Getting Active with Active Video Games: A Quasi-Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.2.1. Intervention
2.2.2. Control
2.3. Procedure
2.4. Measures
2.4.1. Anthropometrics
2.4.2. Physical Activity and Sedentary Behavior
2.4.3. Psychosocial Factors
2.4.4. Process Evaluation
2.5. Outcomes
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics of All Participants
3.2. Main Findings Obtained from All Participants
3.3. Mediating and Moderating Analyses
3.4. Sub-Analyses for Male Participants
3.5. Process Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marshall, S.J.; Welk, G.J. Definitions and measurement. In Youth Physical Activity and Sedentary Behavior: Challenges and Solutions; Smit, A.L., Biddle, S.J.H., Eds.; Human Kinetics: Champaign, IL, USA, 2008; pp. 3–29. [Google Scholar]
- World Health Organization. Global Recommendations on Physical Activity for Health. 2010. Available online: https://www.who.int/dietphysicalactivity/publications/9789241599979/en/ (accessed on 20 July 2020).
- Tremblay, M.S.; LeBlanc, A.G.; Janssen, I.; Kho, M.E.; Hicks, A.; Murumets, K.; Colley, R.C.; Duggan, M. Canadian sedentary behaviour guidelines for children and youth. Appl. Physiol. Nutr. Metab. 2011, 36, 59–71. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Population-Based Approaches to Childhood Obesity Prevention. 2012. Available online: https://www.who.int/dietphysicalactivity/childhood/WHO_new_childhoodobesity_PREVENTION_27nov_HR_PRINT_OK.pdf (accessed on 21 March 2018).
- Census and Statistics Department of Hong Kong Special Administrative Region. Healthy Exercise for All Campaign-Physical Fitness Test for the Community. 2013. Available online: https://www.statistics.gov.hk/pub/B71302FA2013XXXXB0100.pdf (accessed on 21 March 2016).
- Department of Health of Hong Kong Special Administrative Region. Obesity: A Weighty Health Issue Key Messages. 2018. Available online: https://www.chp.gov.hk/files/pdf/ncd_watch_august_2018.pdf (accessed on 28 May 2019).
- Department of Health of Hong Kong Special Administrative Region. Statistics. Available online: https://www.chp.gov.hk/en/statistics/data/10/757/5513.html (accessed on 28 May 2019).
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Education Department of Hong Kong Special Administrative Region. Physical Space and Learning Environment of Primary and Secondary Schools. 2000. Available online: https://www.legco.gov.hk/yr99-00/english/panels/ed/papers/e1693-03.pdf (accessed on 20 July 2020).
- Salmon, J. Novel strategies to promote children’s physical activities and reduce sedentary behavior. J. Phys. Act. Health 2010, 7 (Suppl. 3), S299–S306. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Lau, P.W.C. Effects of active videogames on physical activity and related outcomes among healthy children: A systematic review. Games Health J. 2014, 3, 122–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, G.J.; Adams, M.A.; Ramirez, E.R.; Carlson, J.A.; Kerr, J.; Godbole, S.; Marshall, S.J. Effects of behavioral contingencies on adolescent active videogame play and overall activity: A randomized trial. Games Health J. 2013, 2, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, T.; Abdelsamad, D.; Baranowski, J.; O’Connor, T.M.; Thompson, D.; Barnett, A.; Cerin, E.; Chen, T.A. Impact of an active video game on healthy children’s physical activity. Pediatrics 2012, 129, e636–e642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, L.E.F.; Ridgers, N.D.; Atkinson, G.; Stratton, G. The effect of active video gaming on children’s physical activity, behavior preferences and body composition. Pediatr. Exerc. Sci. 2010, 22, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Maddison, R.; Foley, L.; Ni Mhurchu, C.; Jiang, Y.; Jull, A.; Prapavessis, H.; Hohepa, M.; Rodgers, A. Effects of active video games on body composition: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maloney, A.E.; Bethea, T.C.; Kelsey, K.S.; Marks, J.T.; Paez, S.; Rosenberg, A.M.; Catellier, D.J.; Hamer, R.M.; Sikich, L. A pilot of a video game (DDR) to promote physical activity and decrease sedentary screen time. Obesity 2008, 16, 2074–2080. [Google Scholar] [CrossRef]
- Maloney, A.E.; Threlkeld, K.A.; Cook, W.L. Comparative effectiveness of a 12-week physical activity intervention for overweight and obese youth: Exergaming with “Dance Dance Revolution”. Games Health J. 2012, 1, 96–103. [Google Scholar] [CrossRef]
- Mhurchu, C.N.; Maddison, R.; Jiang, Y.; Jull, A.; Prapavessis, H.; Rodgers, A. Couch potatoes to jumping beans: A pilot study of the effect of active video games on physical activity in children. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin A Paw, M.J.M.; Jacobs, W.M.; Vaessen, E.P.G.; Titze, S.; van Mechelen, W. The motivation of children to play an active video game. J. Sci. Med. Sport 2008, 11, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Lau, P.W.C.; Wang, J.J.; Maddison, R. A randomized controlled trial of school-based activevideo game intervention on Chinese children’s aerobic fitness, physical activity level and psychological correlates. Games Health J. 2016, 5, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Huang, C.; Liu, T.; Xiong, W. Impact of interactive dance games on urban children’s physical activity correlates and behavior. J. Exerc. Sci. Fit. 2012, 10, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, B.; Henley, W.; Wilkin, T. Effectiveness of intervention on physical activity of children: Systematic review and meta-analysis of controlled trials with objectively measured outcomes. BMJ 2012, 345, e5888. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y. Effects of Active Video Game Intervention on Promoting Physical Activity among Hong Kong Chinese Children. Ph.D. Thesis, Hong Kong Baptist University, Hong Kong, China, August 2015. [Google Scholar]
- Reading, S.A.; Prickett, K. Evaluation of children playing a new-generation motion-sensitive active video game by accelerometry and indirect calorimetry. Games Health J. 2013, 2, 166–173. [Google Scholar] [CrossRef]
- Fortier, M.S.; Sweet, S.N.; O’Sullivan, T.L.; Williams, G.C. A self-determination process model of physical activity adoption in the context of a randomized controlled trial. Psychol. Sport Exerc. 2007, 8, 741–757. [Google Scholar] [CrossRef]
- Smallwood, S.R.; Morris, M.M.; Fallows, S.J.; Buckley, J.P. Physiologic responses and energy expenditure of Kinect active video game play in schoolchildren. Arch. Pediatr. Adolesc. Med. 2012, 166, 1005–1009. [Google Scholar] [CrossRef]
- Sung, R.Y.; Lau, P.; Yu, C.W.; Lam, P.K.; Nelson, E.A. Measurement of body fat using leg to leg bioimpedance. Arch. Dis. Child 2001, 85, 263–267. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Weintraub, D.L.; Tirumalai, E.C.; Haydel, K.F.; Fujimoto, M.; Fulton, J.E.; Robinson, T.N. Team sports for overweight children: The Stanford sports to prevent obesity randomized trial (SPORT). Arch. Pediatr. Adolesc. Med. 2008, 162, 232–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriemler, S.; Zahner, L.; Schindler, C.; Meyer, U.; Hartmann, T.; Hebestreit, H.; Brunner-La Rocca, H.P.; van Mechelen, W.; Puder, J.J. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: Cluster randomised controlled trial. BMJ 2010, 340, c785. [Google Scholar] [CrossRef] [Green Version]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Wong, S.H.; Salmon, J. Correlates of physical activity and screen-based behaviors in Chinese children. J. Sci. Med. Sport 2013, 16, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.S.; Saumders, R.P.; Pate, R.R. Physical Activity Interventions in Children and Adolescents; Human Kinetics: Champaign, IL, USA, 2007; p. 243. [Google Scholar]
- Sallis, J.F.; Grossman, R.M.; Pinski, R.B.; Patterson, T.L.; Nader, P.R. The development of scales to measure social support for diet and exercise behaviors. Prev. Med. 1987, 16, 825–836. [Google Scholar] [CrossRef]
- Liang, Y.; Lau, P.W.C.; Huang, W.Y.J.; Maddison, R.; Baranowski, T. Validity and reliability of questionnaires measuring physical activity self-efficacy, enjoyment, social support among Hong Kong Chinese children. Prev. Med. Rep. 2014, 1, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Motl, R.W.; Dishman, R.K.; Trost, S.G.; Saunders, R.P.; Dowda, M.; Felton, G.; Ward, D.S.; Pate, R.R. Factorial validity and invariance of questionnaires measuring social-cognitive determinants of physical activity among adolescent girls. Prev. Med. 2000, 31, 584–594. [Google Scholar] [CrossRef]
- Kraemer, H.C.; Wilson, G.T.; Fairburn, C.G.; Agras, W.S. Mediators and moderators of treatment effects in randomized clinical trials. Arch. Gen. Psychiatry 2002, 59, 877–883. [Google Scholar] [CrossRef]
- Patnode, C.D.; Lytle, L.A.; Erickson, D.J.; Sirard, J.R.; Barr-Anderson, D.; Story, M. The relative influence of demographic, individual, social, and environmental factors on physical activity among boys and girls. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Lindner, K.J. Sport participation and perceived academic performance of school children and youth. Pediatr. Exerc. Sci. 1999, 11, 129–143. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, X.Z.; Jiang, J.B. The patterns of physical activity and sedentary behavior in Chinese children and adolescents. China Sport Sci. 2017, 37, 17–21. [Google Scholar]
- de Rezende, L.F.; Rodrigues Lopes, M.; Rey-López, J.P.; Matsudo, V.K.; Luiz, O. Sedentary behavior and health outcomes: An overview of systematic reviews. PLoS ONE 2014, 9, e105620. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Connor Gorber, S.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef]
- Kwon, S.; Janz, K.F.; Burns, T.L.; Levy, S.M. Association between light-intensity physical activity and adiposity in childhood. Pediatr. Exerc. Sci. 2011, 23, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef]
- Shqair, A.Q.; Pauli, L.A.; Costa, V.; Cenci, M.; Goettems, M.L. Screen time, dietary patterns and intake of potentially cariogenic food in children: A systematic review. J. Dent. 2019, 86, 17–26. [Google Scholar] [CrossRef]
- Staiano, A.E.; Abraham, A.A.; Calvert, S.L. Adolescent exergame play for weight loss and psychosocial improvement: A controlled physical activity intervention. Obesity 2013, 21, 598–601. [Google Scholar] [CrossRef] [Green Version]
- Trost, S.G.; Sundal, D.; Foster, G.D.; Lent, M.R.; Vojta, D. Effects of a pediatric weight management program with and without active video games a randomized trial. JAMA Pediatr. 2014, 168, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Xiang, P. Effects of exergaming based exercise on urban children’s physical activity participation and body composition. J. Phys. Act. Health 2014, 11, 992–998. [Google Scholar] [CrossRef]
- White, K.; Schofield, G.; Kilding, A.E. Energy expended by boys playing active video games. J. Sci. Med. Sport 2011, 14, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Graves, L.E.F.; Ridgers, N.D.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N.T. The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. J. Phys. Act. Health 2010, 7, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Penko, A.L.; Barkley, J.E. Motivation and physiologic responses of playing a physically interactive video game relative to a sedentary alternative in children. Ann. Behav. Med. 2010, 39, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Stolk, R.P.; Sauer, P.J.; Sijtsma, A.; Wiersma, R.; Huang, G.; Corpeleijn, E. Factors of physical activity among Chinese children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 36. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, T.M.; Jago, R.; Baranowski, T. Engaging parents to increase youth physical activity a systematic review. Am. J. Prev. Med. 2009, 37, 141–149. [Google Scholar] [CrossRef]
- Eather, N.; Morgan, P.J.; Lubans, D.R. Social support from teachers mediates physical activity behavior change in children participating in the Fit-4-Fun intervention. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Hattie, J.A.C. Teachers make a difference: What is the research evidence? In Proceedings of the Building Teacher Quality: What Does the Research Tell Us ACER Research Conference, Melbourne, Australia, 19–21 October 2003; Available online: http://research.acer.edu.au/research_conference_2003/4/ (accessed on 4 September 2020).
- Brown, H.; Hume, C.; Pearson, N.; Salmon, J. A systematic review of intervention effects on potential mediators of children’s physical activity. BMC. Public Health 2013, 13, 165. [Google Scholar] [CrossRef] [Green Version]
- Maddison, R.; Mhurchu, C.N.; Jull, A.; Prapavessis, H.; Foley, L.S.; Jiang, Y. Active video games: The mediating effect of aerobic fitness on body composition. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 54. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics | Intervention (n = 30) | Control (n = 57) |
---|---|---|
Age | 10.5 (0.7) | 10.4 (0.8) |
Male (n [%]) | 24 (80) | 30 (53) |
Height (cm) | 138.4 (7.0) | 141.2 (7.1) |
Weight (kg) | 35.6 (9.1) | 36.7 (9.4) |
BMI (kg/m2) | 18.4 (4.0) | 18.2 (3.3) |
Daily Sedentary Screen Time (min) | 123.8 (130.9) | 141.4 (164.7) |
Outcomes | Change from Baseline Outcome | |||||||
---|---|---|---|---|---|---|---|---|
I, Mean (SD) | C, Mean (SD) | I, Mean (SE) | C, Mean (SE) | I-C Difference (95% CI) | p-Value | |||
Baseline | 8 Weeks | Baseline | 8 Weeks | |||||
Waking Time PA and Sedentary Behavior | ||||||||
MVPA (min/day) | 21.3 (9.6) | 22.6 (11.9) | 21.4 (10.4) | 18.9 (10.2) | 1.2 (1.6) | −2.4 (1.3) | 3.6 (−0.6, 7.8) | 0.12 |
MPA (min/day) | 18.0 (7.9) | 19.2 (9.4) | 18.4 (8.5) | 16.0 (8.0) | 1.1 (1.3) | −2.3 (1.0) | 3.4 (−0.3, 7.3) | 0.06 |
VPA (min/day) | 3.3 (2.3) | 3.4 (3.4) | 3.0 (2.3) | 2.9 (2.6) | 0.1 (0.5) | −0.1 (0.4) | 0.2 (−1.1, 1.6) | 0.86 |
LPA (min/day) | 272.4 (86.3) | 278.1 (93.7) | 275.6 (65.0) | 242.3 (72.2) | 3.2 (9.5) | −31.7 (7.7) | 34.9 (8.7, 58.2) | 0.01 |
Sedentary Time (min/day) | 465.3 (71.9) | 439.5 (76.2) | 470.4 (73.6) | 471.4 (65.8) | −30.1 (12.4) | 3.8 (10.0) | −33.9 (−70.8, 4.8) | 0.07 |
CPM | 318.6 (80.3) | 346.3 (105.3) | 309.6 (79.9) | 284.4 (80.4) | 28.2 (16.6) | −25.5 (13.4) | 53.7 (8.6, 104.2) | 0.04 |
After-School Time PA and Sedentary Behavior | ||||||||
MVPA (min/day) | 8.4 (5.7) | 8.8 (5.8) | 10.5 (7.4) | 7.1 (6.7) | 0 (1.1) | −3.1 (0.9) | 3.0 (0.2, 5.9) | 0.07 |
MPA (min/day) | 7.0 (5.1) | 7.4 (4.9) | 8.9 (6.0) | 6.1 (5.8) | −0.1 (1.0) | −2.5 (0.8) | 2.4 (−0.2, 5.1) | 0.08 |
VPA (min/day) | 1.4 (1.2) | 1.4 (1.4) | 1.5 (1.6) | 1.0 (1.2) | 0 (0.2) | −0.5 (0.2) | 0.5 (−0.2, 1.2) | 0.16 |
LPA (min/day) | 107.8 (60.1) | 101.6 (60.7) | 113.3 (45.6) | 81.0 (47.8) | −7.2 (4.7) | −31.7 (3.8) | 25.0 (13.7, 34.5) | <0.01 |
Sedentary Time (min/day) | 182.8 (44.8) | 164.9 (40.3) | 190.2 (54.0) | 187.7 (49.3) | −22.8 (6.3) | 0.7 (5.1) | −23.5 (−41.7, −5.4) | 0.01 |
CPM | 297.4 (114.1) | 349.7 (144.8) | 344.8 (132.6) | 260.7 (144.8) | 36.0 (28.4) | −73.4(22.8) | 109.4 (36.4, 178.8) | 0.01 |
Outcomes | Change from Baseline Outcome | |||||||
---|---|---|---|---|---|---|---|---|
I, Mean (SD) | C, Mean (SD) | I, Mean (SE) | C, Mean (SE) | I-C Difference (95% CI) | p-Value | |||
Baseline | 8 Weeks | Baseline | 8 Weeks | |||||
Body Composition | ||||||||
zBMI | 0.4 (1.4) | 0.4 (1.3) | 0.3 (1.2) | 0.4 (1.2) | 0 (0) | 0 (0) | 0 (−0.1, 0.1) | 0.42 |
Percentage body fat (%) | 20.6 (8.5) | 19.6 (7.5) | 19.7 (6.6) | 19.1 (6.7) | −0.9 (0.4) | −0.7 (0.3) | −0.2 (−1.5, 0.9) | 0.71 |
Outcomes | Change from Baseline Outcome | |||||||
---|---|---|---|---|---|---|---|---|
I, Mean (SD) | C, Mean (SD) | I, Mean (SE) | C, Mean (SE) | I-C Difference (95% CI) | p-Value | |||
Baseline | 8 Weeks | Baseline | 8 Weeks | |||||
Body Composition | ||||||||
Enjoyment | 1.8 (0.9) | 2.4 (1.2) | 1.6 (0.8) | 2.0 (1.1) | 0.6 (0.2) | 0.3 (0.2) | 0.3 (−0.3, 0.8) | 0.39 |
Self-efficacy | 3.7 (0.8) | 3.3 (1.0) | 3.7 (0.8) | 3.6 (1.0) | −0.4 (0.2) | −0.1 (0.1) | −0.3 (−0.8, 0.1) | 0.17 |
SSFR | 2.0 (1.0) | 2.2 (1.2) | 2.2 (1.1) | 2.3 (1.3) | 0.1 (0.2) | 0.2 (0.2) | −0.1 (−0.6, 0.6) | 0.85 |
SSFA | 2.6 (1.1) | 2.7 (1.2) | 2.8 (1.1) | 2.5 (1.2) | 0.1 (0.2) | −0.2 (0.2) | 0.3 (−0.3, 0.9) | 0.31 |
Outcomes | Change from Baseline Outcome | |||||||
---|---|---|---|---|---|---|---|---|
I, Mean (SD) | C, Mean (SD) | I, Mean (SE) | C, Mean (SE) | I-C Difference (95% CI) | p-Value | |||
Baseline | 8 Weeks | Baseline | 8 Weeks | |||||
Waking Time PA and Sedentary Behavior | ||||||||
MVPA (min/day) | 21.9 (9.6) | 23.4 (12.2) | 24.1 (11.4) | 21.0 (11.3) | 1.1 (1.9) | −2.8 (1.7) | 3.9 (−0.9, 9.2) | 0.18 |
MPA (min/day) | 18.7 (7.9) | 19.7 (9.3) | 20.5 (9.3) | 17.5 (8.8) | 0.6 (1.5) | −2.6 (1.3) | 3.2 (−1.0, 7.6) | 0.13 |
VPA (min/day) | 3.2 (2.2) | 3.7 (3.6) | 3.6 (2.6) | 3.5 (2.9) | 0.4 (0.6) | −0.1 (0.6) | 0.5 (−1.2, 2.4) | 0.58 |
LPA (min/day) | 271.7 (93.1) | 280.7 (94.5) | 283.1 (71.5) | 244.0 (80.3) | 4.7 (9.9) | −35.7 (9.0) | 40.4 (13.3, 64.4) | 0.01 |
Sedentary Time (min/day) | 472.7 (68.4) | 438.1 (74.4) | 459.2 (73.2) | 474.1 (55.1) | −30.1 (12.9) | 11.2 (11.7) | −41.4 (−79.8, 0.1) | 0.04 |
CPM | 313.8 (81.2) | 354.4 (107.2) | 331.1 (85.6) | 295.7 (90.8) | 36.3 (19.1) | −31.8 (17.3) | 68.1 (21.5, 117.9) | 0.02 |
After-school Time PA and Sedentary Behavior | ||||||||
MVPA (min/day) | 9.5 (5.7) | 8.5 (5.9) | 12.8 (8.3) | 8.5 (7.5) | −1.6 (1.3) | −3.8 (1.2) | 2.2 (−1.6, 6.2) | 0.26 |
MPA (min/day) | 8.0 (5.1) | 7.1 (4.9) | 10.8 (6.8) | 7.2 (6.4) | −1.6 (1.1) | −3.2 (1.0) | 1.6 (−1.5, 4.8) | 0.31 |
VPA (min/day) | 1.5 (1.2) | 1.4 (1.6) | 2.0 (1.8) | 1.3 (1.4) | −0.2 (0.3) | −0.6 (0.3) | 0.5 (−0.3, 1.5) | 0.27 |
LPA (min/day) | 117.8 (57.4) | 105.4 (64.3) | 121.2 (48.7) | 86.2 (51.4) | −10.5 (5.2) | −36.3 (4.6) | 25.8 (12.3, 37.7) | <0.01 |
Sedentary Time (min/day) | 191.7 (39.4) | 166.9 (41.4) | 191.2 (54.0) | 194.8 (48.5) | −24.5 (6.9) | 1.4 (6.1) | −25.9 (−47.3, −4.4) | 0.01 |
CPM | 316.4 (100.4) | 348.0 (147.9) | 373.7 (127.9) | 276.9 (167.5) | 13.9 (34.6) | −90.5 (30.2) | 104.4 (11.0, 194.8) | 0.03 |
Body Composition | ||||||||
zBMI | 0.5 (1.4) | 0.5 (1.4) | 0.4 (1.0) | 0.4 (1.0) | 0 (0) | 0.1 (0) | −0.1 (−0.2, 0) | 0.04 |
Percentage body fat (%) | 21.3 (8.6) | 19.9 (7.8) | 19.7 (5.3) | 19.7 (5.8) | −1.3 (0.7) | −0.1 (0.7) | −1.2 (−2.9, 0.5) | 0.23 |
Psychosocial Factors | ||||||||
Enjoyment | 1.9 (0.9) | 2.3 (1.3) | 1.5 (0.6) | 2.1 (1.2) | 0.7 (0.3) | 0.5 (0.2) | 0.2 (−0.5, 0.8) | 0.67 |
Self-efficacy | 3.7 (0.8) | 3.3 (1.0) | 3.9 (0.9) | 3.8 (1.1) | −0.4 (0.2) | −0.1 (0.2) | −0.4 (−0.9, 0.2) | 0.19 |
SSFR | 1.9 (1.0) | 2.2 (1.2) | 2.2 (1.1) | 2.5 (1.4) | 0.2 (0.3) | 0.4 (0.2) | −0.16 (−0.8, 0.6) | 0.60 |
SSFA | 2.5 (1.1) | 2.8 (1.3) | 2.8 (1.2) | 2.4 (1.3) | 0.1 (0.3) | −0.3 (0.2) | 0.4 (−0.2, 1.1) | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Lau, P.W.C.; Jiang, Y.; Maddison, R. Getting Active with Active Video Games: A Quasi-Experimental Study. Int. J. Environ. Res. Public Health 2020, 17, 7984. https://doi.org/10.3390/ijerph17217984
Liang Y, Lau PWC, Jiang Y, Maddison R. Getting Active with Active Video Games: A Quasi-Experimental Study. International Journal of Environmental Research and Public Health. 2020; 17(21):7984. https://doi.org/10.3390/ijerph17217984
Chicago/Turabian StyleLiang, Yan, Patrick W. C. Lau, Yannan Jiang, and Ralph Maddison. 2020. "Getting Active with Active Video Games: A Quasi-Experimental Study" International Journal of Environmental Research and Public Health 17, no. 21: 7984. https://doi.org/10.3390/ijerph17217984
APA StyleLiang, Y., Lau, P. W. C., Jiang, Y., & Maddison, R. (2020). Getting Active with Active Video Games: A Quasi-Experimental Study. International Journal of Environmental Research and Public Health, 17(21), 7984. https://doi.org/10.3390/ijerph17217984