter feedback during active cooling: A useful tool for heat stress management? J. Therm. Biol. 2014, 46, 65–71. [Google Scholar]
- Bongers, C.C.; Hopman, M.T.; Eijsvogels, T.M. Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations. Temperature 2017, 4, 60–78. [Google Scholar] [CrossRef] [Green Version]
- Butts, C.L.; Spisla, D.L.; Adams, J.D.; Smith, C.R.; Paulsen, K.M.; Caldwell, A.R.; Ganio, M.S.; McDermott, B.P. Effectiveness of ice-sheet cooling following exertional hyperthermia. Mil. Med. 2017, 182, e1951–e1957. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.P.C.; Yang, Y.; Wong, F.K.W.; Yam, M.C.H.; Wong, D.P.; Song, W.F. Reduction of physiological strain under a hot and humid environment by a hybrid cooling vest. J. Strength Cond. Res. 2019, 33, 1429–1436. [Google Scholar] [CrossRef]
- Smith, C.R.; Butts, C.L.; Adams, J.D.; Tucker, M.A.; Moyen, N.E.; Ganio, M.S.; McDermott, B.P. Effect of a Cooling Kit on Physiology and Performance Following Exercise in the Heat. J. Sport Rehabil. 2018, 27, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Kuklane, K.; Lundgren, K.; Gao, C.; Wang, F. A ventilation cooling shirt worn during office work in a hot climate: Cool or not? Int. J. Occup. Saf. Ergon. 2015, 21, 457–463. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.L. Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. Int. J. Environ. Res. Public Health 2020, 17, 7795. https://doi.org/10.3390/ijerph17217795
Lim CL. Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. International Journal of Environmental Research and Public Health. 2020; 17(21):7795. https://doi.org/10.3390/ijerph17217795
Chicago/Turabian StyleLim, Chin Leong. 2020. "Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming" International Journal of Environmental Research and Public Health 17, no. 21: 7795. https://doi.org/10.3390/ijerph17217795