Hypothetical Interventions on Risk Factors for Cognitive Impairment among Chinese Older Adults: An Application of the Parametric G-Formula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Measures
2.2.1. Outcome Variable
2.2.2. Intervention Variables
2.2.3. Covariates
2.3. Hypothetical Interventions on Risk Factors for Cognitive Impairment
- Social engagement: every participant with low social engagement was intervened on high social engagement, and all those with high social engagement were not intervened on.
- Psychological well-being: everyone with negative PWB scores was intervened on positive scores, and the others were not intervened on.
- Dietary intake: the respondents who seldom ate those 4 categories of food were intervened on to increase their frequency to sometimes eat those foods. The entire population was divided into two categories: every day and sometimes; (3) a: vegetables; (3) b: fruits; (3) c: meat; and (3) d: fish.
- Interventions (1) and (2) combined.
- Interventions (3) a and (3) b combined.
- Interventions (3) a, (3) b, and (1) combined.
- Interventions (3) a, (3) b, and (2) combined.
- Interventions (3) a, (3) b, and (1)–(2) combined.
2.4. Statistical Analyses
- Pooled regression models were used to predict the risk of cognitive impairments, each risk factor and risk of loss to follow-up or death respectively, given prior risk factor history for each 3 years period between 2002 and 2011/2012. A Kaplan–Meier estimator was used to incorporate censoring owing to death and loss to follow-up.
- Based on these estimated models, pseudo-cohorts under each of the interventions were generated by a Monte Carlo simulation of 10,000 individuals, using the following steps:
- (a)
- The time-varying confounders at the next time point were simulated by the estimated regression models under the intervention of interest.
- (b)
- The risk of cognitive impairment and censor were simulated at the next time point and were simulated by estimated regression models in step (1) and the simulated covariates in step (2)a.
- To predict the risk of cognitive impairment under each selected intervention, step (2) should be repeated for the entire duration of follow-up.
3. Results
3.1. Baseline Characteristics
3.2. Single Interventions
3.3. Joint Interventions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fratiglioni, L.; Paillard-Borg, S.; Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004, 3, 343–353. [Google Scholar] [CrossRef]
- Fichter, M.M.; Kohlboeck, G.; Quadflieg, N.; Wyschkon, A.; Esser, G. From childhood to adult age: 18-year longitudinal results and prediction of the course of mental disorders in the community. Soc. Psychiatry Psychiatr. Epidemiol. 2009, 44, 792–803. [Google Scholar] [CrossRef]
- Knopman, D.S. Alzheimer’s Disease and Other Dementias, in Goldman’s Cecil Medicine, 24th ed.; Elservier Saunder: Philadelphia, PA, USA, 2012. [Google Scholar]
- Nie, H.W.; Xu, Y.; Liu, B.; Zhang, Y.D.; Lei, T.; Hui, X.P.; Zhang, L.; Wu, Y. The prevalence of mild cognitive impairment about elderly population in China: A meta-analysis. Int. J. Geriatr. Psychiatry 2011, 26, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Wimo, A.; Fratiglioni, L.; Qiu, C. The economic burden of dementia in China, 1990–2030: Implications for health policy. Bull. World Health Organ. 2017, 95, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Ku, L.-J.E.; Chang, S.-M.; Pai, M.-C.; Hsieh, H.-M. Predictors of caregiver burden and care costs for older persons with dementia in Taiwan. Int. Psychogeriatr. 2019, 31, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013, 36, 375–399. [Google Scholar] [CrossRef]
- Wang, H.X.; Karp, A.; Winblad, B.; Fratiglioni, L. Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: A longitudinal study from the kungsholmen project. Am. J. Epidemiol. 2002, 155, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Zunzunegui, M.V.; Alvarado, B.E.; Del Ser, T.; Otero, A. Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. J. Gerontol. B Psychol. 2003, 58, S93–S100. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, Y.; Cheng, H.G. Lower intake of vegetables and legumes associated with cognitive decline among illiterate elderly Chinese: A 3-year cohort study. J. Nutr. Health Aging 2012, 16, 549–552. [Google Scholar] [CrossRef]
- Kuiper, J.S.; Zuidersma, M.; Zuidema, S.U.; Burgerhof, J.G.M.; Stolk, R.P.; Voshaar, R.C.O.; Smidt, N. Social relationships and cognitive decline: A systematic review and meta-analysis of longitudinal cohort studies. Int. J. Epidemiol. 2016, 45, 1169–1206. [Google Scholar] [CrossRef]
- Zhou, Z.; Mao, F.; Zhang, W.; Towne, S.D.; Wang, P.; Fang, Y. The Association Between Loneliness and Cognitive Impairment among Older Men and Women in China: A Nationwide Longitudinal Study. Int. J. Environ. Res. Public Health 2019, 16, 2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Kim, Y.; Kwon, J.; Park, E.C. Association between Changes in Depressive State and Cognitive Function. Int J. Environ. Res. Public Health 2019, 16, 4944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kwon, E.; Lee, H. Life Course Trajectories of Later-Life Cognitive Functions: Does Social Engagement in Old Age Matter? Int. J. Environ. Res. Public Health 2017, 14, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, K.R.; Wilson, R.S.; Kamenetsky, J.M.; Barnes, L.L.; Bienias, J.L.; Bennett, D.A. Social Engagement and Cognitive Function in Old Age. Exp. Aging Res. 2009, 35, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Loef, M.; Walach, H. Fruit, vegetables and prevention of cognitive decline or dementia: A systematic review of cohort studies. J. Nutr. Health Aging 2012, 16, 626–630. [Google Scholar] [CrossRef]
- Solomon, A.; Mangialasche, F.; Richard, E.; Andrieu, S.; Bennett, D.A.; Breteler, M.; Fratiglioni, L.; Hooshmand, B.; Khachaturian, A.S.; Schneider, L.S.; et al. Advances in the prevention of Alzheimer’s disease and dementia. J. Intern. Med. 2014, 275, 229–250. [Google Scholar] [CrossRef] [Green Version]
- Galvin, J.E. Prevention of Alzheimer’s Disease: Lessons Learned and Applied. J. Am. Geriatr. Soc. 2017, 65, 2128–2133. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Mansfield, J. Non-pharmacological interventions for persons with dementia: What are they and how should they be studied? Int. Psychogeriatr. 2018, 30, 281–283. [Google Scholar] [CrossRef] [Green Version]
- Mabire, J.-B.; Aquino, J.-P.; Charras, K. Dance interventions for people with dementia: Systematic review and practice recommendations. Int. Psychogeriatr. 2019, 31, 977–987. [Google Scholar] [CrossRef]
- Sungkarat, S.; Boripuntakul, S.; Chattipakorn, N.; Watcharasaksilp, K.; Lord, S.R. Effects of Tai Chi on Cognition and Fall Risk in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2017, 65, 721–727. [Google Scholar] [CrossRef]
- Brasure, M.; Desai, P.; Davila, H.; Nelson, V.A.; Calvert, C.; Jutkowitz, E.; Butler, M.; Fink, H.A.; Ratner, E.; Hemmy, L.S.; et al. Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia A Systematic Review. Ann. Intern. Med. 2018, 168, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Wuthrich, V.M.; Rapee, R.M.; Draper, B.; Brodaty, H.; Low, L.-F.; Naismith, S.L. Reducing risk factors for cognitive decline through psychological interventions: A pilot randomized controlled trial. Int. Psychogeriatr. 2019, 31, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials - Race-, sex-, and age-based disparities. JAMA J. Am. Med. Assoc. 2004, 291, 2720–2726. [Google Scholar] [CrossRef]
- Zeng, Y. Towards Deeper Research and Better Policy for Healthy Aging --Using the Unique Data of Chinese Longitudinal Healthy Longevity Survey. China Econ. J. 2012, 5, 131–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzman, R.; Zhang, M.Y.; Ouang Ya, Q.; Wang, Z.Y.; Liu, W.T.; Yu, E.; Wong, S.C.; Salmon, D.P.; Grant, I. A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J. Clin. Epidemiol. 1988, 41, 971–978. [Google Scholar] [CrossRef]
- Zhang, Z. Gender differentials in cognitive impairment and decline of the oldest old in China. J. Gerontol. B Psychol. 2006, 61, S107–S115. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Dupre, M.E. Assessment of Reliability of Mortality and Morbidity in the 1998–2002 CLHLS Waves. Healthy Longev. China 2008, 20, 99–116. [Google Scholar] [CrossRef]
- Zeng, Y.; Vaupel, J.; Xiao, Z.; Zhang, C.; Liu, Y. The Healthy Longevity Survey and the Active Life Expectancy of the Oldest Old in China. Popul. Engl. Sel. 2001, 13, 95–116. [Google Scholar]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef]
- Ravaglia, G.; Forti, P.; Lucicesare, A.; Pisacane, N.; Rietti, E.; Bianchin, M.; Dalmonte, E. Physical activity and dementia risk in the elderly: findings from a prospective Italian study. Neurology 2008, 70, 1786–1794. [Google Scholar] [CrossRef]
- Saczynski, J.S.; Pfeifer, L.A.; Masaki, K.; Korf, E.S.; Laurin, D.; White, L.; Launer, L.J. The Effect of Social Engagement on Incident Dementia The Honolulu-Asia Aging Study. Am. J. Epidemiol. 2006, 163, 433–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Wang, P.; Fang, Y. Social Engagement and Its Change are Associated with Dementia Risk among Chinese Older Adults: A Longitudinal Study. Sci. Rep. Uk 2018, 8, 1551. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Mao, F.; Han, Y.; Fu, J.; Fang, Y. Social Engagement and Cognitive Impairment in Older Chinese Adults: The Mediating Role of Psychological Well-Being. J. Aging Health 2019, 0, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Cai, L.; Zhuang, M.; Hong, Y.A.; Fang, Y. A longitudinal analysis of the association between the living arrangements and psychological well-being of older Chinese adults: the role of income sources. BMC Geriatr. 2019, 19, 347. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T.; Han, B. Does co-residence with adult children associate with better psychological well-being among the oldest old in China? Aging Ment. Health 2014, 18, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, G. Childlessness, psychological well-being, and life satisfaction among the elderly in China. J. Cross Cult. Gerontol. 2007, 22, 185–203. [Google Scholar] [CrossRef]
- Sanjuan, P. Affect Balance as Mediating Variable Between Effective Psychological Functioning and Satisfaction with Life. J. Happiness Stud. 2011, 12, 373–384. [Google Scholar] [CrossRef]
- Barnes, L.L.; de Leon, C.F.M.; Wilson, R.S.; Bienias, J.L.; Evans, D.A. Social resources and cognitive decline in a population of older African Americans and whites. Neurology 2004, 63, 2322–2326. [Google Scholar] [CrossRef]
- Hultsch, D.F.; Hertzog, C.; Small, B.J.; Dixon, R.A. Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychol. Aging 1999, 14, 245–263. [Google Scholar] [CrossRef]
- Llewellyn, D.J.; Lang, I.A.; Langa, K.M.; Huppert, F.A. Cognitive function and psychological well-being: findings from a population-based cohort. Age Ageing 2008, 37, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Burns, A.; Guthrie, E.; Marino-Francis, F.; Busby, C.; Morris, J.; Russell, E.; Margison, F.; Lennon, S.; Byrne, J. Brief psychotherapy in Alzheimer’s disease - Randomised controlled trial. Br. J. Psychiatry 2005, 187, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Huang, J.; Song, D.; Deng, R.; Wei, J.; Zhang, Z. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Cognitive Impairment and Dementia: Meta-Analysis. Front. Aging Neurosci. 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamport, D.J.; Saunders, C.; Butler, L.T.; Spencer, J.P. Fruits, vegetables, 100% juices, and cognitive function. Nutr. Rev. 2014, 72, 774–789. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aymerich, J.; Varraso, R.; Danaei, G.; Camargo, C.A.; Hernan, M.A. Incidence of Adult-onset Asthma After Hypothetical Interventions on Body Mass Index and Physical Activity: An Application of the Parametric G-Formula. Am. J. Epidemiol. 2014, 179, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, G.G.; Peres, M.A.; Mittinty, M.N.; Peres, K.G.; Do, L.G.; Horta, B.L.; Gigante, D.P.; Correa, M.B.; Demarco, F.F. Diet-Induced Overweight and Obesity and Periodontitis Risk: An Application of the Parametric G-Formula in the 1982 Pelotas Birth Cohort. Am. J. Epidemiol. 2017, 185, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Liu, J.; An, R. Functional limitation and cognitive impairment among 80+ year old Chinese. Australas. J. Ageing 2016, 35, 266–272. [Google Scholar] [CrossRef]
Variables | N | % | Variables | N | % |
---|---|---|---|---|---|
Cognitive functioning * | 26.11 (4.6) | Drinking | |||
PWB * | 4.39 (3.7) | not drinking | 4844 | 65.7 | |
Social engagement | quitting | 784 | 10.6 | ||
low | 3551 | 48.1 | drinking | 1749 | 23.7 |
high | 3826 | 51.9 | Hypertension | ||
Age (years) | no | 6345 | 86.0 | ||
65~ | 2341 | 31.7 | yes | 1032 | 14.0 |
75~ | 2223 | 30.1 | Diabetes | ||
85~ | 1794 | 24.3 | no | 7243 | 98.2 |
95~ | 1019 | 13.8 | yes | 134 | 1.8 |
Gender | Stroke | ||||
male | 3395 | 46.0 | no | 7087 | 96.1 |
female | 3982 | 54.0 | yes | 290 | 3.1 |
Residence | Disabled | ||||
urban | 3294 | 44.7 | no | 6278 | 85.1 |
rural | 4083 | 55.3 | yes | 1099 | 14.9 |
Marital status | Fruit intake | ||||
married | 4214 | 57.1 | every day | 2596 | 35.2 |
not married | 3163 | 42.9 | sometimes | 2990 | 40.5 |
Living arrangements | seldom | 1791 | 24.3 | ||
live with others | 6345 | 86.0 | Vegetable intake | ||
live alone | 1032 | 14.0 | every day | 6587 | 89.3 |
Education | sometimes | 650 | 8.4 | ||
illiteracy | 4219 | 57.2 | seldom | 170 | 2.3 |
literacy | 3158 | 42.8 | Meat intake | ||
Profession | every day | 2963 | 40.2 | ||
farmer | 4358 | 59.1 | sometimes | 3160 | 42.8 |
others | 3019 | 40.9 | seldom | 1254 | 17.0 |
Exercise regularly | Fish intake | ||||
no | 4517 | 61.2 | every day | 1717 | 23.3 |
yes | 2860 | 38.8 | sometimes | 3621 | 49.1 |
Smoking | seldom | 2039 | 27.6 | ||
not smoking | 1594 | 21.6 | Region | ||
quitting | 4650 | 63.0 | eastern | 3355 | 45.5 |
smoking | 1133 | 15.4 | middle | 1804 | 24.5 |
western | 2218 | 30.1 |
Intervention | Risk | 95% CI | RR | 95% CI |
---|---|---|---|---|
Natural course (no intervention) | 20.08 | 17.81, 21.07 | 1.00 | —— |
Social engagement | 14.54 | 12.60, 16.64 | 0.72 | 0.65, 0.82 |
PWB | 19.46 | 17.51, 20.30 | 0.97 | 0.98, 0.99 |
Vegetables | 19.73 | 17.63, 20.89 | 0.98 | 0.98, 1.00 |
Fruits | 18.63 | 16.22, 19.94 | 0.93 | 0.89, 0.95 |
Meat | 20.04 | 17.88, 21.28 | 1.00 | 0.97, 1.02 |
Fish | 20.07 | 18.16, 21.22 | 1.00 | 0.97, 1.04 |
Intervention | Risk | 95% CI | RR | 95% CI |
---|---|---|---|---|
No intervention | 20.08 | 17.81, 21.07 | 1.00 | —— |
Social engagement + PWB | 14.14 | 12.34, 16.38 | 0.70 | 0.64, 0.80 |
Diet (vegetables + fruits) | 18.50 | 16.09, 19.88 | 0.92 | 0.89, 0.95 |
Diet (vegetables + fruits) + Social engagement | 13.32 | 11.42, 15.46 | 0.66 | 0.59, 0.75 |
Diet (vegetables + fruits) + PWB | 17.95 | 15.66, 19.15 | 0.89 | 0.86, 0.92 |
All factors (Social engagement + PWB + Diet (vegetables + fruits) | 12.93 | 11.24, 15.05 | 0.64 | 0.58, 0.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Cai, L.; Fu, J.; Han, Y.; Fang, Y. Hypothetical Interventions on Risk Factors for Cognitive Impairment among Chinese Older Adults: An Application of the Parametric G-Formula. Int. J. Environ. Res. Public Health 2020, 17, 1021. https://doi.org/10.3390/ijerph17031021
Zhou Z, Cai L, Fu J, Han Y, Fang Y. Hypothetical Interventions on Risk Factors for Cognitive Impairment among Chinese Older Adults: An Application of the Parametric G-Formula. International Journal of Environmental Research and Public Health. 2020; 17(3):1021. https://doi.org/10.3390/ijerph17031021
Chicago/Turabian StyleZhou, Zi, Lun Cai, Jian Fu, Yaofeng Han, and Ya Fang. 2020. "Hypothetical Interventions on Risk Factors for Cognitive Impairment among Chinese Older Adults: An Application of the Parametric G-Formula" International Journal of Environmental Research and Public Health 17, no. 3: 1021. https://doi.org/10.3390/ijerph17031021
APA StyleZhou, Z., Cai, L., Fu, J., Han, Y., & Fang, Y. (2020). Hypothetical Interventions on Risk Factors for Cognitive Impairment among Chinese Older Adults: An Application of the Parametric G-Formula. International Journal of Environmental Research and Public Health, 17(3), 1021. https://doi.org/10.3390/ijerph17031021