Vitamin D and Indices of Bone and Carbohydrate Metabolism in Postmenopausal Women Subjected to a 12-Week Aerobic Training Program—The Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Nordic Walking Training
2.3. Anthropometric and Biochemical Measurements
2.4. Statistical Methods
3. Results
3.1. Comparative Analysis of Somatic Characteristics and Biochemical Indices Measured before and after a 12-Week Aerobic Training Program
3.2. Associations between Measured Variables before and after a 12-Week Aerobic Training Program
3.3. Relationships between Variable Changes (Δbefore–after) during a 12-Week Aerobic Training Program
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gurka, M.J.; Vishnu, A.; Santen, R.J.; DeBoer, M.D. Progression of metabolic syndrome severity during the menopausal transition. J. Am. Heart Assoc. 2016, 5, e003609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.M.; Park, J.; Ryu, S.Y.; Kim, J. The effect of menopause on the metabolic syndrome among Korean women: The Korean National Health and Nutrition Examination Survey, 2001. Diabetes Care 2007, 30, 701–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, L.E.; Hudson, R.; Kilpatrick, K.; Kuk, J.L.; McMillan, K.; Janiszewski, P.M.; Lee, S.; Lam, M.; Ross, R. Effects of exercise modality on insulin resistance and functional limitation in older adults. Arch. Intern. Med. 2009, 69, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorostegi-Anduaga, I.; Corres, P.; MartinezAguirre-Betolaza, A.; Pérez-Asenjo, J.; Aispuru, G.R.; Fryer, S.M.; Maldonado-Martín, S. Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and hypertension: EXERDIET-HTA study. Eur. J. Prev. Cardiol. 2018, 25, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Morseth, B.; Emaus, N.; Jørgensen, L. Physical activity and bone: The importance of the various mechanical stimuli for bone mineral density. A Rev. Nor. Epidemiol. 2011, 20, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Kocur, P.; Wiernicka, M.; Wilski, M.; Kaminska, E.; Furmaniuk, L.; Flis-Maslowska, M.; Lewandowski, J. Does Nordic walking improves the postural control and gait parameters of women between the age 65 and 74: A randomized trial. J. Phys. Sci. 2015, 27, 3733–3737. [Google Scholar] [CrossRef] [Green Version]
- Ossowski, Z.M.; Skrobot, W.; Aschenbrenner, P.; Cesnaitiene, V.J.; Smaruj, M. Effects of short-term Nordic walking training on sarcopenia-related parameters in women with low bone mass: A preliminary study. Clin. Interv. Aging. 2016, 30, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Tschentscher, M.; Niederseer, D.; Niebauer, J. Health benefits of Nordic walking: A systematic review. Am. J. Prev. Med. 2013, 44, 76–84. [Google Scholar] [CrossRef]
- Borer, K.T.; Fogleman, K.; Gross, M.; La New, J.M.; Dengel, D. Walking intensity for postmenopausal bone mineral preservation and accrual. Bone 2007, 41, 713–721. [Google Scholar] [CrossRef]
- Wieczorek-Baranowska, A.; Nowak, A.; Pilaczyńska-Szcześniak, Ł. Osteocalcin and glucose metabolism in postmenopausal women subjected to aerobic training program for 8 weeks. Metabolism 2012, 61, 542–545. [Google Scholar] [CrossRef]
- Kasprzak, Z.; Pilaczyńska-Szcześniak, Ł. Effects of regular physical exercises in the water on the metabolic profile of women with abdominal obesity. J. Hum. Kinet. 2014, 41, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumitru, N.; Carsote, M.; Cocolos, A.; Petrova, E.; Olaru, M.; Dumitrache, C.; Ghemigian, A. The link between bone osteocalcin and energy metabolism in a group of postmenopausal women. Curr. Health Sci. J. 2019, 45, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Ferron, M.; Hinoi, E.; Karsenty, G.; Ducy, P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad. Sci. USA 2008, 105, 5266–5270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferron, M.; Lacombe, J. Regulation of energy metabolism by the skeleton: Osteocalcin and beyond. Arch. Biochem Biophys 2014, 561, 137–146. [Google Scholar] [CrossRef]
- Calton, E.K.; Keane, K.N.; Raizel, R.; Rowlands, J.; Soares, M.J.; Newsholme, P. Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells. Redox Biol. 2017, 12, 814–820. [Google Scholar] [CrossRef]
- Grimaldi, A.S.; Parker, B.A.; Capizzi, J.A.; Clarkson, P.M.; Pescatello, L.S.; White, M.C.; Thompson, P.D. 25(OH) vitamin D is associated with greater muscle strength in healthy men and women. Med. Sci. Sports Exerc 2013, 45, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Gao, D.; Wilding, J.; Trayhurn, P.; Bing, C. Vitamin D signalling in adipose tissue. Br. J. Nutr. 2012, 108, 1915–1923. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Garach, A.; García-Fontana, B.; Muñoz-Torres, M. Vitamin D Status, Calcium Intake and Risk of Developing Type 2 Diabetes: An Unresolved Issue. Nutrients 2019, 16, 642. [Google Scholar] [CrossRef] [Green Version]
- Haussler, M.R.; Haussler, C.A.; Bartik, L.; Whitfield, G.K.; Hsieh, J.C.; Slater, S.; Jurutka, P.W. Vitamin D receptor: Molecular signaling and actions of nutritional ligands in disease prevention. Nutr. Rev. 2008, 66, 98–112. [Google Scholar] [CrossRef]
- Calton, E.K.; Pathak, K.; Soares, M.J.; Alfonso, H.; Keane, K.N.; Newsholme, P.; Cummings, N.K.; Chan She Ping-Delfos, W.; Hamidi, A. Vitamin D status and insulin sensitivity are novel predictors of resting metabolic rate: A cross-sectional analysis in Australian adults. Eur. J. Nutr. 2016, 55, 2075–2080. [Google Scholar] [CrossRef]
- Wong, K.E.; Szeto, F.L.; Zhang, W.; Ye, H.; Kong, J.; Zhang, Z.; Sun, X.J.; Li, Y.C. Involvement of the vitamin D receptor in energy metabolism: Regulation of uncoupling proteins. Am. J. Physiol. Endocrinol. Metab. 2009, 296, 820–828. [Google Scholar] [CrossRef] [Green Version]
- Melin, A.; Wilske, J.; Ringertz, H.; Sääf, M. Seasonal variations in serum levels of 25-hydroxyvitamin D and parathyroid hormone but no detectable change in femoral neck bone density in an older population with regular outdoor exposure. J. Am. Geriatr. Soc. 2001, 49, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siwapituk, W.; Kitisomprayoonkul, W. Bone turnover increases during supervised treadmill walking in Thai postmenopausal women. Osteoporos Sarcopenia 2016, 2, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Wu, L.; He, Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women: A systematic review and meta-analysis. Menopause 2013, 20, 1216–1226. [Google Scholar] [CrossRef]
- Pérez-Soriano, P.; Encarnación-Martínez, A.; Aparicio-Aparicio, I.; Giménez, J.V.; Llana-Belloch, S. Nordic walking: A systematic review. Eur. J. Hum. Mov. 2014, 33, 26–45. [Google Scholar]
- Daly, R.M.; Via, J.D.; Duckham, R.L.; Fraser, S.F.; Helge, E.W. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz. J. Phys. 2019, 23, 170–180. [Google Scholar] [CrossRef]
- Ogata, M.; Ide, R.; Takizawa, M.; Tanaka, M.; Tetsuo, T.; Sato, A.; Iwasaki, N.; Uchigata, Y. Association between basal metabolic function and bone metabolism in postmenopausal women with type 2 diabetes. Nutrition 2015, 31, 1394–1401. [Google Scholar] [CrossRef]
- Shapses, S.A.; Riedt, C.S. Bone, body weight and weight reduction: What are the concerns? J. Nutr. 2006, 136, 1453–1456. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Sambrook, P.N.; Eisman, J.A. Bone loss, physical activity, and weight change in elderly women: The Dubbo Osteoporosis Epidemiology Study. J. Bone Min. Res. 1998, 13, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Iki, M.; Morita, A.; Ikeda, Y.; Sato, Y.; Akiba, T.; Matsumoto, T.; Nishino, H.; Kagamimori, S.; Kagawa, Y.; Yoneshima, H.; et al. Biochemical markers of bone turnover may predict progression to osteoporosis in osteopenic women: The JPOS Cohort Study. J. Bone Miner Metab. 2007, 25, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Im, J.A.; Yu, B.P.; Jeon, J.Y.; Kim, S.H. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin. Chim. Acta 2008, 396, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.A.; Ashraf, A. Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int. J. Endocrinol. 2010, 2010, 351385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med. 2017, 2, e000143. [Google Scholar] [CrossRef] [Green Version]
Indicator | Before Training | After Training | p-Value |
---|---|---|---|
Body mass (kg) | 65.2 (8.89); 66.3 (62.0–72.0) | 63.6 (9.28); 65.3 (59.5–71.0) | 0.0026 |
BMI (kg/m2) | 25.1 (2.54); 25.5 (24.4–26.5) | 24.5 (2.66); 24.5 (23.5–26.1) | 0.0030 |
Fat mass (%) | 27.5 (5.24); 28.5 (24.3–30.5) | 25.6 (5.59); 26.0 (22.1–29.4) | 0.0137 |
Glucose (mmol/L) | 5.0 (1.48); 4.7 (4.2–5.1) | 4.9 (0.73); 5.0 (4.3–5.3) | 0.6465 |
Insulin (µIU/mL) | 8.9 (2.50); 9.0 (7.2–10.9) | 7.9 (2.13); 7.8 (6.7–9.4) | 0.0908 |
HOMAIR | 1.8 (0.85); 1.8 (1.4–2.4) | 1.7 (0.59); 1.8 (1.3–2.2) | 0.2578 |
25(OH)D (ng/mL) | 18.6 (13.20); 11.7 (10.5–32.2) | 40.4 (9.62); 40.1 (32.0–48.5) | 0.0069 |
PTH (pg/mL) | 48.1 (10,62); 51.3 (41.2–54.1) | 42.2 (11.37); 43.3 (31.0–50.8) | 0.0411 |
Ca (mmol/L) | 1.4 (0.12); 1.4 (1.4–1.5) | 1.6 (0.25); 1.6 (1.4–1.8) | 0.2429 |
OC (ng/mL) | 8.9 (2.96); 7.9 (7.2–11.7) | 8.8 (3.15); 9.0 (7.3–10.7) | 0.9255 |
CTX (ng/mL) | 0.6 (0.28); 0.6 (0.4–0.7) | 0.7 (0.35); 0.6 (0.5–0.7) | 0.0469 |
OC/CTX | 15.9 (3.61); 16.2 (13.0–17.8) | 13.8 (3.65); 13.5 (11.8–15.7) | 0.2263 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, A.; Dalz, M.; Śliwicka, E.; Elegańczyk-Kot, H.; Kryściak, J.; Domaszewska, K.; Laurentowska, M.; Kocur, P.; Pospieszna, B. Vitamin D and Indices of Bone and Carbohydrate Metabolism in Postmenopausal Women Subjected to a 12-Week Aerobic Training Program—The Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 1074. https://doi.org/10.3390/ijerph17031074
Nowak A, Dalz M, Śliwicka E, Elegańczyk-Kot H, Kryściak J, Domaszewska K, Laurentowska M, Kocur P, Pospieszna B. Vitamin D and Indices of Bone and Carbohydrate Metabolism in Postmenopausal Women Subjected to a 12-Week Aerobic Training Program—The Pilot Study. International Journal of Environmental Research and Public Health. 2020; 17(3):1074. https://doi.org/10.3390/ijerph17031074
Chicago/Turabian StyleNowak, Alicja, Monika Dalz, Ewa Śliwicka, Helena Elegańczyk-Kot, Jakub Kryściak, Katarzyna Domaszewska, Maria Laurentowska, Piotr Kocur, and Barbara Pospieszna. 2020. "Vitamin D and Indices of Bone and Carbohydrate Metabolism in Postmenopausal Women Subjected to a 12-Week Aerobic Training Program—The Pilot Study" International Journal of Environmental Research and Public Health 17, no. 3: 1074. https://doi.org/10.3390/ijerph17031074
APA StyleNowak, A., Dalz, M., Śliwicka, E., Elegańczyk-Kot, H., Kryściak, J., Domaszewska, K., Laurentowska, M., Kocur, P., & Pospieszna, B. (2020). Vitamin D and Indices of Bone and Carbohydrate Metabolism in Postmenopausal Women Subjected to a 12-Week Aerobic Training Program—The Pilot Study. International Journal of Environmental Research and Public Health, 17(3), 1074. https://doi.org/10.3390/ijerph17031074