Lead Isotopes Combined with Geochemical Baseline in Sediments: A Novel Tool to Trace Anthropogenic Pb Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Measurement of Trace Metals Concentrations
2.3. Analysis of Pb Isotopic Composition
2.4. Statistical Analysis
3. Results and Discussion
3.1. Tracing Pb Sources Using the Traditional Pb Isotopic Approach
3.2. Establishment of Pb Geochemical Baseline in Sediment Core
3.3. Distinguish Anthropogenic and Natural Pb Sources Using RGB-Pb
3.4. Source Identification of Anthropogenic Pb in Sediments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gonzalez, Z.I.; Krachler, M.; Cheburkin, A.K.; Shotyk, W. Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino. Switzerland. Environ. Sci. Technol. 2006, 40, 6568–6574. [Google Scholar] [CrossRef] [PubMed]
- Deniseger, J.; Erickson, J.; Austin, A.; Roch, M.; Clark, M.J.R. The effects of decreasing heavy metal concentrations on the biota of Buttle Lake. Water Res. 1990, 24, 403–416. [Google Scholar] [CrossRef]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2013, 470, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142. [Google Scholar] [CrossRef]
- Tang, Q.; Bao, Y.H.; He, X.B.; Zhou, H.D.; Cao, Z.J.; Gao, P.; Zhong, R.H.; Hu, Y.H.; Zhang, X.B. Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China. Sci. Total Environ. 2014, 479, 258–266. [Google Scholar] [CrossRef]
- Bing, H.J.; Wu, Y.H.; Zhou, J.; Sun, H.Y.; Wang, X.X.; Zhu, H. Spatial variation of heavy metal contamination in the riparian sediments after two-year flow regulation in the Three Gorges Reservoir, China. Sci. Total Environ. 2019, 649, 1004–1016. [Google Scholar] [CrossRef] [PubMed]
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef]
- Gao, L.; Li, S.H.; Wang, Z.W.; Liang, Z.B.; Chen, J.Y.; Liang, B. Contamination, potential mobility, and origins of lead in sediment cores from the Shima River, south China. Environ. Pollut. 2018, 242, 1128–1136. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metals sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Qishlaqi, A.; Moore, F. Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River banks, Shiraz, Iran. American-Eurasian J. Agric. Environ. Sci. 2007, 2, 565–573. [Google Scholar]
- Zhao, H.; Li, X. Risk assessment of metals in road-deposited sediment along an urban-rural gradient. Environ. Pollut. 2013, 174, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.F.; Hu, Y.N. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environ. Pollut. 2010, 158, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.L.; Smets, B.F.; Dechesne, A. Measuring biogeochemical heterogeneity at the micro scale in soils and sediments. Soil Biol. Biochem. 2015, 90, 122–138. [Google Scholar] [CrossRef]
- Caravanos, J.; Weiss, A.L.; Jaeger, R.J. An exterior and interior leaded dust deposition survey in New York City: Results of a 2-year study. Environ. Res. 2006, 100, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Cloquet, C.; Carignan, J.; Libourel, G.; Stercheman, T.; Perdrix, E. Tracing Source Pollution in Soils Using Cadmium and Lead Isotopes. Environ. Sci. Technol. 2006, 40, 2525–2530. [Google Scholar] [CrossRef]
- Duzgoren-Aydin, N.S.; Weiss, A.L. Use and abuse of Pb-isotope fingerprinting technique and GIS mapping data to assess lead in environmental studies. Environ. Geochem. Health 2008, 30, 577–588. [Google Scholar] [CrossRef]
- Gao, L.; Gao, B.; Xu, D.Y.; Peng, W.Q.; Lu, J. Multiple assessments of trace metals in sediments and their response to the water level fluctuation in the Three Gorges Reservoir, China. Sci. Total Environ. 2019, 648, 197–205. [Google Scholar] [CrossRef]
- Xu, D.Y.; Gao, B.; Peng, W.Q.; Lu, J.; Gao, L. Thallium pollution in sediments response to consecutive water seasons in Three Gorges Reservoir using geochemical baseline concentrations. J. Hydrol. 2018, 564, 740–747. [Google Scholar] [CrossRef]
- Gao, B.; Zhou, H.D.; Yu, Y.; Wang, Y.C. Occurrence, distribution, and risk assessment of the metals in sediments and fish from the largest reservoir in China. RSC Adv. 2015, 5, 60322–60330. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, J.; Tu, X.; Chang, X.; Fan, C.; Liu, Y.; Liu, J. Pb, Sr, and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration. Geochim. Cosmochim. Acta 2001, 65, 2555–2570. [Google Scholar]
- Han, L.F.; Gao, B.; Wei, X.; Gao, L.; Xu, D.Y.; Sun, K. The characteristic of Pb isotopic compositions in different chemical fractions in sediments from Three Gorges Reservoir, China. Environ. Pollut. 2015, 206, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Monna, F.; Lancelot, J.; Croudace, I.W.; Cundy, A.B.; Lewis, J.T. Lead isotopic composition of airborne material from France and the Southern U.K. implications for Pb pollution sources in urban areas. Environ. Sci. Technol. 1997, 31, 2277–2286. [Google Scholar] [CrossRef]
- Widory, D.; Liu, X.D.; Dong, S.P. Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing. Atmos. Environ. 2010, 44, 3679–3687. [Google Scholar]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W.Y. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol. Indic. 2017, 72, 510–520. [Google Scholar] [CrossRef]
- Teng, Y.G.; Ni, S.J. Theory and Practice of Geochemical Baseline; Beijing Chemical Industry Press: Beijing, China, 2007; pp. 87–96. [Google Scholar]
- Mukai, H.; Tanaka, A.; Fujii, T.; Zeng, Y.Q.; Hong, Y.T.; Tang, J.; Guo, S.; Xue, H.S.; Sun, Z.L.; Zhou, J.T.; et al. Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites. Environ. Sci. Technol. 2001, 35, 1064–1071. [Google Scholar] [CrossRef]
- Tan, M.G.; Zhang, G.L.; Li, X.L.; Zhang, Y.X.; Yue, W.S.; Chen, J.M.; Wang, Y.S.; Li, A.G.; Li, Y.; Zhang, Y.M.; et al. Comprehensive Study of Lead Pollution in Shanghai by Multiple Techniques. Anal. Chem. 2006, 78, 8044–8050. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Yin, J.; Zhang, M.; Zhang, T. Chemical characteristics and source apportionment of PM10 during Asian dust storm and non-dust storm days in Beijing. Atmos. Environ. 2014, 91, 85–94. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Chen, J.; Tan, M.; Li, Y.; Zhang, Y.; Lu, W.; Tong, Y.; Zhang, G.; Li, Y. A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmos. Environ. 2005, 39, 1245–1253. [Google Scholar] [CrossRef]
- Zhu, B. The mapping of geochemical provinces in China based on Pb isotopes. J. Geochem. Explor. 1995, 55, 171–181. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Chang, X.Y.; Qiu, H.N.; Sun, D.Z. Characteristics of Proterozoic basements on the geochemical steep zones in the continent of China and their implications for setting of super large deposits. Sci. China 1998, 41 (Suppl. I), 54–64. [Google Scholar]
- Zhu, L.; Guo, L.; Gao, Z.; Yin, G.; Lee, B.; Wang, F.; Xu, J. Source and distribution of lead in the surface sediments from the South China Sea as derived from Pb isotopes. Mar. Pollut. Bull. 2010, 60, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Millot, R.; Allègre, C.J.; Gaillardet, J.; Roy, S. Lead isotopic systematics of major river sediments: A new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem. Geol. 2004, 203, 75–90. [Google Scholar] [CrossRef]
- Lee, C.S.L.; Li, X.D.; Zhang, G.; Li, J.; Ding, A.J.; Wang, T. Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmos. Environ. 2007, 41, 432–447. [Google Scholar] [CrossRef] [Green Version]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef]
- Huang, R.J.; Cheng, R.; Jing, M.; Yang, L.; Li, Y.J.; Chen, Q.; Chen, Y.; Yan, J.; Lin, C.S.; Wu, Y.F. Source-specific health risk analysis on particulate trace elements: Coal combustion and traffic emission as major contributors in wintertime Beijing. Environ. Sci. Technol. 2018, 52, 10967–10974. [Google Scholar] [CrossRef]
206Pb/207Pb | 208Pb/207Pb | References | |
---|---|---|---|
Anthropogenic Pb in sediments | 1.150 | 2.458 | This study |
Aerosol in Beijing | 1.148 | 2.444 | [26] |
Coal in Shanghai | 1.163 | 2.462 | [27] |
Coal in Shanghai | 1.163 | 2.456 | [27] |
Cement | 1.163 | 2.447 | [27] |
Coal in Beijing | 1.172 | 2.460 | [28] |
Northern China coal | 1.178 | 2.503 | [29] |
Vehicle exhaust (leaded) | 1.110 | 2.434 | [30] |
Vehicle exhaust(unleaded) | 1.147 | 2.435 | [30] |
Ore (Hebei) | 1.072 | 2.452 | [31] |
Ore (Hebei) | 1.090 | 2.438 | [31] |
Natural source | 1.184 | 2.482 | [32] |
1.183 | 2.468 | [32] | |
1.195 | 2.482 | [33] | |
1.196 | 2.489 | [34] | |
1.185 | 2.481 | [34] | |
1.200 | 2.493 | [35] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Gao, B. Lead Isotopes Combined with Geochemical Baseline in Sediments: A Novel Tool to Trace Anthropogenic Pb Sources. Int. J. Environ. Res. Public Health 2020, 17, 1112. https://doi.org/10.3390/ijerph17031112
Xu D, Gao B. Lead Isotopes Combined with Geochemical Baseline in Sediments: A Novel Tool to Trace Anthropogenic Pb Sources. International Journal of Environmental Research and Public Health. 2020; 17(3):1112. https://doi.org/10.3390/ijerph17031112
Chicago/Turabian StyleXu, Dongyu, and Bo Gao. 2020. "Lead Isotopes Combined with Geochemical Baseline in Sediments: A Novel Tool to Trace Anthropogenic Pb Sources" International Journal of Environmental Research and Public Health 17, no. 3: 1112. https://doi.org/10.3390/ijerph17031112
APA StyleXu, D., & Gao, B. (2020). Lead Isotopes Combined with Geochemical Baseline in Sediments: A Novel Tool to Trace Anthropogenic Pb Sources. International Journal of Environmental Research and Public Health, 17(3), 1112. https://doi.org/10.3390/ijerph17031112