Sex Differences in Risk Factors for Metabolic Syndrome in the Korean Population
Abstract
:1. Background
2. Materials and Methods
2.1. Research Design
2.2. Setting
2.3. Participants
2.4. Variables
2.4.1. Dependent Variable
2.4.2. Independent Variables
2.5. Data Measurement
2.6. Statistical Methods
2.7. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ford, E.S. The metabolic syndrome and mortality from cardiovascular disease and all-causes: Findings from the National Health and Nutrition Examination Survey II Mortality Study. Atherosclerosis 2004, 173, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Mozumdar, A.; Liguori, G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care 2011, 34, 216–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Yoon, J.W.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K.; et al. Increasing prevalence of metabolic syndrome in Korea: The Korean National Health and Nutrition Examination Survey for 1998–2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Ryckman, K.K. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab. Syndr. Obes. 2015, 8, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.P.; Leppin, A.; Gyrd-Hansen, D.E.; Jarbøl, D.E.; Søndergaard, J.; Larsen, P.V. Barriers to lifestyle changes for prevention of cardiovascular disease—A survey among 40–60-year old Danes. BMC Cardiovasc. Disord. 2017, 17, 245. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.C.; Ebrahim, S.; Barros, H. Gender, socio-economic status and metabolic syndrome in middle-aged and old adults. BMC Public Health 2008, 62, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex-and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Kim, J. Gender difference on the association between dietary patterns and metabolic syndrome in Korean population. Eur. J. Nutr. 2016, 55, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, X.; Zhang, K.; Wang, H. Gender difference of metabolic syndrome and its association with dietary diversity at different ages. Oncotarget 2017, 8, 73568–73575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergi, G.; Dianin, M.; Bertocco, A.; Zanforlini, B.M.; Curreri, C.; Mazzochin, M.; Simons, L.; Manzato, E.; Trevisan, C. Gender Differences in the impact of metabolic syndrome components on mortality in older people: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Ko, Y.; Kwak, C.Y.; Yim, E.S. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome. BMC Geriatr. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.I.; Kim, B.H.; Je, H.G.; Jang, J.S.; Park, Y.H. Gender-specific association between socioeconomic status and psychological factors and metabolic syndrome in the Korean population: Findings from the 2013 Korean National and Nutrition Examination survey. BioMed. Res. Int. 2016, 1–8. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.G.; Tompkins, C.; Blumenthal, R.S.; Mora, S. The metabolic syndrome in women. Cardiol. Rev. 2006, 14, 286–291. [Google Scholar] [CrossRef]
- March, R.; Dell’Agnolo, C.M.; Lopes, T.; Gravena, A.; Demitto, M.; Brischillari, S.; Borghesan, D.; Carvalho, M.; Pelloso, S. Prevalence of metabolic syndrome in pre-and postmenopausal women. Arch. Endocrinol. Metab. 2017, 61, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016, 26, 364–373. [Google Scholar] [CrossRef]
- Scuteri, A.; Najjar, S.S.; Muller, D.C.; Andres, R.; Hougaku, H.; Metter, E.J.; Lakatta, E.G. Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J. Am. Coll. Cardiol. 2004, 43, 1388–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aroor, A.R.; Jia, G.; Sowers, J.R. Cellular mechanisms underlying obesity-induced arterial stiffness. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R387–R398. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, M.R. Alcohol, appetite and energy balance: Is alcohol intake a risk factor for obesity? Physiol. Behav. 2010, 100, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Wilsnack, R.W.; Vogeltanz, N.D.; Wilsnack, S.C.; Harris, T.R. Gender differences in alcohol consumption and adverse drinking consequences: Cross-cultural patterns. Addiction 2000, 95, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Ren, M.; Liu, D.; Wang, C.; Yang, C.; Yan, L. Alcohol consumption and risk of metabolic syndrome: A meta-analysis of prospective studies. Clin. Nutr. 2014, 33, 596–602. [Google Scholar] [CrossRef]
- Alkerwi, A.; Boutsen, M.; Vaillant, M.; Barre, L.; Lair, M.L.; Albert, A.; Guillaume, M.; Dramaix, M. Alcohol consumption and the prevalence of metabolic syndrome: A meta-analysis of observational studies. Atherosclerosis 2009, 204, 624–635. [Google Scholar] [CrossRef]
- Traversy, G.; Chaput, J.P. Alcohol consumption and obesity: An update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, N.; Gyntelberg, F.; Faber, J. The appraisal of chronic stress and the development of the metabolic syndrome: A systematic review of prospective cohort studies. Endocr. Connect. 2014, 3, R55–R80. [Google Scholar] [CrossRef]
- Seo, J.M.; Lim, N.K.; Lim, J.Y.; Park, H.Y. Gender difference in association with socioeconomic status and incidence of metabolic syndrome in Korean adults. Korean J. Obes. 2016, 25, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Manuck, S.B.; Phillips, J.E.; Gianaros, P.J.; Flory, J.D.; Muldoon, M.F. Subjective socioeconomic status and presence of the metabolic syndrome in midlife community volunteers. Psychosom. Med. 2010, 72, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Mustelin, L.; Silventoinen, K.; Pietiläinen, K.; Rissanen, A.; Kaprio, J. Physical activity reduces the influence of genetic effects on BMI and waist circumference: A study in young adult twins. Int. J. Obes. 2009, 33, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.P.; Loria, C.M.; Lewis, C.E.; Powell-Wiley, T.M.; Wei, G.S.; Carr, J.J.; Terry, J.G.; Liu, K. Association between duration of overall and abdominal obesity beginning in young adulthood and coronary artery calcification in middle age. JAMA 2013, 310, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, F.; Rodella, L.F.; Rezzani, R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015, 6, 109–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildrum, B.; Mykletun, A.; Hole, T.; Midthjell, K.; Dahl, A.A. Age-specific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: The Norwegian HUNT 2 study. BMC Public Health 2007, 7, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlin, I.; Lin, S.; Lima, J.A.C.; Bertoni, A.G. Smoking status and metabolic syndrome in the multi-ethnic study of atherosclerosis. A cross-sectional study. Tob. Induc. Dis. 2012, 10, 9. [Google Scholar] [CrossRef] [PubMed]
Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|
20–39 (n = 789) | 40–59 (n = 1131) | 60–79 (n = 852) | Chi-Square (p) | 20–39 (n = 918) | 40–59 (n = 1352) | 60–79 (n = 1102) | Chi-Square (p) | ||
Household income | Low | 42 (6.7) | 76 (5.9) | 199 (22.0) | 182.5 (<0.001) | 29 (3.2) | 81 (5.7) | 370 (34.7) | 328.7 (<0.001) |
Middle low | 90 (12.5) | 135 (12.4) | 220 (26.1) | 130 (14.7) | 197 (15.2) | 280 (25.1) | |||
Middle | 180 (25.5) | 192 (19.5) | 185 (23.5) | 222 (27.5) | 282 (20.9) | 192 (17.8) | |||
Middle high | 206 (29.0) | 284 (27.0) | 113 (14.6) | 253 (28.8) | 332 (26.6) | 117 (11.9) | |||
High | 207 (26.3) | 362 (35.2) | 106 (13.9) | 221 (25.8) | 408 (31.7) | 107 (10.5) | |||
Education Level | Under high school | 281 (42.4) | 489 (48.9) | 615 (77.4) | 102.1 (<0.001) | 252 (29.8) | 737 (59.9) | 938 (92.2) | 282.1 (<0.001) |
Over college | 411 (57.6) | 483 (51.1) | 159 (22.6) | 566 (70.2) | 499 (40.1) | 73 (7.8) | |||
Subjective health status | Over good | 251 (36.3) | 273 (27.9) | 222 (29.5) | 11.9 (0.003) | 255 (29.9) | 338 (26.2) | 136 (13.0) | 64.4 (<0.001) |
Under average | 443 (63.7) | 706 (72.1) | 560 (70.5) | 565 (70.1) | 904 (73.8) | 879 (87.0) | |||
Monthly alcohol drinking | <1 | 169 (23.6) | 251 (24.5) | 297 (34.3) | 22.5 (<0.001) | 329 (38.0) | 695 (53.1) | 812 (76.9) | 213.4 (<0.001) |
≥1 | 554 (76.4) | 786 (75.5) | 521 (65.7) | 520 (62.0) | 596 (46.9) | 246 (23.1) | |||
Stress recognition | No | 458 (64.1) | 763 (73.6) | 685 (83.4) | 60.1 (<0.001) | 534 (61.2) | 938 (72.4) | 786 (73.9) | 37.3 (<0.001) |
Yes | 265 (35.9) | 274 (26.4) | 132 (16.6) | 315 (38.8) | 351 (27.6) | 267 (26.1) | |||
Smoking | No | 433 (59.5) | 605 (58.3) | 621 (76.2) | 54.4 (<0.001) | 785 (92.1) | 1237 (95.5) | 1030 (97.5) | 27.2 (<0.001) |
Yes | 290 (40.5) | 432 (41.7) | 195 (23.8) | 64 (7.9) | 52 (4.5) | 26 (2.5) | |||
Aerobic physical activity | No | 290 (41.4) | 516 (52.9) | 510 (64.1) | 48.8 (<0.001) | 403 (47.2) | 674 (55.2) | 698 (68.3) | 65.2 (<0.001) |
Yes | 401 (58.6) | 457 (47.1) | 263 (35.9) | 415 (52.8) | 562 (44.8) | 308 (31.7) | |||
Number of instances of dining out per day | <1 | 292 (49.6) | 503 (58.0) | 674 (88.1) | 160.6 (<0.001) | 557 (74.7) | 1005 (85.8) | 935 (96.0) | 106.1 (<0.001) |
≥1 | 295 (50.4) | 333 (42.0) | 79 (11.9) | 187 (25.3) | 173 (14.2) | 38 (4.0) | |||
Living with spouse | Yes | 291 (98.7) | 859 (92.1) | 728 (90.5) | 14.7 (0.001) | 467 (96.8) | 1104 (88.5) | 671 (63.2) | 209.0 (<0.001) |
No | 5 (1.3) | 80 (7.9) | 84 (9.5) | 17 (3.2) | 151 (11.5) | 390 (36.8) |
Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|
20–39 (n = 789) | 40–59 (n = 1131) | 60–79 (n = 852) | Chi-Square (p) | 20–39 (n = 918) | 40–59 (n = 1352) | 60–79 (n = 1102) | Chi-Square (p) | ||
Waist circumstance | No | 482 (68.1) | 674 (67.3) | 491 (62.8) | 4.6 (0.101) | 739 (88.4) | 991 (78.4) | 578 (57.6) | 133.4 (<0.001) |
Yes | 225 (31.9) | 329 (32.7) | 294 (37.2) | 104 (11.6) | 279 (21.4) | 441 (42.4) | |||
Hypertension | No | 532 (73.1) | 632 (60.0) | 494 (61.4) | 25.7 (<0.001) | 81.2 (94.7) | 998 (78.0) | 558 (54.2) | 241.9 (<0.001) |
Yes | 195 (26.9) | 420 (40.0) | 330 (38.6) | 48 (5.3) | 303 (22.0) | 511 (45.8) | |||
Triglyceride | No | 456 (65.1) | 556 (54.2) | 515 (64.8) | 25.2 (<0.001) | 735 (89.5) | 1007 (79.5) | 711 (71.2) | 61.7 (<0.001) |
Yes | 254 (34.9) | 472 (45.8) | 283 (35.2) | 93 (10.5) | 257 (20.5) | 292 (28.8) | |||
Fasting blood sugar | No | 562 (80.8) | 520 (50.9) | 346 (44.2) | 215.9 (<0.001) | 760 (92.5) | 913 (72.4) | 515 (51.8) | 237.4 (<0.001) |
Yes | 148 (19.2) | 508 (49.1) | 452 (55.8) | 67 (7.5) | 351 (27.6) | 488 (48.2) | |||
HDL cholesterol | No | 570 (82.1) | 752 (73.2) | 548 (70.3) | 24.9 (<0.001) | 612 (75.4) | 837 (67.1) | 506 (51.0) | 88.0 (<0.001) |
Yes | 130 (17.9) | 267 (26.8) | 238 (29.7) | 207 (24.6) | 407 (32.9) | 487 (49.0) | |||
Metabolic syndrome | No | 547 (80.9) | 662 (68.1) | 489 (65.5) | 43.4 (<0.001) | 765 (95.6) | 999 (82.9) | 563 (60.9) | 156.6 (<0.001) |
Yes | 134 (19.1) | 310 (31.9) | 258 (34.5) | 39 (4.4) | 215 (17.1) | 384 (39.1) |
Variables | Reference | Categories | Odds Ratios in Male Subjects | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Waist Circumstance | Hypertension | Triglyceride | Fasting Blood Sugar | HDL Cholesterol | Metabolic Syndrome | |||||||||||||||
20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | |||
Household income | High | Low | 3.5 | 0.9 | 1.3 | 0.4 | 1.3 | 1.3 | 4.0 | 2.7 * | 1.0 | 0.1 | 1.4 | 1.4 | 0.0 ** | 1.5 | 1.3 | 0.5 | 1.9 | 2.0 |
Middle low | 1.1 | 1.0 | 1.0 | 0.5 | 0.6 | 1.1 | 0.9 | 1.6 | 1.2 | 0.5 | 1.5 | 1.0 | 0.8 | 1.2 | 1.1 | 0.4 | 1.7 | 1.3 | ||
Middle | 0.8 | 1.2 | 1.0 | 0.7 | 0.9 | 1.2 | 1.0 | 1.0 | 1.0 | 0.5 | 0.8 | 1.0 | 1.3 | 1.1 | 1.3 | 0.5 | 1.4 | 1.2 | ||
Middle high | 0.5 | 1.1 | 1.3 | 0.8 | 0.9 | 1.2 | 1.3 | 1.0 | 1.3 | 0.4 * | 1.3 | 0.8 | 2.1 | 1.0 | 1.0 | 0.4 | 1.5 | 1.5 | ||
Education level | Over college | Under high school | 1.0 | 1.4 | 1.0 | 0.6 | 1.2 | 0.7 | 1.7 | 0.8 | 0.9 | 0.9 | 1.3 | 2.0 ** | 0.9 | 0.8 | 0.8 | 1.3 | 0.9 | 1.2 |
Subjective health status | Over good | Under average | 1.6 | 1.3 | 1.3 | 1.4 | 1.6 * | 1.3 | 1.4 | 1.5 * | 1.7 * | 1.4 | 1.4 | 1.5 * | 2.4 | 1.1 | 1.1 | 1.4 | 1.7 * | 1.9 * |
Monthly alcohol drinking | <1 | ≥1 | 1.3 | 1.1 | 0.8 | 3.3 * | 2.0 ** | 1.4 | 2.4 * | 2.2 ** | 1.0 | 1.1 | 1.6 * | 1.4 | 0.6 | 0.7 | 0.4 ** | 2.2 | 1.9 * | 0.9 |
Stress recognition | No | Yes | 0.6 | 1.1 | 0.7 | 0.8 | 1.0 | 0.7 | 1.4 | 1.1 | 1.1 | 1.1 | 1.3 | 1.1 | 0.4 * | 1.0 | 1.0 | 0.7 | 1.0 | 0.7 |
Smoking | No | Yes | 1.0 | 0.7 * | 1.1 | 1.4 | 0.7 * | 1.1 | 1.4 | 1.4 | 1.6 * | 1.2 | 1.0 | 0.9 | 1.6 | 1.3 | 1.9 ** | 1.7 | 1.0 | 1.2 |
Aerobic physical activity | No | Yes | 0.6 | 0.7 * | 1.3 | 1.2 | 1.1 | 1.1 | 1.0 | 0.9 | 0.9 | 1.4 | 0.7 | 1.4 | 1.2 | 0.7 | 0.7 | 0.9 | 0.7 | 0.9 |
Number of instances of dining out per day | <1 | ≥1 | 1.0 | 0.9 | 1.3 | 1.0 | 0.9 | 1.0 | 1.1 | 0.9 | 0.9 | 1.1 | 0.6 ** | 2.0 * | 0.9 | 0.7 | 0.8 | 1.0 | 0.6 * | 1.2 |
Living with spouse | Yes | No | 3.6 | 0.7 | 1.0 | 2.5 | 1.1 | 0.7 | 1.1 | 0.7 | 1.0 | 1.3 | 1.0 | 0.8 | 2.3 | 1.3 | 1.9 | 1.2 | 0.5 * | 1.1 |
Variables | Reference | Categories | Odds Ratios in Female Subjects | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Waist Circumstance | Hypertension | Triglyceride | Fasting Blood Sugar | HDL Cholesterol | Metabolic Syndrome | |||||||||||||||
20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | |||
Household income | High | Low | 4.3 | 1.1 | 1.9 * | 0.0 ** | 2.0 | 1.1 | 1.4 | 1.1 | 2.3 ** | 0.7 | 1.1 | 1.6 | 1.6 | 0.9 | 2.2 * | 1.7 | 1.0 | 2.1 * |
Middle low | 4.4 * | 2.1 * | 1.3 | 1.2 | 1.2 | 1.2 | 1.1 | 1.3 | 1.7 | 2.5 | 0.8 | 1.2 | 1.1 | 1.2 | 1.7 | 1.5 | 1.6 | 1.8 | ||
Middle | 3.4 | 1.4 | 1.4 | 1.3 | 1.1 | 1.2 | 1.2 | 0.9 | 1.0 | 1.1 | 0.6 * | 1.0 | 1.8 | 1.0 | 1.5 | 1.7 | 1.0 | 1.4 | ||
Middle high | 2.8 | 1.4 | 1.0 | 0.9 | 1.4 | 0.5 * | 1.9 | 0.7 | 1.1 | 1.0 | 0.8 | 1.2 | 2.1 * | 0.9 | 1.5 | 2.5 | 0.9 | 0.8 | ||
Education level | Over college | Under high school | 1.7 | 2.0 ** | 2.0 | 1.1 | 1.8 ** | 1.0 | 1.4 | 1.5 * | 1.4 | 1.8 | 1.7 ** | 1.4 | 1.4 | 1.4 * | 1.4 | 2.5 | 1.8 ** | 1.6 |
Subjective health status | Over good | Under average | 1.2 | 1.7 * | 1.5 | 1.0 | 1.9 ** | 1.1 | 2.1 | 1.8 * | 1.0 | 0.7 | 1.3 | 1.1 | 1.1 | 1.2 | 1.0 | 1.8 | 2.2 ** | 1.2 |
Monthly alcohol Drinking | <1 | ≥1 | 0.5 | 0.9 | 0.9 | 3.3 * | 1.1 | 1.0 | 1.0 | 1.1 | 0.9 | 1.1 | 1.0 | 0.8 | 0.5 * | 0.7 * | 0.7 * | 0.7 | 0.8 | 0.7 * |
Stress recognition | No | Yes | 1.1 | 1.4 | 0.9 | 0.9 | 1.2 | 0.7 * | 0.8 | 1.0 | 1.1 | 0.8 | 0.8 | 0.9 | 1.0 | 1.1 | 0.8 | 1.5 | 1.3 | 0.8 |
Smoking | No | Yes | 1.7 | 1.0 | 0.2 * | 1.0 | 1.1 | 1.4 | 1.4 | 2.0 | 0.3 | 2.9 | 0.5 | 1.1 | 4.0 ** | 1.5 | 0.9 | 1.7 | 1.4 | 0.8 |
Aerobic physical activity | No | Yes | 1.5 | 0.6 ** | 0.9 | 1.4 | 1.0 | 0.9 | 0.9 | 0.7 * | 0.8 | 1.8 | 0.9 | 0.8 | 1.0 | 0.9 | 0.9 | 1.6 | 0.8 | 0.9 |
Number of instances of dining out per day | <1 | ≥1 | 0.8 | 1.0 | 0.5 | 0.7 | 0.4 ** | 1.3 | 0.7 | 0.8 | 0.6 | 0.6 | 1.0 | 1.5 | 0.9 | 1.0 | 0.6 | 0.3 | 0.8 | 0.7 |
Living with spouse | Yes | No | 1.0 | 1.1 | 1.3 | 15.1 ** | 1.1 | 1.2 | 1.6 | 0.7 | 0.8 | 4.3 * | 0.9 | 1.5 * | 0.5 | 0.7 | 0.7 * | 3.4 | 1.0 | 0.8 |
Variables | Male | Female | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20–39 | 40–59 | 60–79 | 20–39 | 40–59 | 60–79 | |||||||||||||||||||||||||
WC | HT | TG | FBS | HDL-C | WC | HT | TG | FBS | HDL-C | WC | HT | TG | FBS | HDL-C | WC | HT | TG | FBS | HDL-C | WC | HT | TG | FBS | HDL-C | WC | HT | TG | FBS | HDL-C | |
Household income | - | + | + | - | + | + | - | + | - | + | + | |||||||||||||||||||
Education level | - | + | + | + | + | + | + | |||||||||||||||||||||||
Subjective health status | + | + | + | + | + | + | + | |||||||||||||||||||||||
Monthly alcohol drinking | + | + | + | + | + | - | + | - | - | - | ||||||||||||||||||||
Stress recognition | - | - | ||||||||||||||||||||||||||||
Smoking | - | - | + | + | + | - | ||||||||||||||||||||||||
Aerobic physical activity | - | - | - | |||||||||||||||||||||||||||
Number of instances of dining out per day | - | + | - | |||||||||||||||||||||||||||
Living with spouse | + | + | + | - | ||||||||||||||||||||||||||
Number of significant factors | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 2 | 0 | 0 | 0 | 2 | 3 | 2 | 1 | 3 | 0 | 1 | 3 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; An, J. Sex Differences in Risk Factors for Metabolic Syndrome in the Korean Population. Int. J. Environ. Res. Public Health 2020, 17, 9513. https://doi.org/10.3390/ijerph17249513
Yi Y, An J. Sex Differences in Risk Factors for Metabolic Syndrome in the Korean Population. International Journal of Environmental Research and Public Health. 2020; 17(24):9513. https://doi.org/10.3390/ijerph17249513
Chicago/Turabian StyleYi, Yunjeong, and Jiyeon An. 2020. "Sex Differences in Risk Factors for Metabolic Syndrome in the Korean Population" International Journal of Environmental Research and Public Health 17, no. 24: 9513. https://doi.org/10.3390/ijerph17249513
APA StyleYi, Y., & An, J. (2020). Sex Differences in Risk Factors for Metabolic Syndrome in the Korean Population. International Journal of Environmental Research and Public Health, 17(24), 9513. https://doi.org/10.3390/ijerph17249513