The Relation between Domain-Specific Physical Behaviour and Cardiorespiratory Fitness: A Cross-Sectional Compositional Data Analysis on the Physical Activity Health Paradox Using Accelerometer-Assessed Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.1.1. Exposure Variables: OPA and LTPA
2.1.2. Outcome Variable: Cardiorespiratory Fitness (CRF)
2.1.3. Baseline Characteristics and Confounding Variables
2.2. Statistical Analyses
2.2.1. Compositional Descriptive Statistics
2.2.2. Log Ratio and Multiple Regression Analysis
2.2.3. Compositional Isotemporal Substitution Analysis
3. Results
3.1. Descriptive Statistics
3.2. Main Analysis
3.3. Results of the Sensitivity Analysis
4. Discussion
4.1. The Physical Activity Health Paradox
4.2. Potential Underlying Mechanisms
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vasankari, V.; Husu, P.; Vähä-Ypyä, H.; Suni, J.; Tokola, K.; Halonen, J.; Hartikainen, J.; Sievänen, H.; Vasankari, T. Association of objectively measured sedentary behaviour and physical activity with cardiovascular disease risk. Eur. J. Prev. Cardiol. 2017, 24, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Siegrist, J. Physical activity and risk of cardiovascular disease—A meta-analysis of prospective cohort studies. Int. J. Environ. Res. Public Health 2012, 9, 391–407. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Department of Health and Social Care. Physical Activity Guidelines: UK Chief Medical Officers’ Report; Department of Health and Social Care: London, UK, 2019.
- U.S. Department of Health and Human Services. Physical Activity Guidelines Advisory Committee Scientific Report; Department of Health and Human Services: Washington, DC, USA, 2018.
- Sofi, F.; Capalbo, A.; Marcucci, R.; Gori, A.M.; Fedi, S.; Macchi, C.; Casini, A.; Surrenti, C.; Abbate, R.; Gensini, G.F. Leisure time but not occupational physical activity significantly affects cardiovascular risk factors in an adult population. Eur. J. Clin. Investig. 2007, 37, 947–953. [Google Scholar] [CrossRef]
- Clays, E.; Lidegaard, M.; De Bacquer, D.; Van Herck, K.; De Backer, G.; Kittel, F.; De Smet, P.; Holtermann, A. The combined relationship of occupational and leisure-time physical activity with all-cause mortality among men, accounting for physical fitness. Am. J. Epidemiol. 2013, 179, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Richard, A.; Martin, B.; Wanner, M.; Eichholzer, M.; Rohrmann, S. Effects of leisure-time and occupational physical activity on total mortality risk in NHANES III according to sex, ethnicity, central obesity, and age. J. Phys. Act. Health 2015, 12, 184–192. [Google Scholar] [CrossRef]
- Smith, A.D.; Crippa, A.; Woodcock, J.; Brage, S. Physical activity and incident type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia 2016, 59, 2527–2545. [Google Scholar] [CrossRef] [Green Version]
- Holtermann, A.; Krause, N.; van der Beek, A.J.; Straker, L. The physical activity paradox: Six reasons why occupational physical activity (OPA) does not confer the cardiovascular health benefits that leisure time physical activity does. Br. J. Sports Med. 2018, 52, 149–150. [Google Scholar] [CrossRef] [Green Version]
- Krause, N. Physical activity and cardiovascular mortality-disentangling the roles of work, fitness, and leisure. Scand. J. Work Environ. Health 2010, 36, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Coenen, P.; Huysmans, M.A.; Holtermann, A.; Krause, N.; van Mechelen, W.; Straker, L.M.; van der Beek, A.J. Towards a better understanding of the ‘physical activity paradox’: The need for a research agenda. Br. J. Sports Med. 2020. [Google Scholar] [CrossRef]
- Holtermann, A.; Coenen, P.; Krause, N. The Paradoxical Health Effects of Occupational Versus Leisure-Time Physical Activity. In Handbook of Socioeconomic Determinants of Occupational Health; Theorell, T., Ed.; Handbook Series in Occupational Health Sciences; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ertek, S.; Cicero, A. Impact of physical activity on inflammation: Effects on cardiovascular disease risk and other inflammatory conditions. Arch. Med. Sci. 2012, 8, 794–804. [Google Scholar] [CrossRef] [Green Version]
- Korshøj, M.; Lidegaard, M.; Kittel, F.; Van Herck, K.; De Backer, G.; De Bacquer, D.; Holtermann, A.; Clays, E. The relation of ambulatory heart rate with all-cause mortality among middle-aged men: A prospective cohort study. PLoS ONE 2015, 10, e0121729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, N.; Brand, R.J.; Kaplan, G.A.; Kauhanen, J.; Malla, S.; Tuomainen, T.P.; Salonen, J.T. Occupational physical activity, energy expenditure and 11-year progression of carotid atherosclerosis. Scand. J. Work Environ. Health 2007, 33, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, N.; Brand, R.J.; Kauhanen, J.; Kaplan, G.A.; Syme, S.L.; Wong, C.C.; Salonen, J.T. Work time and 11-year progression of carotid atherosclerosis in middle-aged Finnish men. Prev. Chronic Dis. 2009, 6, A13. [Google Scholar]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2011, 2, 1143–1211. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Zhang, X.; Guo, J.; Roberts, C.K.; McKenzie, S.; Wu, W.C.; Liu, S.; Song, Y. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2015, 4, e002014. [Google Scholar] [CrossRef] [Green Version]
- Ruzic, L.; Heimer, S.; Misigoj-Durakovic, M.; Matkovic, B.R. Increased occupational physical activity does not improve physical fitness. Occup. Environ. Med. 2003, 60, 983–985. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Harber, M.P.; Kaminsky, L.A.; Arena, R.; Blair, S.N.; Franklin, B.A.; Myers, J.; Ross, R. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. Prog. Cardiovasc. Dis. 2017, 60, 11–20. [Google Scholar] [CrossRef]
- Biswas, A.; Dobson, K.G.; Gignac, M.A.; de Oliveira, C.; Smith, P.M. Changes in work factors and concurrent changes in leisure time physical activity: A 12-year longitudinal analysis. Occup. Environ. Med. 2020, 77, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Brownson, R.C.; Baker, E.A.; Housemann, R.A.; Brennan, L.K.; Bacak, S.J. Environmental and policy determinants of physical activity in the United States. Am. J. Public Health 2001, 91, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.; Haslam, R.; Haslam, C. What is a ‘good’ job? Modelling job quality for blue collar workers. Ergonomics 2017, 60, 138–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korshøj, M.; Krustrup, P.; Jespersen, T.; Søgaard, K.; Skotte, J.H.; Holtermann, A. A 24-h assessment of physical activity and cardio-respiratory fitness among female hospital cleaners: A pilot study. Ergonomics 2013, 56, 935–943. [Google Scholar] [CrossRef]
- Holtermann, A.; Straker, L.; Lee, I.M.; van der Beek, A.J.; Stamatakis, E. Long overdue remarriage for better physical activity advice for all: Bringing together the public health and occupational health agendas. Br. J. Sports Med. 2020. [Google Scholar] [CrossRef]
- Holtermann, A.; Marott, J.L.; Gyntelberg, F.; Søgaard, K.; Mortensen, O.S.; Prescott, E.; Schnohr, P. Self-reported occupational physical activity and cardiorespiratory fitness: Importance for cardiovascular disease and all-cause mortality. Scand. J. Work Environ. Health 2016, 42, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Tammelin, T.; Näyhä, S.; Rintamäki, H.; Zitting, P. Occupational physical activity is related to physical fitness in young workers. Med. Sci. Sports Exerc. 2002, 34, 158–165. [Google Scholar] [CrossRef]
- Bahls, M.; Groß, S.; Baumeister, S.E.; Völzke, H.; Gläser, S.; Ewert, R.; Markus, M.R.P.; Medenwald, D.; Kluttig, A.; Felix, S.B.; et al. Association of domain-specific physical activity and cardiorespiratory fitness with all-cause and cause-specific mortality in two population-based cohort studies. Sci. Rep. 2018, 8, 16066. [Google Scholar] [CrossRef]
- Zeiher, J.; Ombrellaro, K.J.; Perumal, N.; Keil, T.; Mensink, G.B.; Finger, J.D. Correlates and determinants of cardiorespiratory fitness in adults: A systematic review. Sports Med. Open 2019, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.W.; Popkin, B.M. Time use and physical activity: A shift away from movement across the globe. Obes. Rev. 2012, 13, 659–680. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef]
- Warren, T.Y.; Barry, V.; Hooker, S.P.; Sui, X.; Church, T.S.; Blair, S.N. Sedentary behaviors increase risk of cardiovascular disease mortality in men. Med. Sci. Sports Exerc. 2010, 42, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Uffelen, J.G.; Wong, J.; Chau, J.Y.; Van Der Ploeg, H.P.; Riphagen, I.; Gilson, N.D.; Burton, N.W.; Healy, G.N.; Thorp, A.A.; Clark, B.K.; et al. Occupational sitting and health risks: A systematic review. Am. J. Prev. Med. 2010, 39, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallman, D.M.; Krause, N.; Jensen, M.T.; Gupta, N.; Birk Jørgensen, M.; Holtermann, A. Objectively measured sitting and standing in workers: Cross-sectional relationship with autonomic cardiac modulation. Int. J. Environ. Res. Public Health 2019, 16, 650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.; Ma, H.; Glazier, R.H.; Gilbert-Ouimet, M.; Mustard, C. The relationship between occupational standing and sitting and incident heart disease over a 12-year period in Ontario, Canada. Am. J. Epidemiol. 2018, 187, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chastin, S.F.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS ONE 2015, 10, e0139984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumuid, D.; Stanford, T.E.; Martin-Fernández, J.A.; Pedišić, Ž.; Maher, C.A.; Lewis, L.K.; Hron, K.; Katzmarzyk, P.T.; Chaput, J.-P.; Fogelholm, M.; et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2018, 27, 3726–3738. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.L.; Palarea-Albaladejo, J.; Korshøj, M.; Gupta, N.; Nabe-Nielsen, K.; Holtermann, A.; Jørgensen, M.B. Is high aerobic workload at work associated with leisure time physical activity and sedentary behaviour among blue-collar workers? A compositional data analysis based on accelerometer data. PLoS ONE 2019, 14, e0217024. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Korshøj, M.; Dumuid, D.; Coenen, P.; Allesøe, K.; Holtermann, A. Daily domain-specific time-use composition of physical behaviors and blood pressure. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Coenen, P.; Mathiassen, S.; van der Beek, A.J.; Hallman, D.M. Correction of bias in self-reported sitting time among office workers-a study based on compositional data analysis. Scand. J. Work Environ. Health 2020, 46, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Ekblom, Ö.; Ekblom-Bak, E.; Rosengren, A.; Hallsten, M.; Bergström, G.; Börjesson, M. Cardiorespiratory fitness, sedentary behaviour and physical activity are independently associated with the metabolic syndrome, results from the SCAPIS pilot study. PLoS ONE 2015, 10, e0131586. [Google Scholar] [CrossRef] [Green Version]
- Ketels, M.; De Bacquer, D.; Geens, T.; Janssens, H.; Korshøj, M.; Holtermann, A.; Clays, E. Assessing physiological response mechanisms and the role of psychosocial job resources in the physical activity health paradox: Study protocol for the Flemish Employees’ Physical Activity (FEPA) study. BMC Public Health 2019, 19, 765. [Google Scholar] [CrossRef] [PubMed]
- Skotte, J.; Korshøj, M.; Kristiansen, J.; Hanisch, C.; Holtermann, A. Detection of physical activity types using triaxial accelerometers. J. Phys. Act. Health 2014, 11, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Elsaidy, W.S.I.M. Evaluating the Validity and Reliability of Harvard Step Test to Predict VO2max in Terms of the Step Height According to the Knee Joint Angle. Theor. Appl. Int. Ed. 2011, 1, 126–132. [Google Scholar]
- Fox, E.L.; Billings, C.E.; Bartels, R.L.; Bason, R.; Mathews, D. Fitness standards for male college students. Int. Z. Für Angew. Physiol. Einschließlich Arb. 1973, 31, 231–236. [Google Scholar] [CrossRef]
- Ryhming, I. A modified Harvard step test for the evaluation of physical fitness. Arbeitsphysiologie 1953, 15, 235–250. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 2 September 2020).
- Van den Boogaart, K.G.; Tolosana-Delgado, R. “Compositions”: A unified R package to analyze compositional data. Comput. Geosci. 2008, 34, 320–338. [Google Scholar] [CrossRef]
- Palarea-Albaladejo, J.; Martin-Fernandez, J.A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015, 143, 85–96. [Google Scholar] [CrossRef]
- Dumuid, D.; Pedišić, Ž.; Palarea-Albaladejo, J.; Martín-Fernández, J.A.; Hron, K.; Olds, T. Compositional Data Analysis in Time-Use Epidemiology: What, Why, How. Int. J. Environ. Res. Public Health 2020, 17, 2220. [Google Scholar] [CrossRef] [Green Version]
- Oakman, J.; Clays, E.; Jørgensen, M.B.; Holtermann, A. Are occupational physical activities tailored to the age of cleaners and manufacturing workers? Int. Arch. Occup. Environ. Health 2019, 92, 185–193. [Google Scholar] [CrossRef]
- Pollock, R.D.; Duggal, N.A.; Lazarus, N.R.; Lord, J.M.; Harridge, S.D.R. Cardiorespiratory fitness not sedentary time or physical activity is associated with cardiometabolic risk in active older adults. Scand. J. Med. Sci. Sports 2018, 28, 1653–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolakaros, G.; Vahlberg, T.; Auranen, K.; Sillanmäki, L.; Venetoklis, T.; Sourander, A. Obesity, underweight, and smoking are associated with worse cardiorespiratory fitness in Finnish healthy young men: A population-based study. Front. Public Health 2017, 5, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korshøj, M.; Lidegaard, M.; Skotte, J.H.; Krustrup, P.; Krause, N.; Søgaard, K.; Holtermann, A. Does aerobic exercise improve or impair cardiorespiratory fitness and health among cleaners? A cluster randomized controlled trial. Scand. J. Work Environ. Health 2015, 41, 140–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumuid, D.; Pedišić, Ž.; Stanford, T.E.; Martín-Fernández, J.A.; Hron, K.; Maher, C.A.; Lewis, L.K.; Olds, T. The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat. Methods Med. Res. 2019, 28, 846–857. [Google Scholar] [CrossRef]
- Korshøj, M.; Clays, E.; Krause, N.; Gupta, N.; Jørgensen, M.B.; Holtermann, A. Associations between occupational relative aerobic workload and resting blood pressure among different age groups: A cross-sectional analysis in the DPhacto study. BMJ Open 2019, 9, e029713. [Google Scholar] [CrossRef]
- Gormley, S.E.; Swain, D.P.; High, R.; Spina, R.J.; Dowling, E.A.; Kotipalli, U.S.; Gandralota, R. Effect of intensity of aerobic training on VO2max. Med. Sci. Sports Ecerc. 2008, 40, 1336–1342. [Google Scholar] [CrossRef]
- Swain, D.P.; Franklin, B.A. VO(2) reserve and the minimal intensity for improving cardiorespiratory fitness. Med. Sci. Sports Exerc. 2002, 34, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Gutin, B.; Barbeau, P.; Owens, S.; Lemmon, C.R.; Bauman, M.; Allison, J.; Kang, H.S.; Litaker, M.S. Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. Am. J. Clin. Nutr. 2002, 75, 818–826. [Google Scholar] [CrossRef] [Green Version]
- O’Donovan, G.; Owen, A.; Bird, S.R.; Kearney, E.M.; Nevill, A.M.; Jones, D.W.; Woolf-May, K. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J. Appl. Physiol. 2005, 98, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Hammermeister, J.; Page, R.M.; Dolny, D.; Burnham, T. Occupational physical activity as an indicator of health and fitness. Percept. Mot. Ski. 2001, 92, 121–127. [Google Scholar] [CrossRef]
- Hirai, T.; Kusaka, Y.; Suganuma, N.; Seo, A.; Tobita, Y. Physical work load affects the maximum oxygen uptake. Ind. Health 2006, 44, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Mundwiler, J.; Schüpbach, U.; Dieterle, T.; Leuppi, J.D.; Schmidt-Trucksäss, A.; Wolfer, D.P.; Miedinger, D.; Brighenti-Zogg, S. Association of occupational and leisure-time physical activity with aerobic capacity in a working population. PLoS ONE 2017, 12, e0168683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olds, T.S.; Gomersall, S.R.; Olds, S.T.; Ridley, K.A. Source of systematic bias in self-reported physical activity: The cutpoint bias hypothesis. J. Sci. Med. Sport 2019, 22, 924–928. [Google Scholar] [CrossRef]
- Saidj, M.; Jørgensen, T.; Jacobsen, R.K.; Linneberg, A.; Aadahl, M. Differential cross-sectional associations of work-and leisure-time sitting, with cardiorespiratory and muscular fitness among working adults. Scand. J. Work Environ. Health 2014, 40, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Thorp, A.; Owen, N.; Neuhaus, M.; Dunstan, D. Sedentary behaviors and subsequent health outcomes: A systematic review of longitudinal studies, 1996–2011. Am. J. Prev. Med. 2011, 41, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population-health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105. [Google Scholar] [CrossRef] [PubMed]
- Whelton, S.P.; Chin, A.; Xin, X.; He, J. Effect of aerobic exercise on blood pressure: A meta-analysis of randomized, controlled trials. Ann. Intern. Med. 2002, 136, 493–503. [Google Scholar] [CrossRef]
- Crivaldo Gomes Cardoso, J. Acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure. Clinics 2010, 65, 317. [Google Scholar] [CrossRef] [Green Version]
- Clays, E.; De Bacquer, D.; Van Herck, K.; De Backer, G.; Kittel, F.; Holtermann, A. Occupational and leisure time physical activity in contrasting relation to ambulatory blood pressure. BMC Public Health 2012, 12, 1002. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, A.V.; Araujo, C.G.; Zweibel, S.; Thompson, P.D. Atrial fibrillation in endurance-trained athletes. Br. J. Sports Med. 2011, 45, 185–188. [Google Scholar] [CrossRef]
- Stemland, I.; Ingebrigtsen, J.; Christiansen, C.S.; Jensen, B.R.; Hanisch, C.; Skotte, J.; Holtermann, A. Validity of the Acti4 method for detection of physical activity types in free-living settings: Comparison with video analysis. Ergonomics 2015, 58, 953–965. [Google Scholar] [CrossRef]
- Dencker-Larsen, S.; Rasmussen, C.L.; Thorsen, S.V.; Clays, E.; Lund, T.; Labriola, M.; Mortensen, O.S.; Jørgensen, M.B.; Gupta, N.; Nørregaard Rasmussen, C.D.; et al. Technically measured compositional physical work demands and prospective register-based sickness absence (PODESA): A study protocol. BMC Public Health 2019, 19, 257. [Google Scholar] [CrossRef]
- Skinner, J.S.; Jaskólski, A.; Jaskólska, A.; Krasnoff, J.; Gagnon, J.; Leon, A.S.; Rao, D.C.; Wilmore, J.H.; Bouchard, C. Age, sex, race, initial fitness, and response to training: The HERITAGE Family Study. J. Appl. Physiol. 2001, 90, 1770–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic Characteristics | N (%) | Mean (SD) |
---|---|---|
Age (years) | 38.5 (11.2) | |
Sex Female Male | 178 (57.6) 131 (42.4) | |
Educational level Low (until primary school) Medium (secondary school and/or 1 to 2 years of specialization) High (university or university college) | 49 (15.9) 102 (33) 158 (51.1) | |
Marital status Married/living together with children Married/living together without children Single with children Single without children | 135 (43.7) 78 (25.2) 24 (7.8) 53 (17.2) | |
BMI (kg/m²) | 24.7 (3.9) | |
Current smoker | 68 (22.0) | |
Alcohol consumption <7 units per week >7 units per week | 248 (80.3) 61 (19.7) | |
Use of medication for heart condition and/or high blood pressure | 16 (5.2) | |
Job type Manufacturing sector Service sector Skilled worker Factory sector Unskilled worker | 153 (49.5) 4 (1.3) 23 (7.4) 105 (34) 24 (7.8) | |
Work schedule Shift Day job | 198 (64.1) 109 (35.3) | |
Workhours per week | 36.9 (5.9) | |
Self-reported physical work demands | 2.4 (0.7) | |
Accelerometer-assessed information | N (%) | Mean (SD) |
Valid accelerometer wear-days | 2.8 (0.9) | |
Work time (min/day) | 467 (65) | |
Leisure time (min/day) | 458 (98) | |
Sleep time (min/day) | 447 (68) | |
Accelerometer-assessed behaviours (absolute numbers) | N (%) | Mean (SD) |
SB work (min/day) | 150 (103) | |
Standing work (min/day) | 171 (75) | |
LIPA work (min/day) | 78 (47) | |
MVPA work (min/day) | 67 (37) | |
SB leisure (min/day) | 272 (88) | |
Standing leisure (min/day) | 97 (56) | |
LIPA leisure (min/day) | 43 (20) | |
MVPA leisure (min/day) | 44 (25) |
Occupational Behaviours | Minutes | % of Total Work Time |
---|---|---|
Sedentary behaviour | 134.7 | 29.3 |
Standing | 181.6 | 39.5 |
Low-intensity PA | 76.1 | 16.5 |
Moderate-to-vigorous PA | 67.6 | 14.7 |
Leisure Time Behaviours | Minutes | % of Total Leisure Time |
Sedentary behaviour | 282.8 | 61.5 |
Standing | 93.9 | 20.4 |
Low-intensity PA | 42.3 | 9.2 |
Moderate-to-vigorous PA | 41.0 | 8.9 |
Compositional Regression Models (Work Time) | β | SE | t-Value | p |
---|---|---|---|---|
Model 1 (Ilr₁ = SB: geometric mean of remaining behaviours) | 4.66 | 1.65 | 2.82 | <0.01 |
Model 2 (Ilr₁ = Standing: geometric mean of remaining behaviours) | 5.45 | 3.03 | 1.80 | 0.07 |
Model 3 (Ilr₁ = LIPA: geometric mean of remaining behaviours) | −4.74 | 3.97 | −1.20 | 0.23 |
Model 4 (Ilr₁ = MVPA: geometric mean of remaining behaviours) | −5.37 | 3.41 | −1.57 | 0.12 |
Compositional Regression Models (Leisure Time) | β | SE | t-Value | p |
Model 1 (Ilr₁ = SB: geometric mean of remaining behaviours) | −11.84 | 2.40 | −4.94 | <0.001 |
Model 2 (Ilr₁ = Standing: geometric mean of remaining behaviours) | −1.18 | 4.02 | −0.29 | 0.77 |
Model 3 (Ilr₁ = LIPA: geometric mean of remaining behaviours) | 0.03 | 5.31 | 0.01 | 0.99 |
Model 4 (Ilr₁ = MVPA: geometric mean of remaining behaviours) | 12.99 | 3.21 | 4.05 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketels, M.; Rasmussen, C.L.; Korshøj, M.; Gupta, N.; De Bacquer, D.; Holtermann, A.; Clays, E. The Relation between Domain-Specific Physical Behaviour and Cardiorespiratory Fitness: A Cross-Sectional Compositional Data Analysis on the Physical Activity Health Paradox Using Accelerometer-Assessed Data. Int. J. Environ. Res. Public Health 2020, 17, 7929. https://doi.org/10.3390/ijerph17217929
Ketels M, Rasmussen CL, Korshøj M, Gupta N, De Bacquer D, Holtermann A, Clays E. The Relation between Domain-Specific Physical Behaviour and Cardiorespiratory Fitness: A Cross-Sectional Compositional Data Analysis on the Physical Activity Health Paradox Using Accelerometer-Assessed Data. International Journal of Environmental Research and Public Health. 2020; 17(21):7929. https://doi.org/10.3390/ijerph17217929
Chicago/Turabian StyleKetels, Margo, Charlotte Lund Rasmussen, Mette Korshøj, Nidhi Gupta, Dirk De Bacquer, Andreas Holtermann, and Els Clays. 2020. "The Relation between Domain-Specific Physical Behaviour and Cardiorespiratory Fitness: A Cross-Sectional Compositional Data Analysis on the Physical Activity Health Paradox Using Accelerometer-Assessed Data" International Journal of Environmental Research and Public Health 17, no. 21: 7929. https://doi.org/10.3390/ijerph17217929
APA StyleKetels, M., Rasmussen, C. L., Korshøj, M., Gupta, N., De Bacquer, D., Holtermann, A., & Clays, E. (2020). The Relation between Domain-Specific Physical Behaviour and Cardiorespiratory Fitness: A Cross-Sectional Compositional Data Analysis on the Physical Activity Health Paradox Using Accelerometer-Assessed Data. International Journal of Environmental Research and Public Health, 17(21), 7929. https://doi.org/10.3390/ijerph17217929