Online Relationships and Social Media Interaction in Youth Problem Gambling: A Four-Country Study
Abstract
:1. Introduction
1.1. Social Media Identity Bubbles and the Identity Bubble Reinforcement Model
1.2. Youth Problem Gambling
1.3. The Cross-National Study
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.3. Statistical Techniques
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buckingham, D. Is There a Digital Generation? In Digital Generations, 1st ed.; Buckingham, D., Willett, R., Eds.; Routledge: New York, NY, USA, 2006; pp. 13–26. [Google Scholar]
- Jones, C.; Ramanau, R.; Cross, S.; Healing, G. Net generation or digital natives: Is there a distinct new generation entering university? Comput. Educ. 2010, 3, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Gainsbury, S.M.; Russell, A.; Hing, N.; Wood, R.; Lubman, D.; Blaszczynski, A. How the Internet is changing gambling: Findings from an Australian prevalence survey. J. Gambl. Stud. 2015, 1, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, M.D.; Parke, J. The social impact of internet gambling. Soc. Sci. Comput. Rev. 2002, 3, 312–320. [Google Scholar] [CrossRef]
- Cantell, M.; Castrén, S.; Fabritius, J.; Järvinen-Tassopoulos, J.; Keinänen, J.; Kesänen, M.; Koskela, T.; Laitakari, S.; Leinonen, S.; Mikkola, J.; et al. A Review of Gambling in Finland: State of Play 2017; THL: Helsinki, Finland, 2017. [Google Scholar]
- Molinaro, S.; Benedetti, E.; Scalese, M.; Bastiani, L.; Fortunato, L.; Cerrai, S.; Lazar, T.U. Prevalence of youth gambling and potential influence of substance use and other risk factors throughout 33 European countries: First results from the 2015 ESPAD study. Addiction 2018, 10, 1862–1873. [Google Scholar] [CrossRef] [PubMed]
- Welte, J.W.; Barnes, G.M.; Tidwell, M.C.; Hoffman, J.H.; Wieczorek, W.F. Gambling and problem gambling in the United States: Changes between 1999 and 2013. J. Gambl. Stud. 2015, 3, 695–715. [Google Scholar] [CrossRef] [PubMed]
- Dasen, P.R. Rapid social change and the turmoil of adolescence: A cross-cultural perspective. Int. J. Group Tens. 2000, 29, 17–49. [Google Scholar] [CrossRef]
- Soenens, B.; Berzonsky, M.D.; Vansteenkiste, M.; Beyers, W.; Goossens, L. Identity styles and causality orientations: In search of the motivational underpinnings of the identity exploration process. Eur. J. Pers. 2005, 5, 427–442. [Google Scholar] [CrossRef]
- Steinberg, L.; Morris, A.S. Adolescent development. Annu. Rev. Psychol. 2001, 1, 83–110. [Google Scholar] [CrossRef]
- Bradford Brown, B.; Larson, J. Peer Relationships in Adolescence. In Handbook of Adolescent Psychology; Lerner, R.M., Steinberg, L., Eds.; John Wiley & Sons, Inc.: Wiley, NJ, USA, 2009; Volume 2, pp. 74–103. [Google Scholar] [CrossRef]
- Tarrant, M. Adolescent peer groups and social identity. Soc. Dev. 2002, 1, 110–123. [Google Scholar] [CrossRef]
- Kushlev, K.; Proulx, J.D.; Dunn, E.W. Digitally connected, socially disconnected: The effects of relying on technology rather than other people. Comput. Hum. Behav. 2017, 76, 68–74. [Google Scholar] [CrossRef]
- Smahel, D.; Brown, B.B.; Blinka, L. Associations between online friendship and Internet addiction among adolescents and emerging adults. Dev. Psychol. 2012, 2, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Valkenburg, P.M.; Peter, J. Online communication among adolescents: An integrated model of its attraction, opportunities, and risks. J. Adolesc. Health 2011, 2, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Lehdonvirta, V.; Räsänen, P. How do young people identify with online and offline peer groups? A comparison between UK, Spain and Japan. J. Youth Stud. 2011, 14, 91–108. [Google Scholar] [CrossRef]
- Lenhart, A.; Purcell, K.; Smith, A.; Zickuhr, K. Social Media & Mobile Internet Use among Teens and Young Adults. Millennials. Pew Internet & American Life Project. Available online: https://files.eric.ed.gov/fulltext/ED525056.pdf (accessed on 10 January 2010).
- Baumeister, R.F.; Leary, M.R. The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 1995, 3, 497–529. [Google Scholar] [CrossRef]
- Holt-Lunstad, J.; Smith, T.B.; Layton, J.B. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 2010, 7, e1000316. [Google Scholar] [CrossRef]
- Brandtzæg, P.B. Social networking sites: Their users and social implications—A longitudinal study. J. Comput. Mediat. Commun. 2012, 4, 467–488. [Google Scholar] [CrossRef] [Green Version]
- O’Keeffe, G.S.; Clarke-Pearson, K. The impact of social media on children, adolescents, and families. Pediatrics 2011, 127, 800–804. [Google Scholar] [CrossRef] [Green Version]
- Grieve, R.; Indian, M.; Witteveen, K.; Tolan, G.A.; Marrington, J. Face-to-face or Facebook: Can social connectedness be derived online? Comput. Hum. Behav. 2013, 3, 604–609. [Google Scholar] [CrossRef]
- Reinecke, L.; Trepte, S. Authenticity and well-being on social network sites: A two-wave longitudinal study on the effects of online authenticity and the positivity bias in SNS communication. Comput. Hum. Behav. 2014, 30, 95–102. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D. Online social networking and addiction—a review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 9, 3528–3552. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.Y.; Sidani, J.E.; Shensa, A.; Radovic, A.; Miller, E.; Colditz, J.B.; Primack, B.A. Association between social media use and depression among US young adults. Depress. Anxiety 2016, 4, 323–331. [Google Scholar] [CrossRef]
- Woods, H.C.; Scott, H. #Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low self-esteem. J. Adolesc. 2016, 51, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Keipi, T.; Näsi, M.; Oksanen, A.; Räsänen, P. Online Hate and Harmful Content: Cross-National Perspectives; Taylor & Francis: New York, NY, USA, 2017. [Google Scholar]
- Kaakinen, M.; Sirola, A.; Savolainen, I.; Oksanen, A. Shared identity and shared information in social media: Development and validation of the identity bubble reinforcement scale. Media Psychol. 2020, 1, 25–51. [Google Scholar] [CrossRef]
- Abisheva, A.; Garcia, D.; Schweitzer, F. When the filter bubble bursts: Collective evaluation dynamics in online communities. In Proceedings of the 8th ACM Conference on Web Science, Hannover, Germany, 18 February 2016; Association for Computing Machinery: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Pariser, E. The Filter Bubble: What the Internet Is Hiding from You; Penguin Group: New York, NY, USA, 2011. [Google Scholar]
- Zollo, F.; Bessi, A.; Del Vicario, M.; Scala, A.; Caldarelli, G.; Shekhtman, L.; Quattrociocchi, W. Debunking in a world of tribes. PLoS ONE 2017, 7, e018182. [Google Scholar] [CrossRef]
- Koivula, A.; Kaakinen, M.; Oksanen, A.; Räsänen, P. The role of political activity in the formation of online identity bubbles. Policy Internet 2019, 4, 396–417. [Google Scholar] [CrossRef]
- Calado, F.; Alexandre, J.; Griffiths, M.D. Prevalence of adolescent problem gambling: A systematic review of recent research. J. Gambl. Stud. 2017, 33, 397–424. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, A.; Sirola, A.; Savolainen, I.; Kaakinen, M. Gambling patterns and associated risk and protective factors among Finnish young people. Nordisk Alkohol. Nark. 2019, 36, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, F.X.; Kingsbury, J.H.; Gerrard, M. Social-psychological theories and adolescent health risk behavior. Soc. Personal. Psychol. Compass. 2012, 2, 170–183. [Google Scholar] [CrossRef]
- Spring, B.; Moller, A.C.; Coons, M.J. Multiple health behaviours: Overview and implications. J. Public Health 2012, 34, i3–i10. [Google Scholar] [CrossRef] [Green Version]
- Lyng, S. Edgework: A social psychological analysis of voluntary risk taking. Am. J. Sociol. 1990, 4, 851–886. [Google Scholar] [CrossRef]
- DiClemente, R.J.; Hansen, W.B.; Ponton, L.E. Handbook of Adolescent Health Risk Behavior; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Van Rooij, A.J.; Schoenmakers, T.M.; Van de Eijnden, R.J.; Van de Mheen, D. Compulsive internet use: The role of online gaming and other internet applications. J. Adolesc. Health 2010, 1, 51–57. [Google Scholar] [CrossRef]
- Gámez-Guadix, M.; Borrajo, E.; Almendros, C. Risky online behaviors among adolescents: Longitudinal relations among problematic Internet use, cyberbullying perpetration, and meeting strangers online. J. Behav. Addict. 2016, 1, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pound, P.; Campbell, R. Locating and applying sociological theories of risk-taking to develop public health interventions for adolescents. Health Sociol. Rev. 2015, 1, 64–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinduja, S.; Patchin, J.W. Offline consequences of online victimization: School violence and delinquency. J. Sch. Violence 2007, 3, 89–112. [Google Scholar] [CrossRef]
- Huang, G.C.; Unger, J.B.; Soto, D.; Fujimoto, K.; Pentz, M.A.; Jordan-Marsh, M.; Valente, T.W. Peer influences: The impact of online and offline friendship networks on adolescent smoking and alcohol use. J. Adolesc. Health 2014, 5, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Savolainen, I.; Sirola, A.; Kaakinen, M.; Oksanen, A. Peer group identification as determinant of youth behavior and the role of perceived social support in problem gambling. J. Gambl. Stud. 2019, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Kaakinen, M.; Keipi, T.; Räsänen, P.; Oksanen, A. Cybercrime victimization and subjective wellbeing: An examination of the buffering effect hypothesis among adolescents and young adults. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 129–137. [Google Scholar] [CrossRef]
- Minkkinen, J.; Oksanen, A.; Näsi, M.; Keipi, T.; Kaakinen, M.; Räsänen, P. Does social belonging to primary groups protect young people from the effects of prosuicide sites? Crisis 2015, 1, 31–41. [Google Scholar] [CrossRef]
- Stanton-Salazar, R.D.; Spina, S.U. Adolescent peer networks as a context for social and emotional support. Youth Soc. 2005, 36, 379–417. [Google Scholar] [CrossRef]
- Steinberg, L. We know some things: Parent–adolescent relationships in retrospect and prospect. J. Res. Adolesc. 2001, 11, 1–19. [Google Scholar] [CrossRef]
- Grabowicz, P.A.; Ramasco, J.J.; Moro, E.; Pujol, J.M.; Eguiluz, V.M. Social features of online networks: The strength of intermediary ties in online social media. PLoS ONE 2012, 1, e29358. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Novak, J.; Tomkins, A. Structure and Evolution of Online Social Networks. In Link Mining: Models, Algorithms, and Applications; Yu, P.S., Han, J., Faloutsos, C., Eds.; Springer: New York, NY, USA, 2010; pp. 337–357. [Google Scholar]
- Boulianne, S. Social media use and participation: A meta-analysis of current research. Inf. Commun. Soc. 2015, 5, 524–538. [Google Scholar] [CrossRef]
- Boyd, D. It’s Complicated: The Social Lives of Networked Teens; Yale University Press: New Haven, CT, USA, 2014. [Google Scholar]
- Zuiderveen Borgesius, F.; Trilling, D.; Möller, J.; Bodó, B.; De Vreese, C.H.; Helberger, N. Should we worry about filter bubbles? Internet Policy Review. J. Internet Regul. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Garrett, R.K. Echo chambers online? Politically motivated selective exposure among Internet news users. J. Comput. Mediat. Commun. 2009, 2, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Garimella, K.; De Francisci Morales, G.; Gionis, A.; Mathioudakis, M. Political discourse on social media: Echo chambers, gatekeepers, and the price of bipartisanship. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, R.S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 1998, 2, 175–220. [Google Scholar] [CrossRef]
- Nikolov, D.; Oliveira, D.F.; Flammini, A.; Menczer, F. Measuring online social bubbles. PeerJ Comput. Sci. 2015, 1, e38. [Google Scholar] [CrossRef] [Green Version]
- Spohr, D. Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Bus. Inf. Rev. 2017, 3, 150–160. [Google Scholar] [CrossRef]
- Orford, J. An Unsafe Bet? The Dangerous Rise of Gambling and the Debate We Should Be Having; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Volberg, R.A.; Gupta, R.; Griffiths, M.D.; Olason, D.T.; Delfabbro, P. An international perspective on youth gambling prevalence studies. Int. J. Adolesc. Med. Health 2010, 1, 3–38. [Google Scholar]
- European Casino Association. Country-by-Country Report (ECA Report). Available online: http://www.europeancasinoassociation.org/country-by-country-report/ (accessed on 19 October 2020).
- National Research Council. Pathological Gambling: A Critical Review; National Academy Press: Washington, DC, USA, 1999. [Google Scholar]
- Blinn-Pike, L.; Worthy, S.L.; Jonkman, J.N. Adolescent gambling: A review of an emerging field of research. J. Adolesc. Health 2010, 3, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.V.; Stubbe, D.; Li, S.T.; Hilty, D.M. The use of technology by youth: Implications for psychiatric educators. Acad. Psychiatry 2019, 43, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Sirola, A.; Kaakinen, M.; Savolainen, I.; Oksanen, A. Loneliness and online gambling-community participation of young social media users. Comput. Hum. Behav. 2019, 95, 136–145. [Google Scholar] [CrossRef]
- Sirola, A.; Savela, N.; Savolainen, I.; Kaakinen, M.; Oksanen, A. The role of virtual communities in gambling and gaming behaviors: A systematic review. J. Gambl. Stud. 2020. [Google Scholar] [CrossRef] [Green Version]
- Elton-Marshall, T.; Leatherdale, S.T.; Turner, N. An examination of internet and land-based gambling among adolescents in three Canadian provinces: Results from the youth gambling survey (YGS). BMC Public Health 2016, 16, 277. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Kim, J. Why people continue to play online games: In search of critical design factors to increase customer loyalty to online contents. Cyberpsychol. Behav. 2004, 1, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Sirola, A.; Kaakinen, M.; Oksanen, A. Excessive gambling and online gambling communities. J. Gambl. Stud. 2018, 4, 1313–1325. [Google Scholar] [CrossRef] [Green Version]
- Derevensky, J.L.; Gupta, R.; Messerlian, C.; Gillespie, M. Youth Gambling Problems. In Gambling Problems in Youth; Derevensky, J.L., Gupta, R., Eds.; Springer: Boston, MA, USA, 2005; pp. 231–252. [Google Scholar]
- Derevensky, J.; Sklar, A.; Gupta, R.; Messerlian, C. An empirical study examining the impact of gambling advertisements on adolescent gambling attitudes and behaviors. Int. J. Ment. Health Addict. 2010, 1, 21–34. [Google Scholar] [CrossRef]
- Derevensky, J.L.; Gilbeau, L. Adolescent gambling: Twenty-five years of research. Can. J. Addict. 2015, 2, 4–12. [Google Scholar] [CrossRef]
- Oksanen, A.; Savolainen, I.; Sirola, A.; Kaakinen, M. Problem gambling and psychological distress: A cross-national perspective on the mediating effect of consumer debt and debt problems among emerging adults. Harm. Reduct. J. 2018, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Langham, E.; Thorne, H.; Browne, M.; Donaldson, P.; Rose, J.; Rockloff, M. Understanding gambling related harm: A proposed definition, conceptual framework, and taxonomy of harms. BMC Public Health 2015, 16, 80. [Google Scholar] [CrossRef] [Green Version]
- Brunelle, N.; Leclerc, D.; Cousineau, M.-M.; Dufour, M.; Gendron, A.; Martin, I. Internet gambling, substance use, and delinquent behavior: An adolescent deviant behavior involvement pattern. Psychol. Addict. Behav. 2012, 2, 364–370. [Google Scholar] [CrossRef]
- Potenza, M.N.; Wareham, J.D.; Steinberg, M.A.; Rugle, L.; Cavallo, D.A.; Krishnan-Sarin, S.; Desai, R.A. Correlates of At-Risk/Problem Internet gambling in adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2011, 2, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Desai, R.A.; Potenza, M.N. A cross-sectional study of problem and pathological gambling in patients with schizophrenia/schizoaffective disorder. J. Clin. Psychiatry 2009, 9, 1250–1257. [Google Scholar] [CrossRef]
- Statista. Percentage of Adults in the United States Who Use Social Networks as of February 2019, by Age Group. Available online: https://www.statista.com/statistics/471370/us-adults-who-use-social-networks-age/ (accessed on 11 June 2019).
- Statista. Reach of Leading Social Networking Sites Used by Teenage and Young Adult Online Users in the United States as of 3rd Quarter 2019. Available online: https://www.statista.com/statistics/199242/social-media-and-networking-sites-used-by-us-teenagers (accessed on 11 June 2019).
- Anderson, M.; Jiang, J. Teens, Social Media Habits & Technology 2018. Pew Research Center. Available online: https://www.pewresearch.org/internet/2018/05/31/teens-social-media-technology-2018/ (accessed on 11 June 2019).
- Statista. Frequency of Using Social Media among Adolescents in South Korea in 2018. Available online: https://www.statista.com/statistics/961361/south-korea-social-media-use-frequency-among-adolescents (accessed on 11 June 2019).
- Statistics Korea. 2017 Statistics on the Youth. Available online: http://kostat.go.kr/portal/eng/pressReleases/1/index.board?bmode=read&aSeq=361664 (accessed on 8 October 2020).
- Statista. Share of Households with Internet Access in Spain from 2007 to 2017. Available online: https://www.statista.com/statistics/377704/household-internet-access-in-spain/ (accessed on 11 June 2019).
- Eurostat. Are You Using Social Networks? Individuals—Internet Activities Dataset. 2019. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20190629-1 (accessed on 11 June 2019).
- Official Statistics of Finland. Finnish People’s Internet Use in 2019. Helsinki: Tilastokeskus. Available online: https://www.stat.fi/til/sutivi/2019/sutivi_2019_2019-11-07_kat_001_fi.html (accessed on 24 June 2019).
- National Center for Responsible Gaming. Youth Gambling (NCRG Fact Sheet). Available online: https://www.ncrg.org/sites/default/files/oec/pdfs/ncrg_fact_sheet_youth_gambling.pdf (accessed on 24 June 2019).
- Calado, F.; Griffiths, M.D. Problem gambling worldwide: An update and systematic review of empirical research (2000–2015). J. Behav. Addict. 2016, 5, 592–613. [Google Scholar] [CrossRef] [Green Version]
- Korea Center on Gambling Problems. Statistics on Problem Bambling. Available online: https://www.kcgp.or.kr/eng/statistics.do (accessed on 11 June 2019).
- Williams, R.J.; Lee, C.K.; Back, K.J. The prevalence and nature of gambling and problem gambling in South Korea. Soc. Psychiatry Psychiatr. Epidemiol. 2013, 5, 821–834. [Google Scholar] [CrossRef]
- Chóliz, M.; Marcos, M.; Lázaro-Mateo, J. The risk of online gambling: A study of gambling disorder prevalence rates in Spain. Int. J. Ment. Health Addict. 2019, 1–14. [Google Scholar] [CrossRef]
- Directorate General for the Regulation of Gambling. Study on the Prevalence, Behaviour and Characteristics of Users of Games of Chance in Spain. Dirección General de Ordenación del Juego 2019. Available online: Estudio_Prevalencia_2015_en%20(3).pdf (accessed on 20 October 2020).
- Spanish Federation of Gambling Players Rehabilitated. Youth and Online Game [Jóvenes y Juego On-Line]. Available online: https://fejar.org/que-hacemos/recursos/ (accessed on 20 October 2020).
- Nordmyr, J.; Österman, K. Raising the legal gambling age in Finland: Problem gambling prevalence rates in different age groups among past-year gamblers pre-and post-implementation. Int. Gambl. Stud. 2016, 16, 347–356. [Google Scholar] [CrossRef]
- Spångberg, J.; Svensson, J. Gambling among 16-year-olds and associated covariates: A Nordic comparison. Scand. J. Public Health 2020, 1403494820923814. [Google Scholar] [CrossRef]
- Edgren, R.; Castrén, S.; Jokela, M.; Salonen, A.H. At-risk and problem gambling among Finnish youth: The examination of risky alcohol consumption, tobacco smoking, mental health and loneliness as gender-specific correlates. Nord. Stud. Alcohol Dr. 2016, 1, 61–80. [Google Scholar] [CrossRef] [Green Version]
- Angie, A.D.; Davis, J.L.; Allen, M.T.; Byrne, C.L.; Ruark, G.A.; Cunningham, C.B.L.; O’Hair, H.D. Studying ideological groups online: Identification and assessment of risk factors for violence. J. Appl. Soc. Psychol. 2011, 41, 627–657. [Google Scholar] [CrossRef]
- Oksanen, A.; Näsi, M.; Minkkinen, J.; Keipi, T.; Kaakinen, M.; Räsänen, P. Young people who access harm-advocating online content: A four-country survey. Cyberpsychology 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Turja, T.; Oksanen, A.; Kaakinen, M.; Sirola, A.; Kaltiala-Heino, R.; Räsänen, P. Proeating disorder websites and subjective well-being: A four-country study on young people. Int. J. Eat. Disord. 2017, 50, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Bakshy, E.; Messing, S.; Adamic, L.A. Exposure to ideologically diverse news and opinion on Facebook. Science 2015, 348, 1130–1132. [Google Scholar] [CrossRef]
- Savolainen, I.; Oksanen, A.; Kaakinen, M.; Sirola, A.; Miller, B.L.; Paek, H.J.; Zych, I. The Association between social media use and hazardous alcohol use among youths: A four-country study. Alcohol Alcohol. 2020, 55, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Lesieur, H.R.; Blume, S.B. The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. Am. J. Psychiatry 1987, 9, 1184–1188. [Google Scholar]
- Markham, F.; Young, M.; Doran, B. The relationship between player losses and gambling-related harm: Evidence from nationally representative cross-sectional surveys in four countries. Addiction 2016, 2, 320–330. [Google Scholar] [CrossRef]
- Jann, B. Plotting regression coefficients and other estimates. Stata J. 2014, 4, 708–737. [Google Scholar] [CrossRef] [Green Version]
- Battersby, M.W.; Thomas, L.J.; Tolchard, B.; Esterman, A. The South Oaks Gambling Screen: A review with reference to Australian use. J. Gambl. Stud. 2002, 18, 257–271. [Google Scholar] [CrossRef]
- Stinchfield, R. Reliability, validity, and classification accuracy of the South Oaks Gambling Screen (SOGS). Addict. Behav. 2002, 1, 1–19. [Google Scholar] [CrossRef]
- Lesieur, H.R.; Blume, S.B. Revising the south oaks gambling screen in different settings. J. Gambl. Stud. 1993, 3, 213–223. [Google Scholar] [CrossRef]
- Goodie, A.S.; MacKillop, J.; Miller, J.D.; Fortune, E.E.; Maples, J.; Lance, C.E.; Campbell, W.K. Evaluating the South Oaks Gambling Screen with DSM-IV and DSM-5 criteria: Results from a diverse community sample of gamblers. Assessment 2013, 5, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.S.K.; Wu, A.M.; Tang, J.Y.; Yan, E.C. Reliability, validity, and cut scores of the South Oaks Gambling Screen (SOGS) for Chinese. J. Gambl. Stud. 2010, 1, 145–158. [Google Scholar] [CrossRef] [Green Version]
United States | South Korea | Spain | Finland | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | M | SD | Range | M | SD | Range | M | SD | Range | M | SD | Range |
Problem gambling | 1.27 | 2.55 | 0–20 | 0.73 | 1.92 | 0–20 | 1.80 | 2.91 | 0–20 | 1.60 | 2.56 | 0–20 |
Identity bubble * | 37.25 | 13.23 | 6–60 | 31.78 | 11.84 | 6–60 | 35.82 | 11.85 | 6–60 | 27.79 | 9.97 | 6–60 |
Online belonging | 5.38 | 2.70 | 1–10 | 4.38 | 2.48 | 1–10 | 4.91 | 2.75 | 1–10 | 5.04 | 2.61 | 1–10 |
Offline belonging | 20.33 | 6.70 | 3–30 | 20.08 | 5.86 | 3–30 | 21.34 | 5.81 | 3–30 | 20.18 | 6.13 | 3–30 |
Age | 20.05 | 3.19 | 15–25 | 20.60 | 3.24 | 15–25 | 20.07 | 3.16 | 15–25 | 21.29 | 2.85 | 15–25 |
Cat. Variables | coding | n | % | coding | n | % | coding | n | % | coding | n | % |
Gender | male | 604 | 49.83 | male | 591 | 49.58 | male | 621 | 51.24 | male | 600 | 50 |
female | 608 | 50.17 | female | 601 | 50.42 | female | 591 | 48.76 | female | 600 | 50 |
United States | South Korea | Spain | Finland | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
1 Prob. Gambling 1 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
2 Identity bubble 2 | 0.0936 | 1.00 | 0.1238 | 1.00 | 0.1807 | 1.00 | 0.0217 | 1.00 | ||||
3 Online belonging | 0.1234 | 0.4847 | 1.00 | 0.1480 | 0.4827 | 1.00 | 0.2191 | 0.4734 | 1.00 | 0.0160 | 0.3583 | 1.00 |
4 Offline belonging | −0.0443 | 0.3491 | 0.4325 | −0.0605 | 0.2401 | 0.2316 | −0.0555 | 0.1661 | 0.2113 | −0.0973 | 0.1811 | 0.3366 |
United States | South Korea | Spain | Finland | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1. | b | SE | p | b | SE | p | b | SE | p | b | SE | p |
Constant | −1.2 | 0.59 | 0.037 | 1.8 | 0.50 | <0.001 | −0.09 | 0.67 | 0.894 | 4.2 | 0.70 | <0.001 |
Age | 0.15 | 0.02 | <0.001 | −0.01 | 0.02 | 0.431 | 0.15 | 0.02 | <0.001 | 0.01 | 0.03 | 0.770 |
Gender | −0.77 | 0.14 | <0.001 | −0.58 | 0.11 | <0.001 | −1.22 | 0.16 | <0.001 | −1.23 | 0.15 | <0.001 |
Identity bubble * | 0.02 | 0.01 | 0.012 | 0.02 | 0.01 | 0.003 | 0.03 | 0.01 | <0.001 | 0.01 | 0.01 | 0.086 |
Online belonging | 0.12 | 0.03 | <0.001 | 0.10 | 0.03 | <0.001 | 0.20 | 0.03 | <0.001 | 0.01 | 0.03 | 0.824 |
Offline belonging | −0.03 | 0.01 | 0.014 | −0.04 | 0.01 | <0.001 | −0.06 | 0.01 | <0.001 | −0.07 | 0.01 | <0.001 |
Adjusted R2 | 0.08 | 0.06 | 0.13 | 0.08 | ||||||||
Model 2. | ||||||||||||
Constant | −0.42 | 0.64 | 0.512 | −21.6 | 33.9 | 0.525 | 1.2 | 0.77 | 0.117 | 4.8 | 0.75 | <0.001 |
Age | 0.15 | 0.02 | <0.001 | 0.01 | 0.02 | 0.485 | 0.14 | 0.02 | <0.001 | 0.01 | 0.03 | 0.703 |
Gender | −0.77 | 0.14 | <0.001 | −0.59 | 0.11 | <0.001 | −1.2 | 0.16 | <0.001 | −1.2 | 0.15 | <0.001 |
Identity bubble * | −0.04 | 0.05 | 0.464 | −0.03 | 0.05 | 0.603 | −0.04 | 0.07 | 0.588 | −0.01 | 0.02 | 0.452 |
Online belonging | −0.02 | 0.06 | 0.761 | −0.07 | 0.06 | 0.251 | −0.08 | 0.09 | 0.355 | −0.12 | 0.08 | 0.111 |
Identity bubble X online belonging | 0.02 | 0.01 | 0.010 | 0.03 | 0.01 | 0.003 | 0.04 | 0.01 | 0.001 | 0.00 | 0.00 | 0.063 |
Offline belonging | −0.03 | 0.01 | 0.012 | −0.04 | 0.01 | <0.001 | −0.06 | 0.01 | <0.001 | −0.07 | 0.01 | <0.001 |
Adjusted R2 | 0.08 | 0.06 | 0.14 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savolainen, I.; Kaakinen, M.; Sirola, A.; Koivula, A.; Hagfors, H.; Zych, I.; Paek, H.-J.; Oksanen, A. Online Relationships and Social Media Interaction in Youth Problem Gambling: A Four-Country Study. Int. J. Environ. Res. Public Health 2020, 17, 8133. https://doi.org/10.3390/ijerph17218133
Savolainen I, Kaakinen M, Sirola A, Koivula A, Hagfors H, Zych I, Paek H-J, Oksanen A. Online Relationships and Social Media Interaction in Youth Problem Gambling: A Four-Country Study. International Journal of Environmental Research and Public Health. 2020; 17(21):8133. https://doi.org/10.3390/ijerph17218133
Chicago/Turabian StyleSavolainen, Iina, Markus Kaakinen, Anu Sirola, Aki Koivula, Heli Hagfors, Izabela Zych, Hye-Jin Paek, and Atte Oksanen. 2020. "Online Relationships and Social Media Interaction in Youth Problem Gambling: A Four-Country Study" International Journal of Environmental Research and Public Health 17, no. 21: 8133. https://doi.org/10.3390/ijerph17218133
APA StyleSavolainen, I., Kaakinen, M., Sirola, A., Koivula, A., Hagfors, H., Zych, I., Paek, H.-J., & Oksanen, A. (2020). Online Relationships and Social Media Interaction in Youth Problem Gambling: A Four-Country Study. International Journal of Environmental Research and Public Health, 17(21), 8133. https://doi.org/10.3390/ijerph17218133