Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Sample Selection
2.3. Ethics
2.4. Data Collection
2.4.1. Variables Related to Eye Health
2.4.2. VDT Exposure and Environmental and Ergonomic Factors
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eurofound. Sixth European Working Conditions Survey. 2017. Available online: https://www.eurofound.europa.eu/sites/default/files/ef_publication/field_ef_document/ef1634en.pdf (accessed on 20 December 2019).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on an EU Strategic Framework on Health and Safety at Work 2014–2020. Available online: https://bit.ly/2D7qLwp (accessed on 20 December 2019).
- Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer vision syndrome: A review. Surv. Ophthalmol. 2005, 50, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, M. Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic Physiol. Opt. 2011, 31, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Seguridad y Salud en el Trabajo (INSST). Guía Técnica De Evaluación Y Prevención De Los Riesgos Relativos A La Utilización De Equipos Con Pantallas De Visualización; Ministerio de Trabajo y Asuntos Sociales: Madrid, Spain, 2016; Available online: https://bit.ly/2qryCT3 (accessed on 20 December 2019).
- Kroemer, K.H.E. Design of the Computer Workstation. In Handbook of Human-Computer Interaction, 2nd ed.; Helander, M.G., Landauer, T.K., Prabhu, P.V., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 1395–1414. ISBN 9780080532882. [Google Scholar]
- Scheiman, M. Accommodative and binocular vision disorders associated with video display terminals: Diagnosis and management issues. J. Am. Optom. Assoc. 1996, 67, 531–539. [Google Scholar]
- Cardona, G.; García, C.; Serés, C.; Vilaseca, M.; Gispets, J. Blink rate, blink amplitude, and tear film integrity during dynamic visual display terminal tasks. Curr. Eye Res. 2011, 36, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Mocci, F.; Serra, A.; Corrias, G.A. Psychological factors and visual fatigue in working with video display terminals. Occup. Environ. Med. 2001, 58, 267–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, V. Musculoskeletal disorders and visual strain in intensive data processing workers. Occup. Med. 2005, 55, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Bhanderi, D.J.; Choudhary, S.; Doshi, V.G. A community-based study of asthenopia in computer operators. Indian J. Ophthalmol. 2008, 56, 51–55. [Google Scholar] [CrossRef]
- Seguí, M.M.; Cabrero-García, J.; Crespo, A.; Verdú, J.; Ronda, E. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace. J. Clin. Epidemiol. 2015, 38, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Tauste, A.; Ronda, E.; Molina, M.J.; Seguí, M.M. Effect of contact lens use on Computer Vision Syndrome. Ophthalmic Physiol. Opt. 2016, 36, 112–119. [Google Scholar] [CrossRef]
- Jaschinski, W.; König, M.; Mekomtso, T.M.; Ohlendorf, A.; Welscher, M. Computer vision syndrome in presbyopia and beginning presbyopia: Effect of spectacle lens type. Clin. Exp. Optom. 2015, 98, 228–233. [Google Scholar] [CrossRef]
- König, M.; Haensel, C.; Jaschinski, W. How to place the computer monitor: Measurements on vertical zones of clear vision with presbyopic corrections. Clin. Exp. Optom. 2015, 98, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Sample Size and Power Calculator GRANMO, Version 7.12, April 2012. Available online: https://www.imim.cat/ofertadeserveis/software-public/granmo/ (accessed on 20 December 2019).
- Thibos, L.N.; Wheeler, W.; Horner, D. Power vectors: An application of Fourier analysis to the description and statistical analysis of refractive error. Optom. Vis. Sci. 1997, 74, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.M.; Verhoeven, V.J.; Cumberland, P.; Bertelsen, G.; Wolfram, C.; Buitendijk, G.H.; Hofman, A.; van Duijn, C.M.; Vingerling, J.R.; Kuijpers, R.W.; et al. Prevalence of refractive error in Europe: The European Eye Epidemiology (E(3)) Consortium. Eur. J. Epidemiol. 2015, 30, 305–315. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). Ergonomics-Evaluation of Static Working Postures (ISO 11226:2000). Available online: https://www.iso.org/standard/25573.html (accessed on 20 December 2019).
- RibbonSoft GmbH. QCAD Opensource CAD, Trial Version 3.19.2. 2018. Available online: https://www.qcad.org/en/ (accessed on 20 December 2019).
- Seguridad de las Máquinas. Comportamiento Físico del ser Humano. Parte 5: Evaluación del Riesgo por Manipulación Repetitiva de Alta Frecuencia. UNE-EN 1005-5:2007. Available online: https://bit.ly/2MfLdAe (accessed on 20 December 2019).
- International Organization for Standardization (ISO). Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)—Part 5: Workstation Layout and Postural Requirements (ISO 9241-5:1998). Available online: https://www.iso.org/standard/16877.html (accessed on 20 December 2019).
- Real Decreto 486/1997, de 14 de Abril, por el que se Establecen las Disposiciones Mínimas de Seguridad y Salud en los Lugares de Trabajo. BOE n° 97, 23/04/1997. Available online: https://www.boe.es/eli/es/rd/1997/04/14/486/con (accessed on 20 December 2019).
- Council Directive 90/270/EEC of 29 May 1990 on the Minimum Safety and Health Requirements for Work with Display Screen Equipment. Off. J. Eur. Commun. 1990, L156, 14–18. Available online: http://data.europa.eu/eli/dir/1990/270/oj (accessed on 20 December 2019).
- IBM Corp. IBM SPSS Statistics for Windows, Version 24.0. 2016. Available online: https://www.ibm.com/us-en/ (accessed on 20 December 2019).
- R Core Team. R: A language and Environment for Statistical Computing, Version 3.5.1. 2018. Available online: https://www.R-project.org/ (accessed on 20 December 2019).
- Parihar, J.K.; Jain, V.K.; Chaturvedi, P.; Kaushik, J.; Jain, G.; Parihar, A.K. Computer and Visual Display Terminals (VDT) Vision Syndrome (CVDTS). Med. J. Armed Forces India 2016, 72, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Gowrisankaran, S.; Sheddy, J.E. Computer vision syndrome: A review. Work 2015, 52, 303–314. [Google Scholar] [CrossRef]
- Sheppard, A.L.; Wolffsohn, J.S. Digital eye strain: Prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018, 3, e000146. [Google Scholar] [CrossRef] [Green Version]
- Tomei, G.; Rosati, M.V.; Ciarrocca, M.; Capozzella, A.; Pimpinella, B.; Casale, T.; Monti, C.; Tomei, F. Anxiety, musculoskeletal and visual disorders in video display terminal workers. Minerva Med. 2006, 97, 459–466. [Google Scholar]
- Larese Filon, F.; Drusian, A.; Ronchese, F.; Negro, C. Video Display Operator Complaints: A 10-Year Follow-Up of Visual Fatigue and Refractive Disorders. Int. J. Environ. Res. Public Health 2019, 16, 2501. [Google Scholar] [CrossRef] [Green Version]
- Cagnie, B.; De Meulemeester, K.; Saeys, L.; Danneels, L.; Vandenbulcke, L.; Castelein, B. The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: A randomized controlled trial. Environ. Health Prev. Med. 2017, 22, 8. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.J.; Feng, W.Y.; Chao, C.J.; Tseng, F.Y. Effects of VDT workstation lighting conditions on operator visual workload. Ind. Health 2008, 46, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janosik, E.; Grzesik, J. Influence of different lighting levels at workstations with video display terminals on operators’ work efficiency. Med. Pracy 2003, 54, 123–132. [Google Scholar]
- Allie, P.; Kokot, D.; Purvis, C.; Bartha, M.C. Computer Display Placement for progressive addition lens wearers: A field observation of multiple display conditions. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2009, 53, 493–497. [Google Scholar] [CrossRef]
- Bartha, M.C.; Allie, P.; Kokot, D.; Roe, C.P. Field observations of display placement requirements and character size for presbyopic and prepresbyopic computer users. Work 2015, 52, 329–342. [Google Scholar] [CrossRef]
- Wiggins, N.P.; Daum, K.M. Visual discomfort and astigmatic refractive errors in VDT use. J. Am. Optom. Assoc. 1991, 62, 680–684. [Google Scholar]
- Wiggins, N.P.; Daum, K.M.; Snyder, C.A. Effects of residual astigmatism in contact lens wear on visual discomfort in VDT use. J. Am. Optom. Assoc. 1992, 63, 177–181. [Google Scholar]
- Daum, K.M.; Clore, K.A.; Simms, S.S.; Vasely, J.W.; Wilczek, D.-D.; Spittle, B.M.; Good, G.W. Productivity associated with visual status of computer users. Optometry 2004, 75, 33–47. [Google Scholar] [CrossRef]
- Sheedy, J.E.; Bailey, I.L.; Fong, D. Editing performance-VDT vs. hard copy, black on white vs. white on black. Optom. Vis. Sci. 1989, 66, 118. [Google Scholar]
- Wilkinson, R.T.; Robinshaw, H.M. Proof-reading: VDU and paper text compared for speed, accuracy and fatigue. Behav. Inf. Technol. 1987, 6, 125–133. [Google Scholar] [CrossRef]
- Wright, P.; Lickorish, A. Proof-reading texts on screen and paper. Behav. Inf. Technol. 1983, 2, 227–235. [Google Scholar] [CrossRef]
- Yang, S.N.; Tai, Y.C.; Hayes, J.R.; Doherty, R.; Corriveau, P.; Sheedy, J.E. Effects of font size and display quality on reading performance and visual discomfort of developmental readers. Optom. Vis. Sci. 2010, 87, 105244. [Google Scholar]
- Guillon, M.; Dumbleton, K.; Theodoratos, P.; Gobbe, M.; Wooley, C.B.; Moody, K. The effects of age, refractive status, and luminance on pupil size. Optom. Vis. Sci. 2016, 93, 1093–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winn, B.; Whitaker, D.; Elliott, D.B.; Phillips, N.J. Factors affecting light-adapted pupil size in normal human subjects. Investig. Ophthalmol. Vis. Sci. 1994, 35, 1132–1137. [Google Scholar]
- Elliott, D.; Whitaker, D.; MacVeigh, D. Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Res. 1990, 30, 541–547. [Google Scholar] [CrossRef]
- Ustinaviciene, R.; Januskevicius, V. Association between occupational asthenopia and psycho-physiological indicators of visual strain in workers using video display terminals. Med. Sci. Monit. 2006, 12, CR296–CR301. [Google Scholar]
- Ranasinghe, P.; Wathurapatha, W.S.; Perera, Y.S.; Lamabadusuriya, D.A.; Kulatunga, S.; Jayawardana, N.; Katulanda, P. Computer vision syndrome among computer office workers in a developing country: An evaluation of prevalence and risk factors. BMC Res. Notes 2016, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Portello, J.K.; Rosenfield, M.; Bababekova, Y.; Estrada, J.M.; Leon, A. Computer-related visual symptoms in office workers. Ophthalmic Physiol. Opt. 2012, 32, 375–382. [Google Scholar] [CrossRef]
- Toomingas, A.; Hagberg, M.; Heiden, M.; Richter, H.; Westergren, K.E.; Tornqvist, E.W. Risk factors, incidence and persistent of symptoms from the eyes among professional computer users. Work 2014, 47, 291–301. [Google Scholar] [CrossRef]
- Hayes, J.R.; Sheedy, J.E.; Stelmack, J.A.; Heaney, C.A. Computer use, symptoms, and quality of life. Optom. Vis. Sci. 2007, 84, 738–744. [Google Scholar] [CrossRef]
- Knave, B.G.; Wibom, R.I.; Voss, M.; Hedstrom, L.D.; Bergqvist, U.O. Work with video display terminals among office employees. I. Subjective symptoms and discomfort. Scand. J. Work Environ. Health 1985, 11, 457–466. [Google Scholar] [CrossRef]
- Guillon, M.; Maïssa, C. Tear film evaporation—Effect of age and gender. Contact Lens Anterior Eye 2010, 33, 171–175. [Google Scholar] [CrossRef]
- Maïssa, C.; Guillon, M. Tear film dynamics and lipid layer characteristics—Effect of age and gender. Contact Lens Anterior Eye 2010, 33, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Schaumberg, D.A.; Sullivan, D.A.; Buring, J.E.; Dana, M.R. Prevalence of dry eye syndrome among US women. Am. J. Ophthalmol. 2003, 136, 318–326. [Google Scholar] [CrossRef]
- Schaumberg, D.A.; Dana, M.R.; Buring, J.E.; Sullivan, D.A. Prevalence of dry eye disease among US men: Estimates from the Physicians’ Health Studies. Arch. Ophthalmol. 2009, 127, 763–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheedy, J.E.; Hayes, J.; Engle, J. Is all asthenopia the same? Optom. Vis. Sci. 2003, 80, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Farrand, K.F.; Fridman, M.; Stillman, I.O.; Schaumberg, D.A. Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older. Am. J. Ophthalmol. 2017, 182, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Dana, R.; Bradley, J.L.; Guerin, A.; Pivneva, I.; Stillman, I.Ö.; Evans, A.M.; Schaumberg, D.A. Estimated Prevalence and Incidence of Dry Eye Disease Based on Coding Analysis of a Large, All-age United States Health Care System. Am. J. Ophthalmol. 2019, 202, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Vitale, S.; Reed, G.F.; Grieshaber, S.A.; Goodman, L.A.; Vanderhoof, V.H.; Calis, K.A.; Nelson, L.M. Dry eye signs and symptoms in women with premature ovarian failure. Arch. Ophthalmol. 2004, 122, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Vehof, J.; Kozareva, D.; Hysi, P.G.; Harris, J.; Nessa, A.; Williams, F.K.; Bennett, D.L.H.; McMahon, S.B.; Fahy, S.J.; Direk, K.; et al. Relationship between dry eye symptoms and pain sensitivity. JAMA Ophthalmol. 2013, 131, 1304–1308. [Google Scholar] [CrossRef] [Green Version]
- Brandt, J.E.; Priori, R.; Valesini, G.; Fairweather, D. Sex differences in Sjögren’s syndrome: A comprehensive review of immune mechanisms. Biol. Sex Differ. 2015, 6, 19. [Google Scholar] [CrossRef]
- Sullivan, D.A.; Rocha, E.M.; Aragona, P.; Clayton, J.A.; Ding, J.; Golebiowski, B.; Hampel, U.; McDermott, A.M.; Schaumberg, D.A.; Srinivasan, S.; et al. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul. Surf. 2017, 15, 284–333. [Google Scholar] [CrossRef] [PubMed]
- Peck, T.; Olsakovsky, L.; Aggarwal, S. Dry eye syndrome in menopause and perimenopausal age group. J. Midlife Health 2017, 8, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Soria-Oliver, M.; López, J.S.; Torrano, F.; García-González, G.; Lara, Á. New Patterns of Information and Communication Technologies Usage at Work and Their Relationships with Visual Discomfort and Musculoskeletal Diseases: Results of a Cross-Sectional Study of Spanish Organizations. Int. J. Environ. Res. Public Health 2019, 16, 3166. [Google Scholar] [CrossRef] [Green Version]
- Luberto, F.; Gobba, F.; Broglia, A. Temporary myopia and subjective symptoms in video display terminal operators. Med. Lav. 1989, 80, 155–163. [Google Scholar] [PubMed]
- Carta, A.; Pasquini, L.; Lucchini, R.; Semeraro, F.; Apostoli, P. Relation of asthenopia and some ophthalmological, neuropsychological, and musculoskeletal parameters in workers assigned to video display terminals. La Medicina del Lavoro 2003, 94, 466–479. [Google Scholar]
- Ye, Z.; Honda, S.; Abe, Y.; Kusano, Y.; Takamura, N.; Imamura, Y.; Eida, K.; Takemoto, T.; Aoyagi, K. Influence of work duration or physical symptoms on mental health among Japanese visual display terminal users. Ind. Health 2007, 45, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Travers, P.H.; Stanton, B.A. Office workers and video display terminals: Physical, psychological and ergonomic factors. AAOHN J. 2002, 50, 489–493. [Google Scholar] [CrossRef]
- Jaschinski, W.; König, M.; Mekontso, T.M.; Ohlendorf, A.; Welscher, M. Comparison of progressive addition lenses for general purpose and for computer vision: An office field study. Clin. Exp. Optom. 2015, 98, 234–243. [Google Scholar] [CrossRef]
- Kolbe, O.; Degle, S. Presbyopic Personal Computer Work: A Comparison of Progressive Addition Lenses for General Purpose and Personal Computer Work. Optom. Vis. Sci. 2018, 95, 1046–1053. [Google Scholar] [CrossRef]
- Horgen, G.; Aaras, A.; Thoresen, M. Will visual discomfort among visual display unit (VDU) users change in development when moving from single vision lenses to specially designed VDU progressive lenses? Optom. Vis. Sci. 2004, 81, 341–349. [Google Scholar] [CrossRef]
- Ostrovsky, A.; Ribak, J.; Pereg, A.; Gaton, D. Effects of job-related stress and burnout on asthenopia among high-tech workers. Ergonomics 2012, 55, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Brau, M.M.; Domenech-Amigot, B.; Brocal-Fernández, F.; Quesada-Rico, J.A.; Seguí-Crespo, M.M. Decrease in Computer Vision Syndrome in Presbyopic VDT Workers According to Ophthalmic Progressive Lens Design; 2020; in press. [Google Scholar]
- Ketola, R.; Toivonen, R.; Häkkanen, M.; Luukkonen, R.; Takala, E.-P.; Viikari-Juntura, E.; the Expert Group of Ergonomics. Effects of ergonomic intervention in work with video display units. Scand. J. Work Environ. Health 2002, 28, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; Stringham, N.T.; O’Brien, K.J. Macular carotenoid supplementation improves visual performance, sleep quality, and adverse physical symptoms in those with high screen time exposure. Foods 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | n | % |
---|---|---|
Age (years) | ||
46–50 | 26 | 23.9 |
51–52 | 22 | 20.2 |
53–55 | 30 | 27.5 |
56–69 | 31 | 28.4 |
Sex | ||
Male | 62 | 56.9 |
Female | 47 | 43.1 |
Job category | ||
TRS | 47 | 43.1 |
AS | 62 | 56.9 |
Use of VDT at work (hours/day) | ||
≤6 | 53 | 48.6 |
>6 | 56 | 51.4 |
Use of VDT at work (years) | ||
≤20 | 37 | 33.9 |
21–29 | 50 | 45.9 |
≥30 | 22 | 20.2 |
Continuous work time at VDT (minutes) | ||
≤60 | 51 | 46.8 |
61–120 | 44 | 40.4 |
>120 | 14 | 12.8 |
Scheduled breaks during VDT work | ||
No | 101 | 92.7 |
Yes | 8 | 7.3 |
Total use of VDT (hours/day) | ||
≤8 | 49 | 45.0 |
>8 | 60 | 55.0 |
Screen technology | ||
LED backlight | 46 | 42.2 |
LED | 14 | 12.8 |
LCD | 5 | 4.6 |
TFT | 42 | 38.5 |
LCD-TN | 2 | 1.8 |
Variables | Mean | SD |
Viewing distance (cm) | 67.6 | 8.9 |
Eye to screen angle α (°) | 26.8 | 5.7 |
Vision angle α′ (°) | 21.1 | 5.2 |
Screen tilt angle β (°) | 96.4 | 6.1 |
Air temperature (°C) | 22.7 | 1.7 |
Relative humidity (%) | 41.5 | 5.6 |
Illumination (lux) | 489.6 | 297.4 |
Altered variables | n | % |
Viewing distance | 18 | 16.5 |
Eye to screen angle α | 0 | 0.0 |
Vision angle α′ | 0 | 0.0 |
Air temperature | 19 | 17.4 |
Relative humidity | 81 | 74.3 |
Illumination | 77 | 70.6 |
VDT adjustment | 48 | 44.0 |
Neck posture | 34 | 31.2 |
Variables | Usual Spectacles * | Refraction ** | p-Value *** | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
B (D) | |||||
OD | 2.67 | 1.82 | 2.71 | 1.78 | 0.161 |
OS | 2.56 | 1.86 | 2.61 | 1.84 | 0.085 |
Addition (D) | 2.06 | 0.44 | 2.20 | 0.30 | <0.001 |
n | % | n | % | p-Value **** | |
Refractive error | |||||
Emmetropia | 23 | 21.1 | 23 | 21.1 | 1.000 |
Myopia | 55 | 50.5 | 55 | 50.5 | 1.000 |
Hyperopia | 31 | 28.4 | 31 | 28.4 | 1.000 |
Astigmatism | 39 | 35.8 | 32 | 29.4 | 0.392 |
Presbyopia | |||||
Moderate | 56 | 51.4 | 43 | 39.4 | 0.011 |
Advanced | 53 | 48.6 | 66 | 60.6 |
Variables | n | P | p-Value * | OR | 95% CI | p-Value ** |
---|---|---|---|---|---|---|
TOTAL | 81 | 74.3 | ||||
Age (years) | ||||||
46–50 | 19 | 73.1 | 0.987 | 1 | ||
51–52 | 16 | 72.7 | 0.98 | 0.27–3.52 | 0.978 | |
53–55 | 23 | 76.7 | 1.21 | 0.36–4.06 | 0.757 | |
56–69 | 23 | 74.2 | 1.06 | 0.33–3.46 | 0.924 | |
Sex | ||||||
Male | 41 | 66.1 | 0.025 | 1 | ||
Female | 40 | 85.1 | 2.93 | 1.12–7.64 | 0.028 | |
Job category | ||||||
TRS | 31 | 66.0 | 0.082 | 1 | ||
AS | 50 | 80.6 | 2.15 | 0.90–5.15 | 0.085 | |
Use of VDT at work (hours/day) | ||||||
≤6 | 36 | 67.9 | 0.138 | 1 | ||
>6 | 45 | 80.4 | 1.93 | 0.81–4.64 | 0.141 | |
Use of VDT at work (years) | ||||||
≤20 | 26 | 32.1 | 0.782 | 1 | ||
21–29 | 38 | 46.9 | 1.34 | 0.51–3.49 | 0.550 | |
≥30 | 17 | 21.0 | 1.44 | 0.42–4.88 | 0.560 | |
Continuous work time at VDT (minutes) | ||||||
≤60 | 40 | 78.4 | 0.219 | 1 | ||
61–120 | 29 | 65.9 | 0.53 | 0.21–1.33 | 0.175 | |
>120 | 12 | 85.7 | 1.65 | 0.32–8.50 | 0.549 | |
Scheduled breaks during VDT work | ||||||
No | 74 | 73.3 | 0.677 | 1 | ||
Yes | 7 | 87.5 | 2.55 | 0.30–21.73 | 0.391 | |
Total use of VDT (hours/day) | ||||||
≤8 | 39 | 79.6 | 0.254 | 1 | ||
>8 | 42 | 70.0 | 0.60 | 0.25–1.45 | 0.257 | |
Screen technology | ||||||
LED backlight | 33 | 71.7 | 0.541 | 1 | ||
LED | 9 | 64.3 | 0.71 | 0.20–2.52 | 0.595 | |
LCD | 3 | 60.0 | 0.59 | 0.09–3.95 | 0.588 | |
TFT | 34 | 81.0 | 1.67 | 0.61–4.56 | 0.314 | |
LCD-TN | 2 | 100.0 | - | - | - | |
Viewing distance (cm) | ||||||
Non-altered | 69 | 75.8 | 0.417 | 1 | ||
Altered | 12 | 66.7 | 0.64 | 0.21–1.90 | 0.419 | |
Eye to screen angle α (°) | ||||||
Non-altered | 81 | 74.3 | - | - | - | - |
Altered | 0 | 0.0 | ||||
Vision angle α′ (°) | ||||||
Non-altered | 81 | 74.3 | - | - | - | - |
Altered | 0 | 0.0 | ||||
Air temperature (°C) | ||||||
Non-altered | 67 | 74.4 | 1.000 | 1 | ||
Altered | 14 | 73.7 | 0.96 | 0.31–2.96 | 0.945 | |
Relative humidity (%) | ||||||
Non-altered | 20 | 71.4 | 0.685 | 1 | ||
Altered | 61 | 75.3 | 1.22 | 0.47–3.20 | 0.686 | |
Illumination | ||||||
Non-altered | 20 | 62.5 | 0.069 | 1 | ||
Altered | 61 | 79.2 | 2.29 | 0.93–5.64 | 0.072 | |
VDT adjustment | ||||||
Non-altered | 44 | 72.1 | 0.557 | 1 | ||
Altered | 37 | 77.1 | 1.30 | 0.54–3.12 | 0.557 | |
Neck posture | ||||||
Non-altered | 52 | 69.3 | 0.077 | 1 | ||
Altered | 29 | 85.3 | 2.57 | 0.88–7.47 | 0.084 | |
Ametropia | ||||||
Emmetropia | 19 | 82.6 | 0.465 | 1 | ||
Myopia | 41 | 74.5 | 0.62 | 0.18–2.13 | 0.444 | |
Hyperopia | 21 | 67.7 | 0.44 | 0.12–1.65 | 0.224 | |
Astigmatism | ||||||
No | 54 | 70.1 | 0.121 | 1 | ||
Yes | 27 | 84.4 | 2.30 | 0.79–6.71 | 0.128 | |
Presbyopia | ||||||
Moderate | 31 | 72.1 | 0.669 | 1 | ||
Advanced | 50 | 75.8 | 1.21 | 0.51–2.89 | 0.669 |
Variables | OR | 95% CI | p-Value |
---|---|---|---|
Age | 1.02 | 0.91–1.13 | 0.771 |
Sex | |||
Male | 1 | ||
Female | 3.40 | 1.12–10.33 | 0.031 |
Myopia | |||
No | 1 | ||
Yes | 1.57 | 0.57–4.23 | 0.386 |
Job category | |||
TRS | 1 | ||
AS | 2.45 | 0.90–6.67 | 0.079 |
Total use of VDT (hours/day) | |||
≤8 | 1 | ||
>8 | 2.59 | 0.96–6.98 | 0.061 |
Neck posture | |||
Non-altered | 1 | ||
Altered | 3.27 | 1.03–10.41 | 0.045 |
Illumination | |||
Non-altered | 1 | ||
Altered | 3.64 | 1.22–10.81 | 0.020 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Brau, M.; Domenech-Amigot, B.; Brocal-Fernández, F.; Quesada-Rico, J.A.; Seguí-Crespo, M. Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses. Int. J. Environ. Res. Public Health 2020, 17, 1003. https://doi.org/10.3390/ijerph17031003
Sánchez-Brau M, Domenech-Amigot B, Brocal-Fernández F, Quesada-Rico JA, Seguí-Crespo M. Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses. International Journal of Environmental Research and Public Health. 2020; 17(3):1003. https://doi.org/10.3390/ijerph17031003
Chicago/Turabian StyleSánchez-Brau, Mar, Begoña Domenech-Amigot, Francisco Brocal-Fernández, Jose Antonio Quesada-Rico, and Mar Seguí-Crespo. 2020. "Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses" International Journal of Environmental Research and Public Health 17, no. 3: 1003. https://doi.org/10.3390/ijerph17031003
APA StyleSánchez-Brau, M., Domenech-Amigot, B., Brocal-Fernández, F., Quesada-Rico, J. A., & Seguí-Crespo, M. (2020). Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses. International Journal of Environmental Research and Public Health, 17(3), 1003. https://doi.org/10.3390/ijerph17031003