Per-Cooling (Using Cooling Systems during Physical Exercise) Enhances Physical and Cognitive Performances in Hot Environments. A Narrative Review
Abstract
:1. Introduction
2. Exercise-Induced Hyperthermia and Performance Detriments
2.1. Hyperthermia and Aerobic Performance
- i.
- Via the mechanisms cited above, hyperthermia impairs aerobic performance in general, including performance both in short time to exhaustion exercises and longer time trials.
- ii.
- It seems worth noting that environmental high temperature can challenge the limits of human regulatory systems, along with an elevated risk for hyperthermia. Prolonged exercise in the heat requires special attention from the coaching staff and athletes.
2.2. Hyperthermia and ‘Anaerobic’ Performance
- ➢
- In summary, although an increase in muscle temperature may improve power production during short-duration exercise, this beneficial effect disappears if the exercise is repeated and significant performance decrements occur with exacerbated hyperthermia.
2.3. Cognitive Performance in the Heat
- ➢
- Hyperthermia (stressor) places an additional demand on the limited cognitive workspace, thereby degrading cognitive performance and leading to potential risks for athletes performing in hot conditions.
3. Effects of Cooling during Exercise (Per-Cooling)
3.1. Per-Cooling and Aerobic Performance
- ➢
- In summary, the majority of per-cooling methods have demonstrated significant improvements in endurance capacity and performance.
- ➢
- The performance improvements from the per-cooling interventions tend to be larger in time to exhaustion tasks (9–51%) than in time trials (3–9%) [107]. These results may be explained by the fact that participants in time to exhaustion trials could not freely choose their self-paced intensity. Per-cooling may have larger beneficial effects on this type of exercise if athletes are allowed to choose their pace.
3.2. Per-Cooling and ‘Anaerobic’ Performance
- ➢
- The effects of cooling on ‘anaerobic’ exercise depend on the duration of the cooling method and its impact on decreasing the core and skin temperatures.
- ➢
- The efficacy of per-cooling depends on the participant’s core temperature, and it has been hypothesized that a higher core temperature leads to a greater per-cooling impact on performance. Thus, the use of per-cooling should be recommended especially when the ambient temperature is high and/or the core temperature of the subject is expected to be elevated.
3.3. Per-Cooling and Cognitive Performance
- ➢
- Cooling interventions such as head cooling and external cooling seem to restore cognitive resources disturbed by hyperthermia, increase performance in cognitive tasks and lower the perceived load of high temperature.
4. The Effects of Cooling Different Areas of the Body on Performance
4.1. Cooling a Large Area of the Body (e.g., Whole Body Cooling)
- ➢
- When cooling covers a large surface area of the body, a great reduction in heat strain can be obtained due to heat exchange. However, cooling only a part of the body where high tissue perfusion exists may be sufficient for full heat strain dissipation.
4.2. Torso Cooling
- ➢
- The chest area has a high sensitivity to cold temperatures, which promotes its role in minimizing heat strain. The cooling of both the chest and another part of the body (e.g., the arms) may be more advantageous to improve performance.
4.3. Head and Neck Cooling
- ➢
- An optimal amount of heat removal can be obtained through head and neck cooling due to the density of cold-sensitive afferent thermal receptors in these areas.
- ➢
- Despite the small surface area (10%) of the head and neck, cooling of the head and neck regions was found to be as effective as the cooling of approximately 60% of the body surface area.
- ➢
- Head and neck cooling enhance performance and perceived sensations in hot conditions.
4.4. Face Cooling
- ➢
- The face area displayed a high sensitivity to cooling, resulting in a two- to five-fold more powerful suppression of sweating and thermal discomfort than the cooling of other surface areas of equivalent size.
4.5. Hand Cooling
- ➢
- Although hands have a weak sensitivity to cooling, they can be deeply involved in the removal of heat and thus can reduce thermal strain.
5. The Underlying Physiological Mechanism of Per-Cooling
5.1. Thermoregulation Mechanisms
5.2. Cardiovascular Mechanisms
5.3. Central Nervous System Adjustments
5.4. Perceptual Mechanisms
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arngrímsson, S.A.; Stewart, D.J.; Borrani, F.; Skinner, K.A.; Cureton, K.J. Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. J. Appl. Physiol. 2003, 94, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, J.; Calbet, J.A.L. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 2003, 107, 824–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nybo, L.; Nielsen, B. Hyperthermia and central fatigue during prolonged exercise in humans. J. Appl. Physiol. 2001, 91, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, F.; Deroanne, R.; Petit, J.M. Maximal oxygen consumption in a hot environment. J. Appl. Physiol. 1970, 28, 642–645. [Google Scholar] [CrossRef]
- Saltin, B.; Gagge, A.P.; Bergh, U.; Stolwijk, J.A. Body temperatures and sweating during exhaustive exercise. J. Appl. Physiol. 1972, 32, 635–643. [Google Scholar] [CrossRef]
- Drust, B.; Rasmussen, P.; Mohr, M.; Nielsen, B.; Nybo, L. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol. Scand. 2005, 183, 181–190. [Google Scholar] [CrossRef]
- González-Alonso, J.; Teller, C.; Andersen, S.L.; Jensen, F.B.; Hyldig, T.; Nielsen, B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J. Appl. Physiol. 1999, 86, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- Kay, D.; Marino, F.E.; Cannon, J.; St Clair Gibson, A.; Lambert, M.I.; Noakes, T.D. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. Eur. J. Appl. Physiol. 2001, 84, 115–121. [Google Scholar] [CrossRef]
- Nybo, L.; Jensen, T.; Nielsen, B.; González-Alonso, J. Effects of marked hyperthermia with and without dehydration on VO2 kinetics during intense exercise. J. Appl. Physiol. 2001, 90, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.; Marle, T.; Lambert, E.V.; Noakes, T.D. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J. Physiol. 2006, 574, 905–915. [Google Scholar] [CrossRef]
- Tucker, R.; Rauch, L.; Harley, Y.X.R.; Noakes, T.D. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004, 448, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F.; Looverie, R.; Meeusen, R. Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J. Physiol. 2005, 565, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Cian, C.; Barraud, P.A.; Melin, B.; Raphel, C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int. J. Psychophysiol. 2001, 42, 243–251. [Google Scholar] [CrossRef]
- Gaoua, N.; Racinais, S.; Grantham, J.; El Massioui, F. Alterations in cognitive performance during passive hyperthermia are task dependent. Int. J. Hyperth. 2011, 27, 1–9. [Google Scholar] [CrossRef]
- Jiang, Q.; Yang, X.; Liu, K.; Li, B.; Li, L.; Li, M.; Qian, S.; Zhao, L.; Zhou, Z.; Sun, G. Hyperthermia impaired human visual short-term memory: An fMRI study. Int. J. Hyperth. 2013, 29, 219–224. [Google Scholar] [CrossRef]
- McMorris, T.; Swain, J.; Smith, M.; Corbett, J.; Delves, S.; Sale, C.; Harris, R.C.; Potter, J. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int. J. Psychophysiol. 2006, 61, 204–215. [Google Scholar] [CrossRef]
- Racinais, S.; Gaoua, N.; Grantham, J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J. Physiol. 2008, 586, 4751–4762. [Google Scholar] [CrossRef] [Green Version]
- Gaoua, N.; Racinais, S.; Grantham, J.; El Massioui, F. Sensory displeasure reduces complex cognitive performance in the heat. J. Environ. Psychol. 2012, 32, 158–163. [Google Scholar] [CrossRef]
- Sun, G.; Yang, X.; Jiang, Q.; Liu, K.; Li, B.; Li, L.; Zhao, L.; Li, M. Hyperthermia impairs the executive function using the Attention Network Test. Int. J. Hyperth. 2012, 28, 621–626. [Google Scholar] [CrossRef]
- Racinais, S.; Périard, J.D.; Karlsen, A.; Nybo, L. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med. Sci. Sports Exerc. 2015, 47, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 1), 20–38. [Google Scholar] [CrossRef]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Hausswirth, C.; Jay, O.; Lee, J.K.W.; Mitchell, N.; et al. Consensus recommendations on training and competing in the heat. Scand. J. Med. Sci. Sports 2015, 25, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Trangmar, S.J.; Chiesa, S.T.; Stock, C.G.; Kalsi, K.K.; Secher, N.H.; González-Alonso, J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J. Physiol. 2014, 592, 3143–3160. [Google Scholar] [CrossRef] [PubMed]
- Shirreffs, S.M. Hydration: Special issues for playing football in warm and hot environments. Scand. J. Med. Sci. Sports 2010, 20, 90–94. [Google Scholar] [CrossRef]
- Grantham, J.; Cheung, S.S.; Connes, P.; Febbraio, M.A.; Gaoua, N.; González-Alonso, J.; Hue, O.; Johnson, J.M.; Maughan, R.J.; Meeusen, R.; et al. Current knowledge on playing football in hot environments. Scand. J. Med. Sci. Sports 2010, 20, 161–167. [Google Scholar] [CrossRef]
- Tyler, C.J.; Sunderland, C.; Cheung, S.S. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: A meta-analysis. Br. J. Sports Med. 2015, 49, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Bongers, C.C.W.G.; Thijssen, D.H.J.; Veltmeijer, M.T.W.; Hopman, M.T.E.; Eijsvogels, T.M.H. Precooling and percooling (cooling during exercise) both improve performance in the heat: A meta-analytical review. Br. J. Sports Med. 2015, 49, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Douzi, W.; Dugué, B.; Vinches, L.; Al Sayed, C.; Hallé, S.; Bosquet, L.; Dupuy, O. Cooling during exercise enhances performances, but the cooled body areas matter: A systematic review with meta-analyses. Scand. J. Med. Sci. Sports 2019, 29, 1660–1676. [Google Scholar] [CrossRef]
- Commission for Thermal Physiology of the International Union of Physiological Sciences Glossary of terms for thermal physiology: Second edition. Pflugers Arch. 1987, 410, 567–587. [CrossRef]
- Galloway, S.D.; Maughan, R.J. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med. Sci. Sports Exerc. 1997, 29, 1240–1249. [Google Scholar] [CrossRef]
- Tyler, C.; Sunderland, C. The effect of ambient temperature on the reliability of a preloaded treadmill time-trial. Int. J. Sports Med. 2008, 29, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Marino, F.E. Anticipatory regulation and avoidance of catastrophe during exercise-induced hyperthermia. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 139, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Marino, F.E.; Lambert, M.I.; Noakes, T.D. Superior performance of African runners in warm humid but not in cool environmental conditions. J. Appl. Physiol. 2004, 96, 124–130. [Google Scholar] [CrossRef]
- Martin, D.E.; Gynn, R.W. The Olympic Marathon; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Locke, M.; Noble, E.G. Stress proteins: The exercise response. Can. J. Appl. Physiol. 1995, 20, 155–167. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Koukoulas, I. HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J. Appl. Physiol. 2000, 89, 1055–1060. [Google Scholar] [CrossRef] [Green Version]
- Gastin, P.B. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001, 31, 725–741. [Google Scholar] [CrossRef]
- Nybo, L.; Secher, N.H. Cerebral perturbations provoked by prolonged exercise. Prog. Neurobiol. 2004, 72, 223–261. [Google Scholar] [CrossRef]
- González-Alonso, J.; Calbet, J.A.; Nielsen, B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J. Physiol. 1998, 513, 895–905. [Google Scholar] [CrossRef]
- Adolph, E.F. Physiology of Man in the Desert; Interscience Pub.: New York, NY, USA, 1947. [Google Scholar]
- Altareki, N.; Drust, B.; Atkinson, G.; Cable, T.; Gregson, W. Effects of environmental heat stress (35 degrees C) with simulated air movement on the thermoregulatory responses during a 4-km cycling time trial. Int. J. Sports Med. 2009, 30, 9–15. [Google Scholar] [CrossRef]
- Ely, M.R.; Cheuvront, S.N.; Roberts, W.O.; Montain, S.J. Impact of weather on marathon-running performance. Med. Sci. Sports Exerc. 2007, 39, 487–493. [Google Scholar] [CrossRef]
- Wingo, J.E.; Cureton, K.J. Maximal Oxygen Uptake After Attenuation of Cardiovascular Drift During Heat Stress. Aviat. Space Environ. Med. 2006, 77, 687–694. [Google Scholar] [PubMed]
- Ely, B.R.; Cheuvront, S.N.; Kenefick, R.W.; Sawka, M.N. Aerobic performance is degraded, despite modest hyperthermia, in hot environments. Med. Sci. Sports Exerc. 2010, 42, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDougall, J.D.; Reddan, W.G.; Layton, C.R.; Dempsey, J.A. Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J. Appl. Physiol. 1974, 36, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Cramer, M.N.; Chapman, P.G.; Caillaud, C.; Thompson, M.W. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp. Physiol. 2011, 96, 134–144. [Google Scholar] [CrossRef]
- Tatterson, A.J.; Hahn, A.G.; Martin, D.T.; Febbraio, M.A. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J. Sci. Med. Sport 2000, 3, 186–193. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Parkin, J.M.; Baldwin, J.; Zhao, S.; Carey, M.F. Effect of Ambient Temperature on Metabolic Indices of Fatigue During Prolonged Exercise. Med. Sci. Sports Exerc. 1996, 28, 180. [Google Scholar] [CrossRef]
- Périard, J.D.; Caillaud, C.; Thompson, M.W. Central and peripheral fatigue during passive and exercise-induced hyperthermia. Med. Sci. Sports Exerc. 2011, 43, 1657–1665. [Google Scholar] [CrossRef]
- Klausen, K.; Dill, D.B.; Phillips, E.E.; McGregor, D. Metabolic reactions to work in the desert. J. Appl. Physiol. 1967, 22, 292–296. [Google Scholar] [CrossRef]
- Rowell, L.B.; Brengelmann, G.L.; Murray, J.A.; Kraning, K.K.; Kusumi, F. Human metabolic responses to hyperthermia during mild to maximal exercise. J. Appl. Physiol. 1969, 26, 395–402. [Google Scholar] [CrossRef]
- Williams, C.G.; Bredell, G.A.G.; Wyndham, C.H.; Strydom, N.B.; Morrison, J.F.; Peter, J.; Fleming, P.W.; Ward, J.S. Circulatory and metabolic reactions to work in heat. J. Appl. Physiol. 1962, 17, 625–638. [Google Scholar] [CrossRef]
- Rowell, L.B.; Marx, H.J.; Bruce, R.A.; Conn, R.D.; Kusumi, F. Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. J. Clin. Investig. 1966, 45, 1801–1816. [Google Scholar] [CrossRef] [Green Version]
- Bergh, U.; Ekblom, B. Physical performance and peak aerobic power at different body temperatures. J. Appl. Physiol. 1979, 46, 885–889. [Google Scholar] [CrossRef]
- Cheung, S.S.; Sleivert, G.G. Multiple triggers for hyperthermic fatigue and exhaustion. Exerc. Sport Sci. Rev. 2004, 32, 100–106. [Google Scholar] [CrossRef]
- Coyle, E.F.; González-Alonso, J. Cardiovascular drift during prolonged exercise: New perspectives. Exerc. Sport Sci. Rev. 2001, 29, 88–92. [Google Scholar]
- González-Alonso, J.; Crandall, C.G.; Johnson, J.M. The cardiovascular challenge of exercising in the heat. J. Physiol. 2008, 586, 45–53. [Google Scholar] [CrossRef]
- Febbraio, M.A. Does muscle function and metabolism affect exercise performance in the heat? Exerc. Sport Sci. Rev. 2000, 28, 171–176. [Google Scholar]
- Cabanac, M. Sensory pleasure optimizes muscular work. Clin. Investig. Med. 2006, 29, 110–116. [Google Scholar]
- Pandolf, K.B. Influence of local and central factors in dominating rated perceived exertion during physical work. Percept. Mot. Skills 1978, 46, 683–698. [Google Scholar] [CrossRef]
- Nybo, L.; Rasmussen, P.; Sawka, M.N. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr. Physiol. 2014, 4, 657–689. [Google Scholar]
- Backx, K.; McNaughton, L.; Crickmore, L.; Palmer, G.; Carlisle, A. Effects of differing heat and humidity on the performance and recovery from multiple high intensity, intermittent exercise bouts. Int. J. Sports Med. 2000, 21, 400–405. [Google Scholar] [CrossRef]
- Arngrímsson, S.A.; Petitt, D.S.; Borrani, F.; Skinner, K.A.; Cureton, K.J. Hyperthermia and maximal oxygen uptake in men and women. Eur. J. Appl. Physiol. 2004, 92, 524–532. [Google Scholar] [CrossRef]
- Falk, B.; Radom-Isaac, S.; Hoffmann, J.R.; Wang, Y.; Yarom, Y.; Magazanik, A.; Weinstein, Y. The effect of heat exposure on performance of and recovery from high-intensity, intermittent exercise. Int. J. Sports Med. 1998, 19, 1–6. [Google Scholar] [CrossRef]
- Ball, D.; Burrows, C.; Sargeant, A.J. Human power output during repeated sprint cycle exercise: The influence of thermal stress. Eur. J. Appl. Physiol. 1999, 79, 360–366. [Google Scholar] [CrossRef]
- Gray, S.R.; De Vito, G.; Nimmo, M.A.; Farina, D.; Ferguson, R.A. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R376–R382. [Google Scholar] [CrossRef] [Green Version]
- Linnane, D.M.; Bracken, R.M.; Brooks, S.; Cox, V.M.; Ball, D. Effects of hyperthermia on the metabolic responses to repeated high-intensity exercise. Eur. J. Appl. Physiol. 2004, 93, 159–166. [Google Scholar] [CrossRef]
- Yaicharoen, P.; Wallman, K.; Morton, A.; Bishop, D.; Grove, R.J. The effects of warm-up on intermittent sprint performance in a hot and humid environment. J. Sports Sci. 2012, 30, 967–974. [Google Scholar] [CrossRef]
- Girard, O.; Bishop, D.J.; Racinais, S. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. Eur. J. Appl. Physiol. 2013, 113, 359–369. [Google Scholar] [CrossRef]
- Sargeant, A.J. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur. J. Appl. Physiol. 1987, 56, 693–698. [Google Scholar] [CrossRef]
- Guy, J.H.; Deakin, G.B.; Edwards, A.M.; Miller, C.M.; Pyne, D.B. Adaptation to hot environmental conditions: An exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015, 45, 303–311. [Google Scholar] [CrossRef]
- Farina, D. Effect of temperature on spike-triggered average torque and electrophysiological properties of low-threshold motor units. J. Appl. Physiol. 2005, 99, 197–203. [Google Scholar] [CrossRef]
- Bishop, D.; Maxwell, N.S. Effects of active warm up on thermoregulation and intermittent-sprint performance in hot conditions. J. Sci. Med. Sport 2009, 12, 196–204. [Google Scholar] [CrossRef]
- Maxwell, N.S.; Aitchison, T.C.; Nimmo, M.A. The effect of climatic heat stress on intermittent supramaximal running performance in humans. Exp. Physiol. 1996, 81, 833–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nybo, L.; Nielsen, B. Perceived exertion is associated with an altered brain activity during exercise with progressive hyperthermia. J. Appl. Physiol. 2001, 91, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, R.; Arimitsu, T.; Yunoki, T.; Kimura, T.; Yamanaka, R.; Yano, T. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Biol. Sport 2015, 32, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Nybo, N. CNS fatigue provoked by prolonged exercise in the heat. Front. Biosci. Elite Ed. 2010, 2, 779–792. [Google Scholar] [CrossRef]
- Nybo, L.; Dalsgaard, M.K.; Steensberg, A.; Møller, K.; Secher, N.H. Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J. Physiol. 2005, 563, 285–290. [Google Scholar] [CrossRef]
- Sawka, M.N.; Leon, L.R.; Montain, S.J.; Sonna, L.A. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr. Physiol. 2011, 1, 1883–1928. [Google Scholar]
- González-Alonso, J.; Dalsgaard, M.K.; Osada, T.; Volianitis, S.; Dawson, E.A.; Yoshiga, C.C.; Secher, N.H. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J. Physiol. 2004, 557, 331–342. [Google Scholar] [CrossRef]
- Lieberman, H.R.; Castellani, J.W.; Young, A.J. Cognitive function and mood during acute cold stress after extended military training and recovery. Aviat. Space Environ. Med. 2009, 80, 629–636. [Google Scholar] [CrossRef]
- Lenzuni, P.; Capone, P.; Freda, D.; Del Gaudio, M. Is driving in a hot vehicle safe? Int. J. Hyperth. 2014, 30, 250–257. [Google Scholar] [CrossRef]
- Nunneley, S.A.; Dowd, P.J.; Myhre, L.G.; Stribley, R.F.; McNee, R.C. Tracking-task performance during heat stress simulating cockpit conditions in high-performance aircraft. Ergonomics 1979, 22, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Amos, D.; Hansen, R.; Lau, W.M.; Michalski, J.T. Physiological and cognitive performance of soldiers conducting routine patrol and reconnaissance operations in the tropics. Mil. Med. 2000, 165, 961–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, P.A. Task categorization and the limits of human performance in extreme heat. Aviat. Space Environ. Med. 1982, 53, 778–784. [Google Scholar] [PubMed]
- Simmons, S.E.; Mündel, T.; Jones, D.A. The effects of passive heating and head-cooling on perception of exercise in the heat. Eur. J. Appl. Physiol. 2008, 104, 281–288. [Google Scholar] [CrossRef]
- Hancock, P. Sustained attention under thermal stress. Psychol. Bull. 1986, 99, 263–281. [Google Scholar] [CrossRef]
- Faerevik, H.; Reinertsen, R.E. Effects of wearing aircrew protective clothing on physiological and cognitive responses under various ambient conditions. Ergonomics 2003, 46, 780–799. [Google Scholar] [CrossRef]
- Froom, P.; Caine, Y.; Shochat, I.; Ribak, J. Heat stress and helicopter pilot errors. J. Occup. Med. 1993, 35, 720–724. [Google Scholar] [CrossRef]
- Qian, S.; Li, M.; Li, G.; Liu, K.; Li, B.; Jiang, Q.; Li, L.; Yang, Z.; Sun, G. Environmental heat stress enhances mental fatigue during sustained attention task performing: Evidence from an ASL perfusion study. Behav. Brain Res. 2015, 280, 6–15. [Google Scholar] [CrossRef]
- Smits, B.L.M.; Pepping, G.-J.; Hettinga, F.J. Pacing and decision making in sport and exercise: The roles of perception and action in the regulation of exercise intensity. Sports Med. 2014, 44, 763–775. [Google Scholar] [CrossRef] [Green Version]
- Schmit, C.; Hausswirth, C.; Le Meur, Y.; Duffield, R. Cognitive Functioning and Heat Strain: Performance Responses and Protective Strategies. Sports Med. 2017, 47, 1289–1302. [Google Scholar] [CrossRef]
- Grego, F.; Vallier, J.-M.; Collardeau, M.; Bermon, S.; Ferrari, P.; Candito, M.; Bayer, P.; Magnié, M.-N.; Brisswalter, J. Effects of long duration exercise on cognitive function, blood glucose, and counterregulatory hormones in male cyclists. Neurosci. Lett. 2004, 364, 76–80. [Google Scholar] [CrossRef]
- Bandelow, S.; Maughan, R.; Shirreffs, S.; Ozgünen, K.; Kurdak, S.; Ersöz, G.; Binnet, M.; Dvorak, J. The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 3), 148–160. [Google Scholar] [CrossRef]
- Nunneley, S.A.; Martin, C.C.; Slauson, J.W.; Hearon, C.M.; Nickerson, L.D.H.; Mason, P.A. Changes in regional cerebral metabolism during systemic hyperthermia in humans. J. Appl. Physiol. 2002, 92, 846–851. [Google Scholar] [CrossRef] [Green Version]
- Hocking, C.; Silberstein, R.B.; Lau, W.M.; Stough, C.; Roberts, W. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 128, 719–734. [Google Scholar] [CrossRef]
- Brisswalter, J.; Collardeau, M.; René, A. Effects of acute physical exercise characteristics on cognitive performance. Sports Med. 2002, 32, 555–566. [Google Scholar] [CrossRef]
- Masento, N.A.; Golightly, M.; Field, D.T.; Butler, L.T.; van Reekum, C.M. Effects of hydration status on cognitive performance and mood. Br. J. Nutr. 2014, 111, 1841–1852. [Google Scholar] [CrossRef]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.S. Neuropsychological determinants of exercise tolerance in the heat. Prog. Brain Res. 2007, 162, 45–60. [Google Scholar]
- Yeargin, S.W.; Casa, D.J.; McClung, J.M.; Knight, J.C.; Healey, J.C.; Goss, P.J.; Harvard, W.R.; Hipp, G.R. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J. Strength Cond. Res. 2006, 20, 383–389. [Google Scholar]
- Sleivert, G.G.; Cotter, J.D.; Roberts, W.S.; Febbraio, M.A. The influence of whole-body vs. torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2001, 128, 657–666. [Google Scholar] [CrossRef]
- Wegmann, M.; Faude, O.; Poppendieck, W.; Hecksteden, A.; Fröhlich, M.; Meyer, T. Pre-cooling and sports performance: A meta-analytical review. Sports Med. 2012, 42, 545–564. [Google Scholar] [CrossRef] [PubMed]
- Arngrimsson, S.A.; Petitt, D.S.; Stueck, M.G.; Jorgensen, D.K.; Cureton, K.J. Cooling vest worn during active warm-up improves 5-km run performance in the heat. J. Appl. Physiol. 2004, 96, 1867–1874. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.J.; Kittel, A.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance in the heat is improved by similar magnitude with pre-exercise cold-water immersion and mid-exercise facial water spray. J. Sports Sci. 2017, 35, 798–805. [Google Scholar] [CrossRef]
- Stevens, C.J.; Bennett, K.J.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. A comparison of mixed-method cooling interventions on pre-loaded running performance in the heat. J. Strength Cond. Res. 2017, 31, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Taylor, L.; Dascombe, B.J. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat. Sports Med. 2017, 47, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, S.J.; Krug, R.; Jensen, D. Does wearing clothing made of a synthetic “cooling” fabric improve indoor cycle exercise endurance in trained athletes? Physiol. Rep. 2015, 3, e12505. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.N. Exertional thermal strain, protective clothing and auxiliary cooling in dry heat: Evidence for physiological but not cognitive impairment. Eur. J. Appl. Physiol. 2012, 112, 3597–3606. [Google Scholar] [CrossRef]
- Ruddock, A.D.; Tew, G.A.; Purvis, A.J. Effect of hand cooling on body temperature, cardiovascular and perceptual responses during recumbent cycling in a hot environment. J. Sports Sci. 2017, 35, 1466–1474. [Google Scholar] [CrossRef]
- Geurts, C.L.M.; Sleivert, G.G.; Cheung, S.S. Local cold acclimation during exercise and its effect on neuromuscular function of the hand. Appl. Physiol. Nutr. Metab. 2006, 31, 717–725. [Google Scholar] [CrossRef]
- Burdon, C.A.; Hoon, M.W.; Johnson, N.A.; Chapman, P.G.; O’Connor, H.T. The Effect of Ice Slushy Ingestion and Mouthwash on Thermoregulation and Endurance Performance in the Heat. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 458–469. [Google Scholar] [CrossRef]
- Stevens, C.J.; Dascombe, B.; Boyko, A.; Sculley, D.; Callister, R. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. J. Sports Sci. 2013, 31, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Mündel, T.; King, J.; Collacott, E.; Jones, D.A. Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Exp. Physiol. 2006, 91, 925–933. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, M.V.; De Andrade, M.T.; Ramos, G.P.; Maia-Lima, A.; Pereira, E.R.; Mendes, T.T.; Marins, J.C.; Amorim, F.T.; Silami-Garcia, E. The temperature of water ingested ad libitum does not influence performance during a 40-km self-paced cycling trial in the heat. J. Sports Med. Phys. Fitness 2015, 55, 1473–1479. [Google Scholar] [PubMed]
- Tyler, C.J.; Wild, P.; Sunderland, C. Practical neck cooling and time-trial running performance in a hot environment. Eur. J. Appl. Physiol. 2010, 110, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.J.; Sunderland, C. Cooling the Neck Region During Exercise in the Heat. J. Athl. Train. 2011, 46, 61–68. [Google Scholar] [CrossRef]
- Tyler, C.J.; Sunderland, C. Neck Cooling and Running Performance in the Heat: Single versus Repeated Application. Med. Sci. Sports Exerc. 2011, 43, 2388–2395. [Google Scholar] [CrossRef] [Green Version]
- Minniti, A.; Tyler, C.J.; Sunderland, C. Effects of a cooling collar on affect, ratings of perceived exertion, and running performance in the heat. Eur. J. Sport Sci. 2011, 11, 419–429. [Google Scholar] [CrossRef]
- Lee, J.K.W.; Koh, A.C.H.; Koh, S.X.T.; Liu, G.J.X.; Nio, A.Q.X.; Fan, P.W.P. Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur. J. Appl. Physiol. 2014, 114, 375–384. [Google Scholar] [CrossRef]
- Eijsvogels, T.M.H.; Bongers, C.; Veltmeijer, M.T.W.; Moen, M.H.; Hopman, M. Cooling during exercise in temperate conditions: Impact on performance and thermoregulation. Int. J. Sports Med. 2014, 35, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Cuttell, S.A.; Kiri, V.; Tyler, C. A Comparison of 2 Practical Cooling Methods on Cycling Capacity in the Heat. J. Athl. Train. 2016, 51, 525–532. [Google Scholar] [CrossRef]
- Kenny, G.P.; Schissler, A.R.; Stapleton, J.; Piamonte, M.; Binder, K.; Lynn, A.; Lan, C.Q.; Hardcastle, S.G. Ice Cooling Vest on Tolerance for Exercise under Uncompensable Heat Stress. J. Occup. Environ. Hyg. 2011, 8, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Luomala, M.J.; Oksa, J.; Salmi, J.A.; Linnamo, V.; Holmer, I.; Smolander, J.; Dugue, B. Adding a cooling vest during cycling improves performance in warm and humid conditions. J. Therm. Biol. 2012, 37, 47–55. [Google Scholar] [CrossRef]
- Barwood, M.J.; Newton, P.S.; Tipton, M.J. Ventilated vest and tolerance for intermittent exercise in hot, dry conditions with military clothing. Aviat. Space Environ. Med. 2009, 80, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Chinevere, T.D.; Cadarette, B.S.; Goodman, D.A.; Ely, B.R.; Cheuvront, S.N.; Sawka, M.N. Efficacy of body ventilation system for reducing strain in warm and hot climates. Eur. J. Appl. Physiol. 2008, 103, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Schlader, Z.J.; Simmons, S.E.; Stannard, S.R.; Mündel, T. The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiol. Behav. 2011, 103, 217–224. [Google Scholar] [CrossRef]
- Teunissen, L.P.J.; de Haan, A.; de Koning, J.J.; Daanen, H.A.M. Effects of wind application on thermal perception and self-paced performance. Eur. J. Appl. Physiol. 2013, 113, 1705–1717. [Google Scholar] [CrossRef]
- Ruddock, A.; Robbins, B.; Tew, G.; Bourke, L.; Purvis, A. Practical Cooling Strategies During Continuous Exercise in Hot Environments: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 517–532. [Google Scholar] [CrossRef] [Green Version]
- Mündel, T.; Jones, D.A. The effects of swilling an L(−)-menthol solution during exercise in the heat. Eur. J. Appl. Physiol. 2010, 109, 59–65. [Google Scholar] [CrossRef]
- Barwood, M.J.; Corbett, J.; Thomas, K.; Twentyman, P. Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat. Scand. J. Med. Sci. Sports 2015, 25, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Ansley, L.; Marvin, G.; Sharma, A.; Kendall, M.J.; Jones, D.A.; Bridge, M.W. The effects of head cooling on endurance and neuroendocrine responses to exercise in warm conditions. Physiol. Res. 2008, 57, 863. [Google Scholar]
- Kim, J.-H.; Coca, A.; Williams, W.J.; Roberge, R.J. Effects of Liquid Cooling Garments on Recovery and Performance Time in Individuals Performing Strenuous Work Wearing a Firefighter Ensemble. J. Occup. Environ. Hyg. 2011, 8, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Scheadler, C.M.; Saunders, N.W.; Hanson, N.J.; Devor, S.T. Palm cooling does not improve running performance. Int. J. Sports Med. 2013, 34, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.R.; Hagobian, T.A.; Jacobs, K.A.; Attallah, H.; Friedlander, A.L. Effects of heat removal through the hand on metabolism and performance during cycling exercise in the heat. Can. J. Appl. Physiol. 2005, 30, 87–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grahn, D.A.; Cao, V.H.; Heller, H.C. Heat extraction through the palm of one hand improves aerobic exercise endurance in a hot environment. J. Appl. Physiol. 2005, 99, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Wingo, J.E.; Cureton, K.J. Body cooling attenuates the decrease in maximal oxygen uptake associated with cardiovascular drift during heat stress. Eur. J. Appl. Physiol. 2006, 98, 97–104. [Google Scholar] [CrossRef]
- McFarlin, B.K.; Henning, A.L.; Venable, A.S.; Williams, R.R.; Sampson, J.N.B. A shirt containing multistage phase change material and active cooling components was associated with increased exercise capacity in a hot, humid environment. Ergonomics 2016, 59, 1019–1025. [Google Scholar] [CrossRef]
- Webborn, N.; Price, M.J.; Castle, P.; Goosey-Tolfrey, V.L. Cooling strategies improve intermittent sprint performance in the heat of athletes with tetraplegia. Br. J. Sports Med. 2010, 44, 455–460. [Google Scholar] [CrossRef]
- Sunderland, C.; Stevens, R.; Everson, B.; Tyler, C.J. Neck-cooling improves repeated sprint performance in the heat. Front. Physiol. 2015, 6, 169. [Google Scholar] [CrossRef] [Green Version]
- Sunderland, C.; Nevill, M. Effect of the menstrual cycle on performance of intermittent, high-intensity shuttle running in a hot environment. Eur. J. Appl. Physiol. 2003, 88, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Sunderland, C.; Nevill, M.E. High-intensity intermittent running and field hockey skill performance in the heat. J. Sports Sci. 2005, 23, 531–540. [Google Scholar] [CrossRef]
- Morris, J.G.; Nevill, M.E.; Boobis, L.H.; Macdonald, I.A.; Williams, C. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 ° and 17 °C. Int. J. Sports Med. 2005, 26, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, C.; Morris, J.G.; Nevill, M.E. A heat acclimation protocol for team sports. Br. J. Sports Med. 2008, 42, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Caruso, J.F.; Barbosa, A.; Erickson, L.; Edwards, R.; Perry, R.; Learmonth, L.; Potter, W.T. Intermittent palm cooling’s impact on resistive exercise performance. Int. J. Sports Med. 2015, 94, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Robergs, R.A.; Mermier, C.M.; Schneider, S.M.; Gurney, A.B. Palm cooling and heating delays fatigue during resistance exercise in women. J. Strength Cond. Res. 2015, 29, 2261–2269. [Google Scholar] [CrossRef]
- LaFata, D.; Carlson-Phillips, A.; Sims, S.T.; Russell, E.M. The effect of a cold beverage during an exercise session combining both strength and energy systems development training on core temperature and markers of performance. J. Int. Soc. Sports Nutr. 2012, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Simmons, S.E.; Saxby, B.K.; McGlone, F.P.; Jones, D.A. The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. Eur. J. Appl. Physiol. 2008, 104, 271–280. [Google Scholar] [CrossRef]
- Ross, M.; Abbiss, C.; Laursen, P.; Martin, D.; Burke, L. Precooling methods and their effects on athletic performance. Sports Med. 2013, 43, 207–225. [Google Scholar] [CrossRef]
- Nybo, L.; Møller, K.; Volianitis, S.; Nielsen, B.; Secher, N.H. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J. Appl. Physiol. 2002, 93, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jiang, Q.; Li, L.; Li, B.; Yang, Z.; Qian, S.; Li, M.; Sun, G. Impact of elevated core body temperature on attention networks. Cogn. Behav. Neurol. 2015, 28, 198–206. [Google Scholar] [CrossRef]
- Allnutt, M.F.; Allan, J.R. The Effects of Core Temperature Elevation and Thermal Sensation on Performance. Ergonomics 1973, 16, 189–196. [Google Scholar] [CrossRef]
- Pilcher, J.J.; Nadler, E.; Busch, C. Effects of hot and cold temperature exposure on performance: A meta-analytic review. Ergonomics 2002, 45, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Komiyama, T.; Sudo, M.; Kiyonaga, A.; Tanaka, H.; Higaki, Y. The effects of temporal neck cooling on cognitive function during strenuous exercise in a hot environment: A pilot study. BMC Res. Notes 2015, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowell, L.B. Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 1974, 54, 75–159. [Google Scholar] [CrossRef] [PubMed]
- Bongers, C.C.W.G.; Hopman, M.T.E.; Eijsvogels, T.M.H. Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations. Temperature 2017, 4, 60–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Kuklane, K.; Holmér, I. Cooling vests with phase change material packs: The effects of temperature gradient, mass and covering area. Ergonomics 2010, 53, 716–723. [Google Scholar] [CrossRef]
- Minett, G.M.; Duffield, R.; Marino, F.E.; Portus, M. Volume-dependent response of precooling for intermittent-sprint exercise in the heat. Med. Sci. Sports Exerc. 2011, 43, 1760–1769. [Google Scholar] [CrossRef] [Green Version]
- Duffield, R.; Marino, F.E. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions. Eur. J. Appl. Physiol. 2007, 100, 727–735. [Google Scholar] [CrossRef]
- Daanen, H.A.; Van Es, E.M.; De Graaf, J.L. Heat strain and gross efficiency during endurance exercise after lower, upper, or whole body precooling in the heat. Int. J. Sports Med. 2006, 27, 379–388. [Google Scholar] [CrossRef]
- Castle, P.C.; Macdonald, A.L.; Philp, A.; Webborn, A.; Watt, P.W.; Maxwell, N.S. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions. J. Appl. Physiol. 2006, 100, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Duffield, R.; Green, R.; Castle, P.; Maxwell, N. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Med. Sci. Sports Exerc. 2010, 42, 577–584. [Google Scholar] [CrossRef]
- Kay, D.; Taaffe, D.R.; Marino, F.E. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. J. Sports Sci. 1999, 17, 937–944. [Google Scholar] [CrossRef]
- Siegel, R.; Maté, J.; Watson, G.; Nosaka, K.; Laursen, P.B. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J. Sports Sci. 2012, 30, 155–165. [Google Scholar] [CrossRef]
- Proulx, C.I.; Ducharme, M.B.; Kenny, G.P. Effect of water temperature on cooling efficiency during hyperthermia in humans. J. Appl. Physiol. 2003, 94, 1317–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.-W.; Kim, M.-J.; Lee, J.-Y. Alleviation of Heat Strain by Cooling Different Body Areas during Red Pepper Harvest Work at WBGT 33 °C. Ind. Health 2008, 46, 620–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shvartz, E.; Benor, D. Total body cooling in warm environments. J. Appl. Physiol. 1971, 31, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.; Annis, J.F. Cooling required to suppress sweating during work. J. Appl. Physiol. 1968, 25, 489–493. [Google Scholar] [CrossRef]
- Strydom, N.B.; Benade, A.J.S.; Van Derwalt, W. The Performance of the Improved Microclimate Suit; Chamber of Mines Research Report No 32/72; Chamber of Mine of South Africa: Johannesburg, South Africa, 1972. [Google Scholar]
- Gold, A.J.; Zornitzer, A. Effect of partial body cooling on man exercising in a hot, dry environment. Aerosp. Med. 1968, 39, 944. [Google Scholar]
- Young, A.J.; Sawka, M.N.; Epstein, Y.; DeCristofano, B.; Pandolf, K.B. Cooling different body surfaces during upper and lower body exercise. J. Appl. Physiol. 1987, 63, 1218–1223. [Google Scholar] [CrossRef]
- Shvartz, E. Effect of neck versus chest cooling on responses to work in heat. J. Appl. Physiol. 1976, 40, 668–672. [Google Scholar] [CrossRef]
- Shvartz, N.B. The incorporation of individual cooling in a compressed-oxygen closed-circuit breathing apparatus. J. S. Afr. Inst. Min. Metall. 1975, 75, 322–324. [Google Scholar]
- Shvartz, E. The application of conductive cooling to human operators. Hum. Factors 1975, 17, 438–445. [Google Scholar] [CrossRef]
- Shvartz, E.; Aldjem, M.; Ben-Mordechai, J.; Shapiro, Y. Objective approach to a design of a whole-body, water-cooled suit. Aerosp. Med. 1974, 45, 711–715. [Google Scholar] [PubMed]
- Nishihara, N.; Tanabe, S.; Hayama, H.; Komatsu, M. A cooling vest for working comfortably in a moderately hot environment. J. Physiol. Anthropol. Appl. Human Sci. 2002, 21, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toner, M.M.; Sawka, M.N.; Pandolf, K.B. Thermal responses during arm and leg and combined arm-leg exercise in water. J. Appl. Physiol. 1984, 56, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, W.C.; Pittman, J.C. A simple liquid transport cooling system for aircrew-members(Water cooled vest with insulated icebox and electric pump to reduce thermal strain and increase comfort for aircrew members in hot humid climates). Aerosp. Med. 1966, 37, 1239–1243. [Google Scholar]
- Cotter, J.D.; Taylor, N.A.S. The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: An open-loop approach. J. Physiol. 2005, 565, 335–345. [Google Scholar] [CrossRef]
- Shvartz, E. Effect of a cooling hood on physiological responses to work in a hot environment. J. Appl. Physiol. 1970, 29, 36–39. [Google Scholar] [CrossRef]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutr. Burbank Los Angel. Cty. Calif 1889, 5, 303. [Google Scholar]
- Kissen, A.T.; Hall, J.F.; Klemm, F.K. Physiological responses to cooling the head and neck versus the trunk and leg areas in severe hyperthermic exposure. Aerosp. Med. 1971, 42, 882–888. [Google Scholar]
- Nunneley, S.A.; Maldonado, R.J. Head and/or torso cooling during simulated cockpit heat stress. Aviat. Space Environ. Med. 1983, 54, 496–499. [Google Scholar] [PubMed]
- Chan, A.P.; Song, W.; Yang, Y. Meta-analysis of the effects of microclimate cooling systems on human performance under thermal stressful environments: Potential applications to occupational workers. J. Therm. Biol. 2015, 49, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yoda, T.; Crawshaw, L.I.; Kasuga, M.; Uchida, Y.; Tokizawa, K.; Nagashima, K.; Kanosue, K. Relative importance of different surface regions for thermal comfort in humans. Eur. J. Appl. Physiol. 2013, 113, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Esaki, H.; Yoda, T.; Yasuhara, S.; Kobayashi, A.; Konishi, A.; Osawa, N.; Nagashima, K.; Crawshaw, L.I.; Kanosue, K. A new system for the analysis of thermal judgments: Multipoint measurements of skin temperatures and temperature-related sensations and their joint visualization. J. Physiol. Sci. 2006, 56, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yoda, T.; Crawshaw, L.I.; Yasuhara, S.; Saito, Y.; Kasuga, M.; Nagashima, K.; Kanosue, K. Regional differences in temperature sensation and thermal comfort in humans. J. Appl. Physiol. 2008, 105, 1897–1906. [Google Scholar] [CrossRef] [Green Version]
- Nunneley, S.A.; Troutman, S.J., Jr.; Webb, P. Head cooling in work and heat stress. Aerosp. Med. 1971, 42, 64–68. [Google Scholar]
- Nunneley, S.A.; Reader, D.C.; Maldonado, R.J. Head-temperature effects on physiology, comfort, and performance during hyperthermia. Aviat. Space Environ. Med. 1982, 53, 623–628. [Google Scholar]
- Brown, G.A.; Williams, G.M. The effect of head cooling on deep body temperature and thermal comfort in man. Aviat. Space Environ. Med. 1982, 53, 583–586. [Google Scholar]
- Taylor, N.A.; Machado-Moreira, C.A.; van den Heuvel, A.M.; Caldwell, J.N. Hands and feet: Physiological insulators, radiators and evaporators. Eur. J. Appl. Physiol. 2014, 114, 2037–2060. [Google Scholar] [CrossRef]
- Yazdi, M.M.; Sheikhzadeh, M. Personal cooling garments: A review. J. Text. Inst. 2014, 105, 1231–1250. [Google Scholar] [CrossRef]
- Armstrong, L.E. Exertional Heat Illnesses; Human Kinetics: Champaign, IL, USA, 2003. [Google Scholar]
- Cheung, S.S. Interconnections between thermal perception and exercise capacity in the heat. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 3), 53–59. [Google Scholar] [CrossRef]
- Gisolfi, C.V.; Copping, J.R. Thermal effects of prolonged treadmill exercise in the heat. Med. Sci. Sports Exerc. 1993, 25, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Filingeri, D.; Fournet, D.; Hodder, S.; Havenith, G. Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat. Scand. J. Med. Sci. Sports 2015, 25, 200–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mündel, T.; Raman, A.; Schlader, Z.J. Head temperature modulates thermal behavior in the cold in humans. Temperature 2016, 3, 298–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenefick, R.W.; Cheuvront, S.N.; Sawka, M.N. Thermoregulatory function during the marathon. Sports Med. 2007, 37, 312–315. [Google Scholar] [CrossRef]
- Reilly, T.; Drust, B.; Gregson, W. Thermoregulation in elite athletes. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 666–671. [Google Scholar] [CrossRef]
- Burdon, C.; O’Connor, H.; Gifford, J.; Shirreffs, S.; Chapman, P.; Johnson, N. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. J. Sports Sci. 2010, 28, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Morris, N.B.; Coombs, G.; Jay, O. Ice slurry ingestion leads to a lower net heat loss during exercise in the heat. Med. Sci. Sports Exerc. 2016, 48, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drinkwater, E. Effects of peripheral cooling on characteristics of local muscle. In Thermoregulation and Human Performance; Karger Publishers: Basel, Switzerland, 2008; Volume 53, pp. 74–88. [Google Scholar]
- Parkin, J.M.; Carey, M.F.; Zhao, S.; Febbraio, M.A. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J. Appl. Physiol. 1999, 86, 902–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. High skin temperature and hypohydration impair aerobic performance. Exp. Physiol. 2012, 97, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Olschewski, H.; Brück, K. Thermoregulatory, cardiovascular, and muscular factors related to exercise after precooling. J. Appl. Physiol. 1988, 64, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.; Brück, K. Effect of a precooling maneuver on body temperature and exercise performance. J. Appl. Physiol. 1981, 50, 772–778. [Google Scholar] [CrossRef] [PubMed]
- James, C.A.; Richardson, A.J.; Watt, P.W.; Gibson, O.R.; Maxwell, N.S. Physiological responses to incremental exercise in the heat following internal and external precooling. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 1), 190–199. [Google Scholar] [CrossRef]
- Butts, C.L.; Smith, C.R.; Ganio, M.S.; McDermott, B.P. Physiological and perceptual effects of a cooling garment during simulated industrial work in the heat. Appl. Ergon. 2017, 59, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.; Minson, C.T.; Kellogg, D.L. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr. Physiol. 2014, 4, 33–89. [Google Scholar] [PubMed]
- Keller, D.M.; Low, D.A.; Davis, S.L.; Hastings, J.; Crandall, C.G. Skin surface cooling improves orthostatic tolerance following prolonged head-down bed rest. J. Appl. Physiol. 2011, 110, 1592–1597. [Google Scholar] [CrossRef] [Green Version]
- Brisson, G.R.; Boisvert, P.; Péronnet, F.; Quirion, A.; Senécal, L. Face cooling-induced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress. Eur. J. Appl. Physiol. 1989, 58, 816–820. [Google Scholar] [CrossRef]
- Hasegawa, H.; Takatori, T.; Komura, T.; Yamasaki, M. Wearing a cooling jacket during exercise reduces thermal strain and improves endurance exercise performance in a warm environment. J. Strength Cond. Res. 2005, 19, 122–128. [Google Scholar] [CrossRef]
- Lee, J.K.; Shirreffs, S.M.; Maughan, R.J. Cold drink ingestion improves exercise endurance capacity in the heat. Med. Sci. Sports Exerc. 2008, 40, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.E.; Cui, J.; Zhang, R.; Crandall, C.G. Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1443–R1448. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.; Sleivert, G.G.; Cheung, S.S. Passive hyperthermia reduces voluntary activation and isometric force production. Eur. J. Appl. Physiol. 2004, 91, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Bridge, M.W.; Weller, A.S.; Rayson, M.; Jones, D.A. Responses to exercise in the heat related to measures of hypothalamic serotonergic and dopaminergic function. Eur. J. Appl. Physiol. 2003, 89, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Roelands, B. Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 3), 19–28. [Google Scholar] [CrossRef]
- Freeman, M.E.; Kanyicska, B.; Lerant, A.; Nagy, G. Prolactin: Structure, function, and regulation of secretion. Physiol. Rev. 2000, 80, 1523–1631. [Google Scholar] [CrossRef] [PubMed]
- Mündel, T.; Bunn, S.J.; Hooper, P.L.; Jones, D.A. The effects of face cooling during hyperthermic exercise in man: Evidence for an integrated thermal, neuroendocrine and behavioural response. Exp. Physiol. 2007, 92, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Brisson, G.R.; Bouchard, J.; Peronnet, F.; Boisvert, P.; Garceau, F. Evidence for an interference of selective face ventilation on hyperprolactinemia induced by hyperthermic treadmill running. Int. J. Sports Med. 1987, 8, 387–391. [Google Scholar] [CrossRef]
- Stevens, C.J.; Thoseby, B.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion. Scand. J. Med. Sci. Sports 2016, 26, 1209–1216. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douzi, W.; Dupuy, O.; Theurot, D.; Smolander, J.; Dugué, B. Per-Cooling (Using Cooling Systems during Physical Exercise) Enhances Physical and Cognitive Performances in Hot Environments. A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 1031. https://doi.org/10.3390/ijerph17031031
Douzi W, Dupuy O, Theurot D, Smolander J, Dugué B. Per-Cooling (Using Cooling Systems during Physical Exercise) Enhances Physical and Cognitive Performances in Hot Environments. A Narrative Review. International Journal of Environmental Research and Public Health. 2020; 17(3):1031. https://doi.org/10.3390/ijerph17031031
Chicago/Turabian StyleDouzi, Wafa, Olivier Dupuy, Dimitri Theurot, Juhani Smolander, and Benoit Dugué. 2020. "Per-Cooling (Using Cooling Systems during Physical Exercise) Enhances Physical and Cognitive Performances in Hot Environments. A Narrative Review" International Journal of Environmental Research and Public Health 17, no. 3: 1031. https://doi.org/10.3390/ijerph17031031
APA StyleDouzi, W., Dupuy, O., Theurot, D., Smolander, J., & Dugué, B. (2020). Per-Cooling (Using Cooling Systems during Physical Exercise) Enhances Physical and Cognitive Performances in Hot Environments. A Narrative Review. International Journal of Environmental Research and Public Health, 17(3), 1031. https://doi.org/10.3390/ijerph17031031