Health-Related Quality of Life and Health Service Use among Multimorbid Middle-Aged and Older-Aged Adults in China: A Cross-Sectional Study in Shandong Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Sample
2.2. Socio-Demographic Variables
2.3. Multimorbidity
2.4. HRQOL
2.5. Lifestyle Characteristics
2.6. Health Service Utilization
2.7. Statistical Analysis
3. Results
3.1. Respondents’ Characteristics
3.2. Prevalence of Multimorbidity
3.3. HRQOL of Respondents with Multimorbidity
3.4. Lifestyle Factors Associated with Multimorbidity
3.5. Association of Health Service Utilization with Multimorbidity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Hu, X.; Huang, J.; Lv, Y.; Li, G.; Peng, X. Status of prevalence study on multimorbidity of chronic disease in China: Systematic review. Geriatr. Gerontol. Int. 2014, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, L.; Cui, W.-L.; Wang, X.-M.; Li, H.-F.; He, J.-H.; Golden, A.R. Association of socioeconomic and lifestyle factors with chronic non-communicable diseases and multimorbidity among the elderly in rural southwest China. J. Public Health 2019, 42, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Atun, R.; Oldenburg, B.; McPake, B.; Tang, S.; Mercer, S.W.; Cowling, E.T.; Sum, G.; Qin, V.M.; Lee, J.T. Physical multimorbidity, health service use, and catastrophic health expenditure by socioeconomic groups in China: An analysis of population-based panel data. Lancet Glob. Health 2020, 8, e840–e849. [Google Scholar] [CrossRef]
- Li, H.; Jia, P.; Fei, T. Associations between taste preferences and chronic diseases: A population-based exploratory study in China. Public Health Nutr. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Agborsangaya, C.B.; Lau, D.; Lahtinen, M.; Cooke, T.; Johnson, J.A. Multimorbidity prevalence and patterns across socioeconomic determinants: A cross-sectional survey. BMC Public Health 2012, 12, 201. [Google Scholar] [CrossRef] [Green Version]
- Nunes, B.P.; Flores, T.R.; Mielke, G.I.; Thumé, E.; Facchini, L.A. Multimorbidity and mortality in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2016, 67, 130–138. [Google Scholar] [CrossRef]
- Bao, X.-Y.; Xie, Y.-X.; Zhang, X.-X.; Peng, X.; Huang, J.-X.; Du, Q.-F.; Wang, P.-X. The association between multimorbidity and health-related quality of life: A cross-sectional survey among community middle-aged and elderly residents in southern China. Health Qual. Life Outcomes 2019, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- A N’Goran, A.; Déruaz-Luyet, A.; Haller, D.M.; Zeller, A.; Rosemann, T.; Streit, S.; Herzig, L. Comparing the self-perceived quality of life of multimorbid patients and the general population using the EQ-5D-3L. PLoS ONE 2017, 12, e0188499. [Google Scholar] [CrossRef]
- Marengoni, A.; Angleman, S.; Melis, R.; Mangialasche, F.; Karp, A.; Garmen, A.; Meinow, B.; Fratiglioni, L. Aging with multimorbidity: A systematic review of the literature. Ageing Res. Rev. 2011, 10, 430–439. [Google Scholar] [CrossRef]
- Mini, G.K.; Thankappan, K.R. Pattern, correlates and implications of non-communicable disease multimorbidity among older adults in selected Indian states: A cross-sectional study. BMJ Open 2017, 7, e013529. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Swain, S.; Hussain, M.A.; Kadam, S.; Salisbury, C. Prevalence, Correlates, and Outcomes of Multimorbidity Among Patients Attending Primary Care in Odisha, India. Ann. Fam. Med. 2015, 13, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwangi, J.; Kulane, A.; Van Le, H. Chronic diseases among the elderly in a rural Vietnam: Prevalence, associated socio-demographic factors and healthcare expenditures. Int. J. Equity Health 2015, 14, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.A.; Huxley, R.R.; Al Mamun, A. Multimorbidity prevalence and pattern in Indonesian adults: An exploratory study using national survey data. BMJ Open 2015, 5, e009810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aye, S.K.K.; Hlaing, H.H.; Htay, S.S.; Cumming, R. Multimorbidity and health seeking behaviours among older people in Myanmar: A community survey. PLoS ONE 2019, 14, e0219543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katikireddi, S.V.; Skivington, K.; Leyland, A.; Hunt, K.; Mercer, S.W. The contribution of risk factors to socioeconomic inequalities in multimorbidity across the lifecourse: A longitudinal analysis of the Twenty-07 cohort. BMC Med. 2017, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Longo, G.Z.; Das Neves, J.; Castro, T.G.; Pedroso, M.R.D.O.; Matos, I.B. Prevalence and distribution of risk factors for non-communicable chronic diseases among adults from Lages city, south of Brazil, 2007. Rev. Bras. Epidemiol. 2011, 14, 698–708. [Google Scholar] [CrossRef]
- Biswas, T.; Townsend, N.; Islam, S.; Islam, R.; Das Gupta, R.; Das, S.K.; Al Mamun, A. Association between socioeconomic status and prevalence of non-communicable diseases risk factors and comorbidities in Bangladesh: Findings from a nationwide cross-sectional survey. BMJ Open 2019, 9, e025538. [Google Scholar] [CrossRef]
- Kuzuya, M. Era of geriatric medical challenges: Multimorbidity among older patients. Geriatr. Gerontol. Int. 2019, 19, 699–704. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, L.; Li, J.; Sun, L.; Qin, W. Association between obesity-related anthropometric indices and multimorbidity among older adults in Shandong, China: A cross-sectional study. BMJ Open 2020, 10, e036664. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, M.; Zhuang, Y.; Broad, J.B. Multimorbidity among middle-aged and older persons in urban China: Prevalence, characteristics and health service utilization. Geriatr. Gerontol. Int. 2018, 18, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.J.; Davis, A.; Degenhardt, L.; Dicker, D.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Z.; Jin, F.; Zhang, J.-G.; Deng, Y.-F.; Shu, W.; Qin, J.-M.; Ma, X.; Pang, Y. Treatment of coronavirus disease 2019 in Shandong, China: A cost and affordability analysis. Infect. Dis. Poverty 2020, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, L.; Li, J.; Sun, L.; Qin, W.; Ding, G.; Wang, Q.; Zhu, J.; Yu, Z.; Xie, S.; et al. Gender differences in the association between body mass index and health-related quality of life among adults:a cross-sectional study in Shandong, China. BMC Public Health 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.G.; Wu, H.; Li, M.; Gao, C.; Luo, N. Chinese Time Trade-Off Values for EQ-5D Health States. Value Health 2014, 17, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garin, N.; Koyanagi, A.; Chatterji, S.; Tyrovolas, S.; Olaya, B.; Leonardi, M.; Lara, E.; Koskinen, S.; Tobiasz-Adamczyk, B.; Ayuso-Mateos, J.L.; et al. Global Multimorbidity Patterns: A Cross-Sectional, Population-Based, Multi-Country Study. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2016, 71, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Perneger, T.; Combescure, C.; Courvoisier, D.S. General Population Reference Values for the French Version of the EuroQol EQ-5D Health Utility Instrument. Value Health 2010, 13, 631–635. [Google Scholar] [CrossRef]
- Heyworth, I.T.M.; Hazell, M.L.; Linehan, M.F.; Frank, T.L. How do common chronic conditions affect health-related quality of life? Br. J. Gen. Pract. 2009, 59, e353–e358. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Green, M.A.; Kearns, B.; Holding, E.; Smith, C.; Haywood, A.; Cooper, C.; Strong, M.; Relton, C. Patterns of multimorbidity and their association with health outcomes within Yorkshire, England: Baseline results from the Yorkshire Health Study. BMC Public Health 2016, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Dong, P.; Zhang, L.; Tian, D.; Zhang, L.; Zhang, W.; Li, L.; Deng, J.; Ning, P.; Hu, G. Health-related quality of life in residents aged 18 years and older with and without disease: Findings from the First Provincial Health Services Survey of Hunan, China. BMJ Open 2017, 7, e015880. [Google Scholar] [CrossRef] [Green Version]
- Agborsangaya, C.B.; Ngwakongnwi, E.; Lahtinen, M.; Cooke, T.; Johnson, J.A. Multimorbidity prevalence in the general population: The role of obesity in chronic disease clustering. BMC Public Health 2013, 13, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasijevic, D.; Marinkovic, J.; Vukovic, D. Association between body mass index and prevalence of multimorbidity: A cross-sectional study. Public Health 2016, 139, 103–111. [Google Scholar] [CrossRef]
- Agrawal, S.; Agrawal, P.K. Association Between Body Mass index and Prevalence of Multimorbidity in Low-and Middle-income Countries: A Cross-Sectional Study. Int. J. Med. Public Health 2016, 6, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgeois, D.; Inquimbert, C.; Ottolenghi, L.; Carrouel, F. Periodontal Pathogens as Risk Factors of Cardiovascular Diseases, Diabetes, Rheumatoid Arthritis, Cancer, and Chronic Obstructive Pulmonary Disease—Is There Cause for Consideration? Microorganisms 2019, 7, 424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Lu, Z.L.; Guo, X.; Chen, X.; Xu, C.X.; Tang, J.L.; Gao, C.C.; Zhang, J.Y.; Xu, A.Q. Cross-sectional survey on drinking among residents aged 18 and older in Shandong Province during 2013. Zhonghua yu fang yi xue za zhi Chinese J. Prev. Med. 2017, 51, 450–452. [Google Scholar]
- Wang, H.H.; Wang, J.J.; Wong, S.Y.S.; Wong, M.C.S.; Li, F.J.; Wang, P.X.; Zhou, Z.H.; Zhu, C.Y.; Griffiths, S.M.; Mercer, S.W. Epidemiology of multimorbidity in China and implications for the healthcare system: Cross-sectional survey among 162,464 community household residents in southern China. BMC Med. 2014, 12, 1–12. [Google Scholar] [CrossRef]
- Lee, J.T.; Hamid, F.; Pati, S.; Atun, R.; Millett, C. Impact of Noncommunicable Disease Multimorbidity on Healthcare Utilisation and Out-Of-Pocket Expenditures in Middle-Income Countries: Cross Sectional Analysis. PLoS ONE 2015, 10, e0127199. [Google Scholar] [CrossRef] [Green Version]
- Palladino, R.; Lee, J.T.; Ashworth, M.; Triassi, M.; Millett, C. Associations between multimorbidity, healthcare utilisation and health status: Evidence from 16 European countries. Age Ageing 2016, 45, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Jankovic, J.; Mirkovic, M.; Vraneš, A.J.; Milicevic, M.S.; Terzic-Šupić, Z. Association between non-communicable disease multimorbidity and health care utilization in a middle-income country: Population-based study. Public Health 2018, 155, 35–42. [Google Scholar] [CrossRef]
Total | Middle | Young-Old | Old-Old | ||
---|---|---|---|---|---|
Characteristic n (%) | 17867 | 8867 (49.63) | 7250 (40.58) | 1750 (9.79) | P Value |
Sex | 0.850 | ||||
Male | 8608 (48.18) | 4253 (47.96) | 3509 (48.40) | 846 (48.34) | |
Female | 9259 (51.82) | 4614 (52.04) | 3741(51.60) | 904 (51.66) | |
Residence | 0.038 | ||||
Rural | 11,720 (65.60) | 5897 (66.51) | 4686 (64.63) | 1137 (64.97) | |
Urban | 6147 (34.40) | 2970 (33.49) | 2564 (35.37) | 613 (35.03) | |
Marital status | <0.001 | ||||
Single | 1770 (9.91) | 318 (3.59) | 791 (10.91) | 661 (37.77) | |
Couple | 16,097 (90.09) | 8549 (96.41) | 6459 (89.09) | 1089 (62.23) | |
Education | <0.001 | ||||
No education | 3484 (19.50) | 695 (7.84) | 2010 (27.72) | 779 (44.51) | |
Primary school | 4746 (26.56) | 1848 (20.84) | 2323 (32.04) | 575 (32.86) | |
Secondary school | 6268 (35.08) | 4168 (47.01) | 1865 (25.72) | 235 (13.43) | |
High school and above | 3369 (18.86) | 2156 (24.31) | 1052 (14.51) | 161 (9.20) | |
Income quintiles | <0.001 | ||||
RMB0–10,000 | 4445 (24.88) | 1057(11.92) | 2517(34.72) | 871(49.77) | |
RMB10,001–20,000 | 2898 (16.22) | 1339 (15.10) | 1384 (19.09) | 175 (10.00) | |
RMB20,001–40,000 | 4475 (25.05) | 2863 (32.29) | 1358 (18.73) | 254 (14.51) | |
RMB40,001–80,000 | 3045 (17.04) | 1900 (21.43) | 931 (12.84) | 214 (12.23) | |
RMB80,001–1,000,000 | 3004 (16.81) | 1708 (19.26) | 1060 (14.62) | 236 (13.49) | |
Smoking | <0.001 | ||||
Never-smoker | 13,110 (73.38) | 6562 (74.00) | 5231 (72.15) | 1317 (75.26) | |
Ex-smoker | 943 (5.28) | 255 (2.88) | 538 (7.42) | 150 (8.57) | |
Current-smoker | 3814 (21.35) | 2050 (23.12) | 1481 (20.43) | 283 (16.17) | |
Drinking | <0.001 | ||||
Never-drink | 12,290 (68.79) | 5882 (66.34) | 5076 (70.01) | 1332 (76.12) | |
Drank more than 30 days ago | 823 (4.61) | 360 (4.06) | 369 (5.09) | 94 (5.37) | |
Drank within last 30 days | 4754 (26.61) | 2625 (29.60) | 1805 (24.90) | 324(18.51) | |
Number of weekly exercise times | <0.001 | ||||
<=1 | 9161 (51.27) | 4807 (54.21) | 3452 (47.61) | 902 (51.54) | |
>=2 | 8706 (48.73) | 4060 (45.79) | 3798 (52.39) | 848 (48.46) | |
BMI | <0.001 | ||||
Underweight | 664 (3.72) | 138 (1.56) | 313 (4.32) | 213 (12.17) | |
Normal | 9874 (55.26) | 4754 (53.61) | 4078 (56.25) | 1042 (59.54) | |
Overweight | 6268 (35.08) | 3386 (38.19) | 2458 (33.90) | 424 (24.23) | |
Obese | 1061 (5.94) | 589 (6.64) | 401 (5.53) | 71 (4.06) | |
Physical check-up last year | <0.001 | ||||
No | 7539 (42.20) | 5005 (56.45) | 2167 (29.89) | 367 (20.97) | |
Yes | 10,328 (57.80) | 3862 (43.55) | 5083 (70.11) | 1383 (79.03) | |
Teeth-brushing daily | <0.001 | ||||
No | 3578 (20.03) | 834 (9.41) | 1928 (26.59) | 816 (46.63) | |
Yes | 14,289 (79.97) | 8033 (90.59) | 5322 (73.41) | 934 (53.37) |
Age Groups | Middle | Young-Old | Old-Old | ||||
---|---|---|---|---|---|---|---|
EQ-5D Utility Values | VAS Scores | EQ-5D Utility Values | VAS Scores | EQ-5D Utility Values | VAS Scores | ||
Mean | 0.92 ± 0.10 | 80.80 ± 16.27 | 0.88 ± 0.15 | 73.25 ± 17.81 | 0.78 ± 0.23 | 66.57 ± 19.00 | |
Number of Noncommunicable diseases (NCDs) | 0 | 0.94 ± 0.07 | 84.38 ± 13.75 | 0.91 ± 0.11 | 78.55 ± 15.69 | 0.83 ± 0.21 | 71.07 ± 18.26 |
1 | 0.90 ± 0.12 | 74.50 ± 17.55 | 0.87 ± 0.15 | 71.39 ± 17.35 | 0.78 ± 0.22 | 66.72 ± 18.00 | |
>=2 | 0.84 ± 0.19 | 64.49 ± 19.36 | 0.81 ± 0.21 | 63.96 ± 18.85 | 0.71 ± 0.26 | 59.45 ± 19.36 | |
P value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Multimorbidity (Reference: No) | |||
---|---|---|---|
Middle | Young-Old | Old-Old | |
Urban (reference: Rural) | 1.15 | 1.24 * | 0.98 |
(0.94 to 1.40) | (1.08 to 1.44) | (0.73 to 1.30) | |
Male (reference: Female) | 1.28 * | 1.12 | 0.98 |
(1.00 to 1.62) | (0.95 to 1.32) | (0.74 to 1.30) | |
Couple (reference: Single) | 1.16 | 0.91 | 0.96 |
(0.75 to 1.79) | (0.75 to 1.10) | (0.76 to 1.23) | |
Education (reference: No education) | |||
Primary school | 0.63 * | 1.02 | 0.91 |
(0.47 to 0.85) | (0.87 to 1.19) | (0.68 to 1.20) | |
Secondary school | 0.51 *** | 0.90 | 0.82 |
(0.38 to 0.68) | (0.75 to 1.09) | (0.56 to 1.23) | |
High school and above | 0.58 *** | 0.97 | 1.62 * |
(0.42 to 0.81) | (0.78 to 1.22) | (1.02 to 2.55) | |
Income quintiles (reference: RMB0–10,000) | |||
RMB10,001–20,000 | 0.80 | 0.73 *** | 1.24 |
(0.60 to 1.06) | (0.61 to 0.88) | (0.85 to 1.83) | |
RMB20,001–40,000 | 0.65 *** | 0.87 | 1.22 |
(0.50 to 0.83) | (0.72 to 1.04) | (0.86 to 1.72) | |
RMB40,001–60,000 | 0.52 *** | 0.82 | 1.19 |
(0.39 to 0.69) | (0.66 to 1.01) | (0.81 to 1.76) | |
RMB60,001–1,000,000 | 0.41 *** | 1.29 * | 1.31 |
(0.30 to 0.56) | (1.05 to 1.58) | (0.87 to 1.97) | |
Smoking (reference: never-smoker) | |||
Ex-smoker | 2.62 *** | 1.49 *** | 1.29 |
(1.77 to 3.87) | (1.17 to 1.89) | (0.84 to 1.97) | |
Current-smoker | 1.06 | 0.76 * | 0.69 |
(0.81 to 1.38) | (0.62 to 0.93) | (0.46 to 1.02) | |
Drinking (reference: never-drinker) | |||
Drank more than 30 days ago | 1.02 | 1.14 | 1.04 |
(0.69 to 1.51) | (0.87 to 1.50) | (0.61 to 1.76) | |
Drank within last 30 days | 0.57 *** | 0.57 *** | 0.52 *** |
(0.44 to 0.73) | (0.47 to 0.68) | (0.36 to 0.75) | |
BMI (reference: Normal) | |||
Underweight | 1.78 | 0.99 | 0.61 * |
(0.99 to 3.19) | (0.72 to 1.36) | (0.41 to 0.93) | |
Overweight | 1.77 *** | 1.67 *** | 1.98 *** |
(1.48 to 2.12) | (1.47 to 1.90) | (1.53 to 2.56) | |
Obese | 2.43 *** | 2.35 *** | 2.29 *** |
(1.82 to 3.24) | (1.85 to 2.97) | (1.38 to 3.80) | |
Number of weekly exercise times (reference: ≤1) | |||
≥2 | 1.22 * | 0.93 | 0.72 * |
(1.02 to 1.46) | (0.82 to 1.05) | (0.57 to 0.92) | |
Tooth-brushing (reference: no) | |||
Yes | 0.67 * | 0.79 *** | 1.12 |
(0.52 to 0.88) | (0.68 to 0.91) | (0.87 to 1.45) | |
Physical check-up last year (reference: no) | |||
Yes | 1.64 *** | 1.64 *** | 1.06 |
(1.38 to 1.96) | (1.43 to 1.89) | (0.80 to 1.41) |
Characteristic | Outpatient (Reference: no) | Self-Medicine (Reference: no) | Inpatient (Reference: no) | ||||||
---|---|---|---|---|---|---|---|---|---|
Middle | Young-Old | Old-Old | Middle | Young-Old | Old-Old | Middle | Young-Old | Old-Old | |
Multimorbidity | 3.49 *** | 2.89 *** | 2.88 *** | 9.78 *** | 6.05 *** | 3.96 *** | 4.66 *** | 2.96 *** | 2.50 *** |
(reference: No) | (2.92 to 4.18) | (2.54 to 3.29) | (2.26 to 3.69) | (8.17 to 11.71) | (5.32 to 6.89) | (3.13 to 5.00) | (3.79 to 5.73) | (2.57 to 3.42) | (1.95 to 3.20) |
Residence | 0.78 *** | 0.96 | 0.80 | 1.20 * | 1.30 *** | 1.25 | 0.97 | 0.91 | 1.11 |
(reference: Rural) | (0.67 to 0.90) | (0.83 to 1.10) | (0.59 to 1.08) | (1.06 to 1.36) | (1.16 to 1.47) | (0.98 to 1.61) | (0.80 to 1.17) | (0.77 to 1.07) | (0.83 to 1.49) |
Gender | 0.90 | 0.94 | 1.01 | 0.93 | 0.80 *** | 0.87 | 1.01 | 1.07 | 1.54 *** |
(reference: Female) | (0.79 to 1.02) | (0.83 to 1.07) | (0.77 to 1.31) | (0.83 to 1.04) | (0.71 to 0.89) | (0.70 to 1.09) | (0.85 to 1.19) | (0.92 to 1.23) | (1.18 to 2.02) |
Marital status | 0.92 | 0.80 * | 0.88 | 1.14 | 0.94 | 1.11 | 1.17 | 1.40 * | 1.10 |
(reference: Single) | (0.68 to 1.25) | (0.67 to 0.95) | (0.68 to 1.13) | (0.84 to 1.53) | (0.80 to 1.11) | (0.89 to 1.38) | (0.75 to 1.82) | (1.11 to 1.76) | (0.85 to 1.43) |
Education (reference: No education) | |||||||||
Primary school | 0.82 | 0.84 * | 0.87 | 1.01 | 1.24 * | 1.16 | 1.07 | 0.97 | 0.77 |
(0.66 to 1.03) | (0.72 to 0.98) | (0.65 to 1.16) | (0.80 to 1.27) | (1.07 to 1.42) | (0.90 to 1.48) | (0.78 to 1.47) | (0.81 to 1.16) | (0.58 to 1.04) | |
Secondary school | 0.67 *** | 0.81 * | 0.84 | 0.99 | 1.41 *** | 0.99 | 1.00 | 0.95 | 0.69 |
(0.54 to 0.82) | (0.68 to 0.96) | (0.56 to 1.27) | (0.80 to 1.23) | (1.20 to 1.64) | (0.71 to 1.39) | (0.74 to 1.36) | (0.77 to 1.16) | (0.46 to 1.04) | |
High school and above | 0.58 *** | 0.86 | 1.16 | 1.06 | 1.13 | 1.26 | 0.99 | 0.82 | 0.75 |
(0.46 to 0.75) | (0.69 to 1.07) | (0.71 to 1.88) | (0.83 to 1.34) | (0.93 to 1.36) | (0.82 to 1.93) | (0.70 to 1.40) | (0.64 to 1.06) | (0.46 to 1.22) | |
Income (reference: RMB0–10,000) | |||||||||
RMB10,001–20,000 | 0.94 | 0.73 *** | 0.59 * | 0.87 | 1.02 | 1.01 | 0.95 | 0.86 | 1.05 |
(0.76 to 1.16) | (0.61 to 0.86) | (0.38 to 0.92) | (0.71 to 1.06) | (0.88 to 1.19) | (0.71 to 1.43) | (0.72 to 1.26) | (0.70 to 1.04) | (0.69 to 1.58) | |
RMB20,001–40,000 | 0.89 | 0.70 *** | 0.98 | 0.77 * | 0.98 | 0.90 | 0.86 | 0.92 | 1.15 |
(0.74 to 1.08) | (0.59 to 0.83) | (0.69 to 1.40) | (0.64 to 0.92) | (0.84 to 1.14) | (0.66 to 1.23) | (0.66 to 1.10) | (0.75 to 1.12) | (0.80 to 1.65) | |
RMB4000–60,000 | 0.72 * | 0.68 *** | 0.71 | 0.88 | 0.94 | 1.69 * | 0.71 * | 0.95 | 1.11 |
(0.58 to 0.89) | (0.55 to 0.84) | (0.47 to 1.09) | (0.73 to 1.07) | (0.79 to 1.13) | (1.19 to 2.38) | (0.53 to 0.95) | (0.75 to 1.20) | (0.74 to 1.67) | |
RMB60,001–1,000,000 | 0.69 * | 0.77 * | 0.95 | 0.76 * | 1.13 | 1.16 | 0.71 * | 1.05 | 1.12 |
(0.55 to 0.87) | (0.63 to 0.95) | (0.62 to 1.47) | (0.62 to 0.94) | (0.94 to 1.35) | (0.80 to 1.68) | (0.53 to 0.97) | (0.83 to 1.32) | (0.72 to 1.72) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wang, J.; Nicholas, S.; Maitland, E.; Sun, J.; Jiao, C.; Xu, L.; Leng, A. Health-Related Quality of Life and Health Service Use among Multimorbid Middle-Aged and Older-Aged Adults in China: A Cross-Sectional Study in Shandong Province. Int. J. Environ. Res. Public Health 2020, 17, 9261. https://doi.org/10.3390/ijerph17249261
Zhao Q, Wang J, Nicholas S, Maitland E, Sun J, Jiao C, Xu L, Leng A. Health-Related Quality of Life and Health Service Use among Multimorbid Middle-Aged and Older-Aged Adults in China: A Cross-Sectional Study in Shandong Province. International Journal of Environmental Research and Public Health. 2020; 17(24):9261. https://doi.org/10.3390/ijerph17249261
Chicago/Turabian StyleZhao, Qinfeng, Jian Wang, Stephen Nicholas, Elizabeth Maitland, Jingjie Sun, Chen Jiao, Lizheng Xu, and Anli Leng. 2020. "Health-Related Quality of Life and Health Service Use among Multimorbid Middle-Aged and Older-Aged Adults in China: A Cross-Sectional Study in Shandong Province" International Journal of Environmental Research and Public Health 17, no. 24: 9261. https://doi.org/10.3390/ijerph17249261
APA StyleZhao, Q., Wang, J., Nicholas, S., Maitland, E., Sun, J., Jiao, C., Xu, L., & Leng, A. (2020). Health-Related Quality of Life and Health Service Use among Multimorbid Middle-Aged and Older-Aged Adults in China: A Cross-Sectional Study in Shandong Province. International Journal of Environmental Research and Public Health, 17(24), 9261. https://doi.org/10.3390/ijerph17249261