A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms
Abstract
:1. Introduction
2. Alpha Emitters in Mushrooms
2.1. Naturally Occurring Radioisotopes in Mushrooms
2.2. Anthropogenic (Artificial, Man-Made) Radioisotopes in Mushrooms
3. Risk Assessment
- A—activity concentration (Bq/kg dw),
- dc—dose coefficient (conversion factor) (Sv/Bq), defined as the dose received from the unit of radioactivity intake; the ICRP conversion coefficients recommended for the ingestion of alpha emitters presented in the review in the case of adult members of the public, range from 4.5 × 10−8 Sv/Bq for 238U to 1.2 × 10−6 Sv/Bq for 210Po, with an average value of 10−7 Sv/Bq (exact values are shown in Table 1 and Table 2) [97].
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Falandysz, J.; Treu, R. Fungi and environmental pollution. J. Environ. Sci. Health B 2017, 52, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, A.P.; Naozuka, J. Preliminary results on the feasibility of producing selenium-enriched pink (Pleurotus djamor) and white (Pleurotus ostreatus) oyster mushrooms: Bioaccumulation, bioaccessibility, and Se-proteins distribution. Microchem. J. 2019, 145, 1143–1150. [Google Scholar] [CrossRef]
- Kalač, P. Radioactivity of European Wild Growing Edible Mushrooms; Nova Science Publ.: Hauppauge, NY, USA, 2012. [Google Scholar]
- Borovička, J.; Kubrová, J.; Rohovec, J.; Řanda, Z.; Dunn, C.E. Uranium, thorium and rare earth elements in macrofungi: What are the genuine concentrations? Biometals 2011, 24, 837–845. [Google Scholar] [CrossRef]
- Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, G.; Pogoń, K.; Skrzypczak, A.; Bernaś, E. Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption. J. Food Sci. Technol. 2015, 52, 7944–7953. [Google Scholar] [CrossRef] [Green Version]
- Becquerel, H. Sur les radiations invisibles émises par les sels d’uranium. Acad. Sci. Paris 1896, 122, 689–694. [Google Scholar]
- Curie, P.; Curie, M. Sur une substance nouvelle radio-active contenue dans la pechblende. C. R. l’Acad. Sci. Paris 1898, 127, 175–178. [Google Scholar]
- Aarkrog, A. Source of Terms and Inventories of Anthropogenic Radionuclides; Environmental Science and Technology Department/Ecology Section; Riso National Laboratory: Roskilde, Denmark, 1991. [Google Scholar]
- Jaworowski, Z. Natural and man-made radionuclides in the global atmosphere. IAEA Bull. 1982, 24, 35–39. Available online: https://www.iaea.org/sites/default/files/24205683539.pdf (accessed on 12 August 2020).
- Skwarzec, B.; Strumińska, D.; Boryło, A. Bioaccumulation and distribution of plutonium in fish from Gdansk Bay. J. Environ. Radioact. 2001, 55, 167–178. [Google Scholar] [CrossRef]
- Ikäheimonen, T.K.; Ilus, E.; Klemola, S.; Dahlgaard, H.; Ryan, T.; Eriksson, M. Plutonium and americium in the sediments off the Thule air base, Greenland. J. Radioanal. Nucl. Chem. 2002, 252, 339–344. [Google Scholar] [CrossRef]
- Taira, Y.; Hayashida, N.; Brahmanandhan, G.M.; Nagayama, Y.; Yamashita, S.; Takahashi, J.; Gutevitc, A.; Kazlovsky, A.; Urazalin, M.; Takamura, N. Current concentration of artificial radionuclides and estimated radiation doses from 137Cs around the Chernobyl nuclear power plant, the Semipalatinsk nuclear testing site, and in Nagasaki. J. Radiat. Res. 2011, 52, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Heaton, B.; Lambley, J. TENORM in the oil, gas and mineral mining industry. Appl. Radiat. Isot. 1995, 46, 577–581. [Google Scholar] [CrossRef]
- Paschoa, A.S.; Godoy, J.M. The areas of high natural radioactivity and TENORM wastes. Int. Congr. Ser. 2002, 1225, 3–8. [Google Scholar] [CrossRef]
- Saueia, C.H.; Mazzilli, B.P.; Favaro, D.I.T. Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil. J. Radioanal. Nucl. Chem. 2005, 264, 445–448. [Google Scholar] [CrossRef]
- Saueia, C.H.; Mazzilli, B.P. Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil. J. Environ. Radioact. 2006, 89, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Szerbin, P.; Juhász, L.; Csige, I.; Várhegyi, A.; Vincze, J.; Szabó, T.; Maringer, F.-J. Tenorm’s around coal fired power plant tailings ponds in Hungary. Int. Congr. Ser. 2005, 1276, 365–366. [Google Scholar] [CrossRef]
- UNSCEAR—United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report, Report to the general assembly Vol. I ANNEX C Exposures to the Public from Man-Made Sources of Radiation. 2000. Available online: http://www.unscear.org/docs/reports/annexc.pdf (accessed on 12 August 2020).
- Strumińska-Parulska, D.; Olszewski, G. Is ecological food also radioecological?—210Po and 210Pb studies. Chemosphere 2018, 191, 190–195. [Google Scholar] [CrossRef]
- Cocchi, L.; Kluza, K.; Zalewska, T.; Apanel, A.; Falandysz, J. Radioactive caesium (134Cs and 137Cs) in mushrooms of the genus Boletus from the Reggio Emilia in Italy and Pomerania in Poland. Isot. Environ. Health Stud. 2017, 53, 620–627. [Google Scholar] [CrossRef]
- Falandysz, J.; Zhang, J.; Zalewska, T. Radioactive artificial 137Cs and natural 40K activity in 21 edible mushrooms of the genus Boletus species from SW China. Environ. Sci. Pollut. Res. 2017, 24, 8189–8199. [Google Scholar] [CrossRef] [Green Version]
- Gwynn, J.P.; Nalbandyan, A.; Rudolfsen, G. 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. J. Environ. Radioact. 2013, 116, 34–41. [Google Scholar] [CrossRef]
- Saniewski, M.; Zalewska, T.; Krasińska, G.; Szylke, N.; Wang, Y.; Falandysz, J. 90Sr in King Bolete Boletus edulis and certain other mushrooms consumed in Europe and China. Sci. Total Environ. 2016, 543, 287–294. [Google Scholar] [CrossRef]
- Strumińska-Parulska, D.I.; Skwarzec, B.; Pawlukowska, M. Plutonium fractionation in southern Baltic Sea sediments. Isot. Environ. Health Stud. 2013, 48, 526–542. [Google Scholar] [CrossRef]
- Steinhauser, G.; Brandl, A.; Johnson, T.E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 2014, 470–471, 800–817. [Google Scholar] [CrossRef] [PubMed]
- Rantavaara, A. Radioactivity of Vegetables and Mushrooms in Finland after the Chernobyl Accident in 1986; STUK-A59; Finnish Centre for Radiation and Nuclear Safety: Helsinki, Finland, 1987; Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/001/19001484.pdf (accessed on 12 August 2020).
- Kalač, P. A review of edible mushroom radioactivity. Food Chem. 2001, 75, 29–35. [Google Scholar] [CrossRef]
- Kalač, P. Mineral Composition and Radioactivity of Edible Mushrooms; Academic Press: Oxford, UK, 2019. [Google Scholar]
- L’Annunziata, M.F. Radioactivity; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Daillant, O.; Boilley, D.; Josset, M.; Hettwig, B.; Fischer, H.W. Evolution of radiocaesium contamination in mushrooms and influence of treatment after collection. J. Radioanal. Nucl. Chem. 2013, 297, 437–441. [Google Scholar] [CrossRef]
- Falandysz, J.; Saniewski, M.; Zhang, J.; Zalewska, T.; Liu, H.-G.; Kluza, K. Artificial 137Cs and natural 40K in mushrooms from the subalpine region of the Minya Konka summit and Yunnan Province in China. Environ. Sci. Pollut. Res. 2018, 25, 615–627. [Google Scholar] [CrossRef] [Green Version]
- IAEA—International Atomic Energy Agency. Basic Toxicity Classification of Radionuclides; Technical Reports Series No. 15; IAEA: Vienna, Austria, 1963. [Google Scholar]
- Donaldson, L.; Department of Health. Information to Health Professionals Regarding the Radioactive Material ‘Polonium-210′ Resulting from a Radiological Incident Occurring in November 2006; National Health Service Central Alerting System: London, UK, 2006. [Google Scholar]
- Strumińska-Parulska, D.I. Determination of 210Po in calcium supplements and the possible related dose assessment to the consumers. J. Environ. Radioact. 2015, 150, 121–125. [Google Scholar] [CrossRef]
- Ansoborlo, E. Poisonous polonium. Nat. Chem. 2014, 6, 454. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, G.; Szymańska, M.; Westa, M.; Moniakowska, A.; Block, K.; Strumińska-Parulska, D. On the extraction efficiency of highly radiotoxic 210Po in Polish herbal teas and possible related dose assessment. Microchem. J. 2019, 144, 431–435. [Google Scholar] [CrossRef]
- Lehto, J.; Hou, X. Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology; Wiley-VCH Verlag: Weinheim, Germany, 2011. [Google Scholar]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. An Introduction to Nuclear Waste Immobilisation; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Baeza, A.; Guillén, F.J.; Salas, A.; Manjon, J.L. Distribution of radionuclides in different parts of a mushroom: Influence of the degree of maturity. Sci. Total Environ. 2006, 359, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Linsalata, P. Uranium and thorium decay series radionuclides in human and animal foodchains—A review. J. Environ. Qual. 1994, 23, 633–642. [Google Scholar] [CrossRef]
- Fowler, W.A. Nuclear Astrophysics; American Philosophical Society: Philadelphia, PA, USA, 1967. [Google Scholar]
- Bem, H. Radioaktywność w Środowisku Naturalnym; Polska Akademia Nauk. Oddział w Łodzi: Łódź, Poland, 2005. [Google Scholar]
- Amin, M.; Khandaker, M.U.; Shyen, A.K.S.; Mahat, R.H.; Nor, R.M.; Bradley, D.A. Radionuclide emissions from a coal-fired power plant. Appl. Radiat. Isot. 2013, 80, 109–116. [Google Scholar] [CrossRef]
- Hilal, M.A.; Attallah, M.F.; Mohamed, G.Y.; Fayez-Hassan, M. Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production. J. Environ. Radioact. 2014, 136, 121–126. [Google Scholar] [CrossRef]
- AlNabhani, K.; Khan, F.; Yang, M. Management of TENORMs produced during oil and gas operation. J. Loss Prev. Proc. Ind. 2017, 47, 161–168. [Google Scholar] [CrossRef]
- IAEA—International Atomic Energy Agency. High levels of natural radiation. In Proceedings of the International Conference, Ramsar, Iran, 3–7 November 1990. [Google Scholar]
- Persson, B.R.R.; Holm, E. Polonium-210 and lead-210 in the terrestrial environment: A historical review. J. Environ. Radioact. 2011, 102, 420–429. [Google Scholar] [CrossRef]
- El Mrabet, R.; Abril, J.M.; Delgado, A.; Garcia-Tenorio, R.; Manjón, G.; Periáñez, R. Evaluation of the radioactive impact of the phosphogypsum wastes used as amendment in agriculture soils. Radioprotection 2005, 40 (Suppl. 1), S335–S341. [Google Scholar] [CrossRef]
- Giri, S.; Jha, V.N.; Singh, G.; Tripathi, R.M. Estimation of annual effective dose due to ingestion of natural radionuclides in foodstuffs and water at a proposed uranium mining site in India. Int. J. Radiat. Biol. 2013, 89, 1071–1078. [Google Scholar] [CrossRef]
- Arunachalam, K.D.; Baskaran, K.V.; Rao, D.D.; Sathyapriya, R.; Annamalai, S.K.; Kuruva, J.K.; Hari, S. Ingestion of Polonium (210Po) via dietary sources in high background radiation areas of south India. Int. J. Radiat. Biol. 2014, 90, 867–875. [Google Scholar] [CrossRef]
- Persson, B.R.R. 210Po and 210Pb in the terrestrial environment. Curr. Adv. Environ. Sci. (CAES) 2014, 2, 22–37. [Google Scholar]
- Tchuente, S.; Kwato, N. Natural radiation exposure to the public in the oil-bearing Bakassi Peninsula, Cameroon. Radioprotection 2015, 50, 35–41. [Google Scholar] [CrossRef]
- Heiserman, D.L. Księga Pierwiastków Chemicznych; Prószyński i S-ka: Warszawa, Poland, 1997. [Google Scholar]
- Henricsson, F.; Persson, B.R.R. Polonium-210 in the Bio-Sphere: Bio-Kinetics and Biological Effects; Nova Science Publishers, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Carvalho, F.; Fernandes, S.; Fesenko, S.; Holm, E.; Howard, B.; Martin, P.; Phaneuf, M.; Porcelli, D.; Pröhl, G.; Twining, J. The Environmental Behaviour of Polonium; Technical Reports Series no. 484; IAEA: Vienna, Austria, 2017. [Google Scholar]
- Szymańska, K.; Strumińska-Parulska, D. Atmospheric fallout impact on 210Po and 210Pb content in wild growing mushrooms. Environ. Sci. Pollut. Res. 2020, 27, 20800–20806. [Google Scholar] [CrossRef] [Green Version]
- Strumińska-Parulska, D.; Olszewski, G.; Moniakowska, A.; Zhang, J.; Falandysz, J. Bolete mushroom Boletus bainiugan from Yunnan as a reflection of the geographical distribution of 210Po, 210Pb and uranium (234U, 235U, 238U) radionuclides, their intake rates and effective exposure doses. Chemosphere 2020, 253, 126585. [Google Scholar] [CrossRef]
- Vaaramaa, K.; Solatie, D.; Aro, L. Distribution of 210Pb and 210Po concentrations in wild berries and mushrooms in boreal forest ecosystems. Sci. Total Environ. 2009, 408, 84–91. [Google Scholar] [CrossRef]
- Turtiainen, T.; Brunfeldt, M.; Rasilainen, T.; Skipperud, L.; Valle, L.; Mrdakovic Popic, J.; Roos, P.; Sundell-Bergman, S.; Rosén, K. Doses from Natural Radioactivity in Wild Mushrooms and Berries to the Nordic population, Interim Report from the NKS-B BERMUDA Activity; NKS-273; Nordisk Kernesikkerhedsforskning: Roskilde, Denmark, 2013; ISBN 978-87-7893-346-1. [Google Scholar]
- Wichterey, K.; Sawallisch, S. Naturally occurring radionuclides in mushrooms from uranium mining regions in Germany. Radioprotection 2002, 37, 353–358. [Google Scholar] [CrossRef]
- Pearson, A.J.; Gaw, S.; Hermanspahn, N.; Glover, C.N. Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet. J. Environ. Radioact. 2016, 151, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Strumińska-Parulska, D.I.; Szymańska, K.; Krasińska, G.; Skwarzec, B.; Falandysz, J. Determination of 210Po and 210Pb in red-capped scaber (Leccinum aurantiacum): Bioconcentration and possible related dose assessment. Environ. Sci. Pollut. Res. 2016, 23, 22606–22613. [Google Scholar] [CrossRef]
- Strumińska-Parulska, D.I.; Olszewski, G.; Falandysz, J. 210Po and 210Pb bioaccumulation and possible related dose assessment in parasol mushroom (Macrolepiota procera). Environ. Sci. Pollut. Res. 2017, 24, 26858–26864. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, K.; Falandysz, J.; Skwarzec, B.; Strumińska-Parulska, D. 210Po and 210Pb in forest mushrooms of genus Leccinum and topsoil from northern Poland and its contribution to the radiation dose. Chemosphere 2018, 213, 133–140. [Google Scholar] [CrossRef]
- Szymańska, K.; Strumińska-Parulska, D.; Falandysz, J. Isotopes of 210Po and 210Pb in Hazel bolete (Leccinellum pseudoscabrum)—Bioconcentration, distribution and related dose assessment. Environ. Sci. Pollut. Res. 2019, 26, 18904–18912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillén, J.; Baeza, A. Radioactivity in mushrooms: A health hazard? Food Chem. 2014, 154, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Al-Azmi, D.; Saad, H.R.; Farhan, A.R. Comparative study of desert truffles from Kuwait and other countries in the middle east for radionuclide concentration. Biol. Trace Elem. Res. 1999, 71, 309–315. [Google Scholar] [CrossRef]
- Changizi, V.; Angaji, M.; Reza Zare, M.; Abbasnejad, K. Evaluation of 226Ra, 232Th, 137Cs and 40K “Agaricus bisporus” activity in cultivated edible mushroom formed in Tehran Province—Iran. Iranian J. Med. Phys. 2012, 9, 239–244. [Google Scholar] [CrossRef]
- Eckl, P.; Hofmann, W.; Türk, R. Uptake of natural and man-made radionuclides by lichens and mushrooms. Radiat. Environ. Biophys. 1986, 25, 43–54. [Google Scholar] [CrossRef]
- Kirchner, G.; Daillant, O. Accumulation of 210Pb, 226Ra and radioactive cesium by fungi. Sci. Total Environ. 1998, 222, 63–70. [Google Scholar] [CrossRef]
- Baeza, A.; Guillén, J.; Bernedo, J.M. Soil-fungi transfer coefficients: Importance of the location of mycelium in soil and of the differential availability of radionuclides in soil fractions. J. Environ. Radioact. 2005, 81, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Turhan, Ş.; Köse, A.; Varinlioğlu, A. Radioactivity levels in some wild edible mushroom species in Turkey. Isot. Environ. Health Stud. 2007, 43, 249–256. [Google Scholar] [CrossRef]
- de Castro, L.P.; Maihara, V.A.; Silva, P.S.C.; Figueira, R.C.L. Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. J. Environ. Radioact. 2012, 113, 150–154. [Google Scholar] [CrossRef]
- Rakić, M.; Karaman, M.; Forkapić, S.; Hansman, J.; Kebert, M.; Bikit, K.; Mrdja, D. Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ. Sci. Pollut. Res. 2014, 21, 11283–11292. [Google Scholar] [CrossRef]
- Faweya, E.B.; Ayeni, M.J.; Kayode, J. Accumulation of natural radionuclides by some edible wild mushrooms in Ekiti State, Southwestern, Nigeria. World J. Nucl. Sci. Tech. 2015, 5, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Kioupi, V.; Florou, H.; Kapsanaki-Gotsi, E.; Gonou-Zagou, Z. Bioaccumulation of the artificial Cs-137 and the natural radionuclides Th-234, Ra-226, and K-40 in the fruit bodies of Basidiomycetes in Greece. Environ. Sci. Pollut. Res. 2016, 23, 613–624. [Google Scholar] [CrossRef]
- Pelgunov, A.N.; Pelgunova, L.A. Radionuclide accumulation in mushrooms over the territory of Pleshcheyevo Lake National Park. Biol. Bull. 2016, 43, 1389–1392. [Google Scholar] [CrossRef]
- Tuo, F.; Zhang, J.; Li, W.; Yao, S.; Zhou, Q.; Li, Z. Radionuclides in mushrooms and soil-to-mushroom transfer factors in certain areas of China. J. Environ. Radioact. 2017, 180, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Browne, E.; Firestone, R.B. Table of Radioactive Isotopes; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Lenarczyk, K. Możliwości Wykorzystania Toru w Energetyce. Politechnika Warszawska. 2004. Available online: http://www-host-1.ee.pw.edu.pl/sep/nowa/download/torWenergetyce.pdf (accessed on 12 August 2020).
- Gadd, G. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef]
- Mietelski, J.W.; Baeza, A.S.; Guillén, J.; Buzinny, M.; Tsigankovc, N.; Gaca, P.; Jasińska, M.; Tomankiewicz, E. Plutonium and other alpha emitters in mushrooms from Poland, Spain and Ukraine. Appl. Radiat. Isot. 2002, 56, 717–729. [Google Scholar] [CrossRef]
- Baeza, A.; Guillén, J.; Mietelski, J.W. Uptake of alpha and beta emitters by mushrooms collected and cultured in Spain. J. Radioanal. Nucl. Chem. 2004, 261, 375–380. [Google Scholar] [CrossRef]
- Baeza, A.; Guillén, J. Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Appl. Radiat. Isot. 2006, 64, 1020–1026. [Google Scholar] [CrossRef]
- Galanda, D. Stanovenie Aktinoidov Metódami Spektrometrie Alfa. Ph.D. Thesis, Faculty of Natural Sciences of Comenius University, Bratislava, Czech, 2011. [Google Scholar]
- Rosa, M.M.L.; Maihara, V.A.; Taddei, M.H.T.; Silva, M.A.; Ferreira, M.T. Determination of 228Th, 232Th, and 228Ra in wild mushroom from a naturally high radioactive region in Brazil. In Proceedings of the 2011 International Nuclear Atlantic Conference—INAC 2011, Belo Horizonte, MG, Brazil, 24–28 October 2011. [Google Scholar]
- Akça, S.; Sögüt, O.; Küçükönder, E.; Karatepe, S.; Dogru, M. Radioactivity levels in some mushroom species and consequent doses. Asian J. Chem. 2014, 26, 879–882. [Google Scholar] [CrossRef]
- Mohammed, R.S.; Ahmed, R.S.; Abdaljalil, R.O. Uranium, thorium, potassium, and cesium radionuclides concentrations in desert truffles from the governorate of Samawah in southern Iraq. J. Food Prot. 2018, 81, 1540–1548. [Google Scholar] [CrossRef]
- Türkekul, I.; Yeşilkanat, C.M.; Ciriş, A.; Kölemen, U.; Çevik, U. Interpolated mapping and investigation of environmental radioactivity levels in soils and mushrooms in the Middle Black Sea Region of Turkey. Isot. Environ. Health Stud. 2018, 54, 262–273. [Google Scholar] [CrossRef]
- Szymańska, K.; Strumińska-Parulska, D.; Falandysz, J. Uranium (234U, 238U) and thorium (230Th, 232Th) in mushrooms of genus Leccinum and Leccinellum and the potential effective ionizing radiation dose assessment for human. Chemosphere 2020, 250, 126242. [Google Scholar] [CrossRef]
- Jia, G.; Belli, M.; Sansone, U.; Rosamilia, S.; Gaudino, S. Concentration, distribution and characteristics of depleted uranium (DU) in the Kosovo ecosystem: A comparison with the uranium behavior in the environment uncontaminated by DU. J. Radioanal. Nucl. Chem. 2004, 260, 481–494. [Google Scholar] [CrossRef]
- Jia, G.; Belli, M.; Sansone, U.; Rosamilia, S.; Gaudino, S. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro. Appl. Radiat. Isot. 2005, 63, 381–399. [Google Scholar] [CrossRef]
- Jia, G.; Belli, M.; Sansone, U.; Rosamilia, S.; Gaudino, S. Concentration and characteristics of depleted uranium in biological and water samples collected in Bosnia and Herzegovina. J. Environ. Radioact. 2006, 89, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Žunić, Z.S.; Mietelski, J.W.; Błażej, S.; Gaca, P.; Tomankiewicz, E.; Ujić, P.; Čeliković, I.; Čuknić, O.; Demajo, M. Traces of DU in samples of environmental bio-monitors (non-flowering plants, fungi) and soil from target sites of the Western Balkan region. J. Environ. Radioact. 2008, 99, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Saba, M.; Strumińska-Parulska, D. 137Caesium, 40K and total K in Boletus edulis at different maturity stages: Effect of braising and estimated radiation dose intake. Chemopshere 2020. submitted. [Google Scholar]
- ICRP—International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection; ICRP Publ. 103. Ann. ICRP 37 (2-4); The International Commission on Radiological Protection: Ottawa, ON, Canada, 2007. [Google Scholar]
- Strumińska-Parulska, D.; Moniakowska, A.; Wang, Y.; Zhang, J.; Falandysz, J. Radiotoxic 210Po and 210Pb occurrence, variability, their intake rates and effective exposure doses in sclerotia of medicinal Wolfiporia cocos from polymetallic soils in Yunnan, China. Environ. Geochem. Health 2020. submitted. [Google Scholar]
- Strumińska-Parulska, D.; Falandysz, J.; Wang, Y. Radiotoxic 210Po and 210Pb in uncooked and cooked Boletaceae mushrooms from Yunnan (China) including intake rates and effective exposure doses. J. Environ. Radioact. 2020, 217, 106236. [Google Scholar] [CrossRef]
- Skwarzec, B.; Jakusik, A. 210Po bioaccumulation by mushrooms from Poland. J. Environ. Monit. 2003, 5, 791–794. [Google Scholar] [CrossRef]
- Strumińska-Parulska, D.I.; Skwarzec, B.; Fabisiak, J. Plutonium bioaccumulation in seabirds. J. Environ. Radioact. 2011, 102, 1105–1111. [Google Scholar] [CrossRef]
- Imanaka, T.; Hayashi, G.; Endo, S. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. J. Radiat. Res. 2015, 56 (Suppl. 1), 56–61. [Google Scholar] [CrossRef] [Green Version]
- Strumińska-Parulska, D.I.; Skwarzec, B. Plutonium isotopes 238Pu, 239+240Pu, 241Pu and 240Pu/239Pu atomic ratios in the southern Baltic Sea ecosystem. Oceanologia 2010, 52, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Skwarzec, B.; Jahnz-Bielawska, A.; Strumińska-Parulska, D.I. The inflow of 238Pu and 239+240Pu from the Vistula River catchment area to the Baltic Sea. J. Environ. Radioact. 2011, 102, 728–734. [Google Scholar] [CrossRef]
- Strumińska-Parulska, D.I.; Skwarzec, B.; Tuszkowska, A. The inflow of 238Pu and 239+240Pu from the Odra and Pomeranian rivers catchments area to the Baltic Sea. J. Environ. Radioact. 2012, 113, 63–70. [Google Scholar] [CrossRef] [PubMed]
- IAEA—International Atomic Energy Agency. The Fukushima Daiichi Accident—Technical Volume 4/5, Radiological Consequences; IAEA: Vienna, Austria, 2015. [Google Scholar]
- Strumińska-Parulska, D.I. A study on determination of potentially hazardous plutonium isotopes in environmental samples. J. Environ. Sci. Health Part C 2013, 31, 145–169. [Google Scholar] [CrossRef]
- Yamamoto, M.; Shiraishi, K.; Los, I.P.; Kamarikov, I.Y.; Buzinny, M.G. Alpha-emitting radionuclide contents in food samples as related to the Chernobyl accident. J. Radioanal. Nucl. Chem. Lett. 1995, 201, 459–468. [Google Scholar] [CrossRef]
- Kershaw, P.J.; Kins, L.S.; McCubbin, D.; Aldridge, J.N. Plutonium: The legacy of Sellafield. Radioact. Environ. 2001, 1, 305–328. [Google Scholar] [CrossRef]
- Mietelski, J.W.; LaRosa, J.; Ghods, A. 90Sr and 239+240Pu, 238Pu, 241Am in some samples of mushrooms and forest soil from Poland. J. Radioanal. Nucl. Chem. 1993, 170, 243–258. [Google Scholar] [CrossRef]
- Mietelski, J.W.; Jasińska, M.; Kubica, B.; Kozak, K.; Macharski, P. Radioactive contamination of Polish mushrooms. Sci. Total Environ. 1994, 157, 217–226. [Google Scholar] [CrossRef]
- Hoshi, M.; Yamamoto, M.; Kawamura, H.; Shinohara, K.; Shibata, Y.; Kozlenko, M.T.; Takatsuji, T.; Yamashita, S.; Namba, H.; Yokoyama, N.; et al. Fallout radioactivity in soil and food samples in the Ukraine: Measurements of iodine, plutonium, cesium, and strontium isotopes. Health Phys. 1994, 67, 187–191. [Google Scholar] [CrossRef]
- Fulker, M.J.; Jackson, D.; Leonard, D.R.P.; McKay, K.; John, C. Dose due to man-made radionuclides in terrestrial wild foods near Sellafield. J. Radiol. Prot. 1998, 18, 3–13. [Google Scholar] [CrossRef]
- Outola, I. Effect of industrial pollution on the distribution of Pu and Am in soil and on soil-to-plant transfer of Pu and Am in a pine forest in SW Finland. J. Radioanal. Nucl. Chem. 2003, 257, 267–274. [Google Scholar] [CrossRef]
- Baeza, A.; Guillén, J.; Mietelski, J.W.; Gaca, P. Soil-to-fungi transfer of 90Sr, 239+240Pu, and 241Am. Radiochim. Acta 2006, 94, 75–80. [Google Scholar] [CrossRef]
- Lehto, J.; Vaaramaa, K.; Leskinen, A. 137Cs, 239,240Pu and 241Am in boreal forest soil and their transfer into wild mushrooms and berries. J. Environ. Radioact. 2013, 116, 124–132. [Google Scholar] [CrossRef]
- RIFE-21—Radioactivity in Food and the Environment, 2015; Report of the Centre for Environment, Fisheries and Aquaculture Science; Environment Agency, Food Standards Agency, Food Standards Scotland, Natural Resources Wales, Northern Ireland Environment Agency and the Scottish Environment Protection Agency: Preston, UK, 2016.
- RIFE-24—Radioactivity in Food and the Environment, 2018; Report of the Centre for Environment, Fisheries and Aquaculture Science; Environment Agency, Food Standards Agency, Food Standards Scotland, Natural Resources Wales, Northern Ireland Environment Agency and the Scottish Environment Protection Agency: Preston, UK, 2019.
- Johanson, K.J.; Nikolova, I.; Taylor, A.F.S.; Vinichuk, M.M. Uptake of Elements by Fungi in the Forsmark Area. SKB-TR-04-26; 2004. Available online: https://www.osti.gov/etdeweb/servlets/purl/20599333 (accessed on 12 August 2020).
- Mirończuk-Chodakowska, I.; Socha, K.; Zujko, M.E.; Terlikowska, K.M.; Borawska, M.H.; Witkowska, A.M. Copper, manganese, selenium and zinc in wild-growing edible mushrooms from the eastern territory of “Green Lungs of Poland”: Nutritional and toxicological implications. Int. J. Environ. Res. Public Health 2019, 16, 3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afarideh, H.; Payrovan, H. Determination of trace elements including uranium of water in Ramsar area. INIS-MF-13747 1993, 25, 415. [Google Scholar]
- Basha, A.M.; Yasovardhan, N.; Satyanarayana, S.V.; Reddy, G.V.S.; Kumar, A.V. Trace metals in vegetables and fruits cultivated around the surroundings of Tummalapalle uranium mining site, Andhra Pradesh, India. Toxic. Rep. 2014, 1, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel-Nakamura, C.; Robbins, W.A.; Hodge, F.S. Uranium and associated heavy metals in Ovis aries in a mining impacted area in Northwestern New Mexico. Int. J. Environ. Res. Public Health 2017, 14, 848. [Google Scholar] [CrossRef]
- NRC—National Research Council. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials; The National Academies Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- ICRP—International Commission on Radiological Protection. Compendium of Dose Coefficients Based on ICRP Publication 60; ICRP Publ. 119, Ann. ICRP 41 (Suppl); The International Commission on Radiological Protection: Ottawa, ON, Canada, 2012. [Google Scholar]
- ATSDR—Agency for Toxic Substances and Disease Registry. Toxicological Profile for Thorium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 1990. [Google Scholar]
- Prokeš, J.; Šromová, S.; Jojková, K.; Štambergová, A.; Vulterin, K.; Leifertová, I.; Lisá, M.; Roosová, M. Hormetic effect of low doses of uranium in rats. Sci. Total Environ. 1991, 101, 161. [Google Scholar] [CrossRef]
- Keith, S.; Faroon, O.; Roney, N.; Scinicariello, F.; Wilbur, S.; Ingerman, L.; Llados, F.; Plewak, D.; Wohlers, D.; Diamond, G. Toxicological Profile for Uranium, Toxicological Profile for Uranium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2013. [Google Scholar]
- Carvalho, F. 210Po and 210Pb intake by the Portuguese population: The contribution of seafood in the dietary intake of 210Po and 210Pb. Health Phys. 1995, 69, 469–480. [Google Scholar] [CrossRef]
- ICRP—International Commission on Radiological Protection. The Evaluation of Risks from Radiation, ICRP Publication 8; The International Commission on Radiological Protection: Belfast, Ireland, 1965. [Google Scholar]
Radionuclide (Sv/Bq) | Species | Activity Concentration (Bq/kg dw) | Effective Dose * (µSv/kg dw) | Country | References |
---|---|---|---|---|---|
210Po (1.2 × 10−6) | Baorangia bicolor, Boletus bainiugan, B. calopus, B. flammans, B. obsclereumbrinus, Butyriboletus roseoflavus, Rubroboletus sinicus, Rugiboletus extremiorientale, Wolfiporia cocos | 1.66–308 | 1.99–370 | China | [58,98,99] |
Albatrellus ovinus, Cantharellus cibarius, Cortinarius armillatus, C. caperatus, Craterellus cornucopioides, C. tubaeformis, Hygrophorus camarophyllus, Lactarius rufus, L. scrobiculatus, L. utilis, L. torminosus, Leccinum variicolor, L. versipelle, L. vulpinum, Rozites caperatus, Russula aeruginea, R. decolorans, R. paludosa, R. parazurea, R. xerampelina, R. vinosa, Suillus luteus | 6–22,000 | 7.2–26,400 | Finland | [59,60] | |
Agaricus sp., Boletus sp., Leccinum sp., Lepiota sp., Lycoperda sp., Suillus sp., Xerocomus sp. | 1.0–640 | 1.2–768 | Germany | [61] | |
Not specified | <9 | <10.8 | New Zealand | [62] | |
Leccinum scabrum, L. versipelle, Russula paludosa, R. decolorans | 4.7–198 | 5.64–238 | Norway | [23] | |
Amanita muscaria, A. rubescens, A. phalloides, Agaricus silvicolae-similis, Boletus edulis, Cantharellus cibarius, Hydnum repandum, Imleria badia, Lactarius torminosus, Leccinum scabrum, L. versipelle, L. aurantiacum, L. aurantiacum var. quercinum, L. vulpinum, L. aurantiacum var. duriusculum, Leccinellum pseudoscabrum, Lycoperdon excipuliforme, Macrolepiota procera, Marasmius oreades, Russula cyanoxantha, R. nobilis, R. solaris, Scleroderma citrinum, Strobilomyces strobilaceus, Tylopilus felleus, Suillus bovinus, S. luteus, Xerocomus badius, X. subtomentosus | 0.23–17 | 0.28–20.4 | Poland | [57,63,64,65,66,100] | |
222Rn | Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus | 16–36 | - | Russia | [78] |
226Ra (2.8 × 10−7) | Amanita fulva, Armillaria mellea, Boletus edulis, Cantharellus cibarius, Flammulina velutipes, Gomphus clavatus, Hydnum repandum, Leccinum scabrum, Macrolepiota procera, Paxillus involutus, Rozites caperata, Russula cyanoxantha, R. emetica, Suillus variegatus, Xerocomus badius | 22–48 | 6.16–13.4 | Austria | [70] |
Agaricus campestris, A. blazei, Agaricus sp., Lentinula edodes, Pleurotus eryngii, P. ostreatus, P. ostreatoroseus | 7.3–66 | 2.04–18.5 | Brazil | [74] | |
Agaricus blazei, Armillaria solidipes, Boletus aereus, B. brunneissimus, B. edulis, Boletus sp., Cantharellus cibarius, Cyclocybe parasitica, Flammulina velutipes, Gomphus floccosus, Hygrophorus russula, Hypsizygus ulmarius, Lactarius hatsudake, L. volemus, Lentinula edodes, Leucocalocybe mongolica, Macrolepiota albuminosa, Neoboletus obscureumbrinus, Pleurotus djamor, Termitomyces albuminosus, Tylopilus balloui, T. felleus | 0.05–3.65 | 0.014–1.02 | China | [79] | |
Terfezia sp. | 419 | 117 | Egypt | [68] | |
Not specified | 29.3–61.6 | 8.20–17.3 | France | [71] | |
Agaricus sp., Boletus sp., Leccinum sp., Lepiota sp., Lycoperdon sp., Suillus sp., Xerocomus sp. | 0.3–512 | 0.084–143 | Germany | [61] | |
Agaricus campestris, A. xanthodermus, Armillaria mellea, Boletus sp., Bovista plumbea, Chroogomphus rutilus, Clavariadelphus truncates, Clitocybe nebularis, Clitocybe sp., Cortinarius sp., Entoloma sp., Hydnellum concrescens, Hydnum rufescens, Hygrocybe acutoconica, Inocybe sp., Lactarius salmonicolor, Lepista flaccida, L. nuda, Lycoperdon perlatum, Macrolepiota mastoidea, Marasmius oreades, Melanoleuca cognata, Mycena seynii, Ramaria formosa, R. obtusissima, Russula delica, Sarcodon martioflavus, Suillus collinitus, Vascellum pratense | 0.3–1.0 | 0.084–0.28 | Greece | [77] | |
Terfezia sp., and not specified edible mushrooms | 60–700 | 16.8–196 | Iran | [68,69] | |
Terfezia sp. | 439 | 122 | Kuwait | [68] | |
Pleurotus squarrosulus, Psathyrella atroumbonata, Pleurotus tuber-regium, Termitomyces striatus, T. robustus | 2.68–21.6 | 0.75–6.05 | Nigeria | [76] | |
Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus | 29–78 | 8.12–21.8 | Russia | [78] | |
Amanita muscaria, A. curtipes, Clitocybe sp., Gymnopilus penetrans, Hebeloma cylindrosporum, Lactarius deliciosus, Lycoperdon perlatum, Plerurotus eryngii, Rhizopogon roseolus, Russula cessans, R. toruosa, Tricholoma equestre, T. pessandatum, T. terreum | 0.021–62 | 0.006–17.4 | Spain | [40,72] | |
Boletus sp., Brunneoporus malicola, Fomitopsis pinicola, Ganoderma applanatum, Hericium clathroides, Megacollybia platyphylla, Pluteus cervinus, Suillellus luridus | 4–14 | 1.12–3.92 | Serbia | [75] | |
Terfezia sp. | 438 | 122 | Tunisia | [68] | |
Agaricus campestris, Agaricus porphyrocephalus, Boletus edulis, Craterellus cornucopioides, Cantharellus cibarius, Lepiota cristata, Lycogala epidendrum, Marasmius oreades, Morchella esculenta, Nectria cinnabarina, Stropharia coronilla | 4.4–5.2 | 1.23–1.46 | Turkey | [73] | |
228Th (7.2 × 10−8) | Not specified | 3.1–127 | 0.22–9.14 | Brazil | [87] |
Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.34–31.8 | 0.025–2.29 | Slovakia | [86] | |
Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus, Macrolepiota procera, Plerurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp. | 1.4–13 | 0.11–0.94 | Spain | [40,84,85] | |
230Th (2.1 × 10−7) | Leccinellum pseudoscabrum, Leccinum aurantiacum, L. aurantiacum var. duriusculum, L. aurantiacum var. quercinum, L. vulpinum | 0.04–2.13 | 0.001–0.16 | Poland | [91] |
Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.05–3.75 | 0.004–0.27 | Slovakia | [86] | |
Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Plerurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp. | 0.053–6.9 | 0.004–0.50 | Spain | [40,83,84,85] | |
232Th (2.3 × 10−7) | Not specified | 0.6–142 | 0.14–32.7 | Brazil | [87] |
Terfezia sp. | 1.76–3.71 | 0.41–0.85 | Iraq | [89] | |
Pleurotus squarrosulus, Psathyrella atroumbonata, Pleurotus tuber-regium, Termitomyces striatus, T. robustus | 8.57–14.3 | 1.97–3.29 | Nigeria | [76] | |
Leccinellum pseudoscabrum, Leccinum aurantiacum, L. aurantiacum var. duriusculum, L. aurantiacum var. quercinum, L. vulpinum | 0.02–0.63 | 0.005–0.15 | Poland | [91] | |
Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus | 13–33 | 2.99–7.59 | Russia | [78] | |
Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.04–4.59 | 0.009–1.06 | Slovakia | [86] | |
Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Plerurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp. | 0.061–10.7 | 0.014–2.46 | Spain | [40,83,84,85] | |
Agaricus campestris, A. porphyrocephalus, Amanita rubescens, Boletus edulis, Bonomyces sinopicus, Cantharellus cibarius, Craterellus cornucopioides, C. lutescens, Hygrophoropsis aurantiaca, Hypholoma fasciculare, Hypholoma spp., Lepiota cristata, Lycogala epidendrum, Marasmius oreades, Morchella esculenta, Nectria cinnabarina, Paxillus involutus, Pleurotus cornucopiae, Pycnoporus cinnabarinus, Pycnoporus spp., Russula delica, Stropharia coronilla | 0.35–182 | 0.081–41.9 | Turkey | [73,88,90] | |
234U (4.9 × 10−8) | Not specified | 0.26 | 0.013 | Bosnia and Herzegovina | [56] |
Boletus bainiugan | 0.19–0.89 | 0.009–0.044 | China | [58] | |
Fomes fomentarius | 1.0–6.90 | 0.049–0.34 | Kosovo | [92,95] | |
Not specified | <5 | <0.24 | New Zealand | [62] | |
Armillaria mellea, Boletus edulis, Lactifluus vellereus, Leccinellum pseudoscabrum, Leccinum aurantiacum, L. aurantiacum var. duriusculum, L. aurantiacum var. quercinum, L. vulpinum, Macrolepiota procera, Xerocomus badius | 0.014–0.43 | 0.001–0.021 | Poland | [83,91] | |
Not specified | 0.48–0.80 | 0.023–0.039 | Serbia | [93] | |
Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.46–86.3 | 0.022–4.23 | Slovakia | [86] | |
Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Pleurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, Terfezia boudieri, Tricholoma equestre, T. terreum, Tricholoma sp. | 0.15–7.0 | 0.007–0.34 | Spain | [40,83,84,85] | |
235U (4.7 × 10−8) | Not specified | 0.02 | 0.009 | Bosnia and Herzegovina | [94] |
Boletus bainiugan | 0.003–0.064 | 0.0001–0.003 | China | [58] | |
Not specified | 1.56–5.61 | 0.073–0.27 | France | [71] | |
Fomes fomentarius | 0.070–0.52 | 0.003–0.024 | Kosovo | [92,95] | |
Armillaria mellea, Boletus edulis, Lactifluus vellereus, Macrolepiota procera, Xerocomus badius | 0.006–0.010 | 0.0003–0.0005 | Poland | [83] | |
Not specified | 0.02–0.03 | 0.009–0.01 | Serbia | [93] | |
Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Plerurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp. | 0.007–0.42 | 0.0003–0.019 | Spain | [40,83,84] | |
238U (4.5 × 10−8) | Amanita fulva, Armillaria mellea, Boletus edulis, Cantharellus cibarius, Flammulina velutipes, Gomphus clavatus, Hydnum repandum, Leccinum scabrum, Macrolepiota procera, Paxillus involutus, Rozites caperata, Russula cyanoxantha, R. emetica, Suillus variegatus, Xerocomus badius | 44–92 | 1.98–4.14 | Austria | [70] |
Not specified | 0.27 | 0.013 | Bosnia and Herzegovina | [94] | |
Agaricus blazei, Armillaria solidipes, Boletus aereus, B. bainiugan, B. brunneissimus, B. edulis, Boletus sp., Cantharellus cibarius, Cyclocybe parasitica, Flammulina velutipes, Gomphus floccosus, Hygrophorus russula, Hypsizygus ulmarius, Lactarius hatsudake, L. volemus, Lentinula edodes, Leucocalocybe mongolica, Macrolepiota albuminosa, Neoboletus obscureumbrinus, Pleurotus djamor, Termitomyces albuminosus, Tylopilus balloui, T. felleus | 0.15–7.68 | 0.007–0.34 | China | [58,79] | |
Cantharellus cibarius, C. tubaeformis, Craterellus cornucopioides, Lactarius rufus | 92 | 4.14 | Finland | [60] | |
Boletus sp., Suillus sp., Xerocomus sp., Leccinum sp., Lepiota sp., Agaricus sp., Lycoperdon sp. | 0.1–259 | 0.004–11.6 | Germany | [61] | |
Terfezia sp. | 2.3–5.88 | 0.10–0.26 | Iraq | [89] | |
Fomes fomentarius | 0.7–11.3 | 0.03–0.51 | Kosovo | [92,95] | |
Not specified | 4 | 0.18 | New Zealand | [62] | |
Armillaria mellea, Boletus edulis, Lactifluus vellereus, Leccinellum pseudoscabrum, Leccinum aurantiacum, L. aurantiacum var. duriusculum, L. aurantiacum var. quercinum, L. vulpinum, Macrolepiota procera, Xerocomus badius | 0.015–0.51 | 0.0007–0.023 | Poland | [83,91] | |
Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus | 7.4–19 | 0.33–0.85 | Russia | [78] | |
Not specified | 0.67–1.11 | 0.03–0.05 | Serbia | [93] | |
Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.45–99.4 | 0.020–4.47 | Slovakia | [86] | |
Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Pleurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp. | 0.12–7.30 | 0.005–0.33 | Spain | [40,83,84,85] | |
Amanita rubescens, Bonomyces sinopicus, Cantharellus cibarius, Craterellus lutescens, Hygrophoropsis aurantiaca, Hypholoma fasciculare, Hypholoma spp., Pycnoporus cinnabarinus, Pycnoporus spp., Paxillus involutus, Pleurotus cornucopiae, Russula delica | 1.03–168 | 0.046–7.56 | Turkey | [88,90] |
Radionuclide (Sv/Bq) | Species | Activity Concentration (Bq/kg dw) | Effective Dose * (µSv/kg dw) | Country | References |
---|---|---|---|---|---|
236U (4.7 × 10−8) | Not specified | 0.014–0.038 | 0.0007–0.002 | Kosovo | [92] |
238Pu (2.3 × 10−7) | Armillaria mellea, Boletus edulis, Lactifluus vellereus, Macrolepiota procera, Xerocomus badius | 0.0001–0.031 | 0.00002–0.007 | Poland | [83] |
Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.02–0.78 | 0.005–0.18 | Slovakia | [86] | |
Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma terreum, Tricholoma sp. | 0.0008–0.020 | 0.0002–0.005 | Spain | [83,84] | |
Not specified | 0.024–0.09 | 0.005–0.027 | UK | [117,118] | |
Boletus edulis, Cantharellus cibarius, Paxillus involutus, Suillus luteus, Xerocomus badius | 0.029–43.6 | 0.007–10.03 | Ukraine | [83,108,112] | |
239Pu (2.5 × 10−7) | Not specified | 0.1 | 0.025 | UK | [113] |
239+240Pu (2.5 × 10−7) | Russula decolorans | 0.002–0.02 | 0.0005–0.005 | Finland | [114,116] |
Armillaria mellea, Boletus edulis, Lactifluus vellereus, Leccinum sp., Macrolepiota procera, Xerocomus badius | 0.001–0.09 | 0.0003–0.023 | Poland | [110,111] | |
Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.07–3.16 | 0.017–0,79 | Slovakia | [86] | |
Agaricus campestris, Amanita muscaria, A. ponderosa, Clitocybe sp., Hebeloma cylindrosporum, Lactarius deliciosus, Lycoperdon perlatum, Macrolepiota procera, Omphalotus olearius, Pleurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp. | 0.0066–0.246 | 0.0016–0.061 | Spain | [40,83,84,115] | |
Not specified | 0.16–1.0 | 0.04–0.25 | UK | [117,118] | |
Boletus edulis, Cantharellus cibarius, Paxillus involutus, Suillus luteus, Xerocomus badius | 0.053–53.78 | 0.013–13.45 | Ukraine | [83,108,112] | |
241Am (2.0 × 10−7) | Russula decolorans | 0.003–0.01 | 0.0006–0.002 | Finland | [114,116] |
Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus | 0.02–1.01 | 0.004–0.20 | Slovakia | [86] | |
Amanita muscaria, Clitocybe sp., Hebeloma cylindrosporum, Lactarius deliciosus, Lycoperdon perlatum, Rhizopogon roseolus | 0.0086–0.067 | 0.0017–0.013 | Spain | [115] | |
Not specified | 0.065–0.98 | 0.013–0.19 | UK | [113,117,118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strumińska-Parulska, D.; Falandysz, J. A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms. Int. J. Environ. Res. Public Health 2020, 17, 8220. https://doi.org/10.3390/ijerph17218220
Strumińska-Parulska D, Falandysz J. A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms. International Journal of Environmental Research and Public Health. 2020; 17(21):8220. https://doi.org/10.3390/ijerph17218220
Chicago/Turabian StyleStrumińska-Parulska, Dagmara, and Jerzy Falandysz. 2020. "A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms" International Journal of Environmental Research and Public Health 17, no. 21: 8220. https://doi.org/10.3390/ijerph17218220
APA StyleStrumińska-Parulska, D., & Falandysz, J. (2020). A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms. International Journal of Environmental Research and Public Health, 17(21), 8220. https://doi.org/10.3390/ijerph17218220